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A. Experimental procedures 

A.1. Reagents for automated phosphoramidite synthesis. Anhydrous acetonitrile 

(phosphoramidite diluent & dry washings, ChemGenes), acetonitrile (≥99.9 %, washings, 

Roth), activation reagent (0.25 M 5 ethylthio tetrazole in MeCN, ChemGenes), Cap A (acetic 

anhydride/pyridine/THF, ChemGenes), Cap B (10 % N-methylimidazole in THF, ChemGenes), 

DMT removal reagent (3 w% TCA in DCM, Roth), drying traps (small, 10 - 15 mL, 

ChemGenes), polystyrene dT support (1 μmol for ABI3900, Distribio), glen-pak DNA 

purification cartridge (10 nmole - 1.0 µmole, Glen Reasearch) and oxidizing solution (0.02 M 

iodine/pyridine/H2O/THF, ChemGenes) were used as received. The nucleoside 

phosphoramidites (Figure S1) Ac-dC-CE phosphoramidite, dA-CE phosphoramidite dG-CE 

phosphoramidite, 5-Br-dU-CE phosphoramidite, 5-I-dU-CE phosphoramidite, 2′-F-G-CE 

phosphoramidite, 8-Br-dG-CE phosphoramidite, 2'-DeoxyNebularine-CE phosphoramidite 

(Purine) and 2'-F-Ac-C-CE phosphoramidite (Glen Research) were also used as received. The 

phosphoramidites monomers M1-M8 and the linker RISC2 were prepared following previously-

reported procedures.[1-2]All the phosphoramidites monomers were stored in the freezer at 

−18 °C. 

 

A.2. Automated solid-phase synthesis. The polymer was synthesized under argon in 

rigorously dry conditions by automated solid-phase phosphoramidite method on an ABI DNA 

Synthesizer (Applied BioSystems 3900). The typical method involves four steps (i) 

deprotection, (ii) coupling, (iii) oxidation and (iv) capping, as described previously.[3] The 

phosphoramidite monomers M1-M8, the linker RISC2 and the nucleoside phosphoramidites A, 

C, G, B, I, F, R, P and D were dissolved in anhydrous acetonitrile under argon. A concentration 

of 50 mM was used for all monomers except for M4-M8 (60 mM). The monomers were placed 

in the synthesizer with all the needed reagents (activation reagent, Cap A, Cap B, DMT removal 

reagent) and primed twice. The polystyrene solid support dT (1 μmol scale) was placed in the 

synthesizer and the sequences were performed with DMT-On mode. Once the synthesis was 

done the solid support column was removed from the synthesizer and the DMT-protected 

sequence was cleaved from the support. A solution of 28% ammonia and methylamine (1/1, 

v/v) was used to cleave the DMT-protected polymers from the solid-support at RT for 30 min 

and purified on a glen-pak DNA purification cartridge. This procedure permits to separate the 

DMT-terminated targeted structures from the truncated sequences deactivated by the capping 

reaction. Then, the terminal DMT moiety of the desired sequence-coded polymers was removed 

directly on the glen-pak column and washed out by solvent elution. The isolated polymer 

solution was lyophilized and obtained as a white powder in 44% yield. 
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A.3. Code for display and compression. Code deposited at github.com/delsuc/Antoine_de_Lavoisier 

import numpy as np 

import matplotlib.pyplot as plt 

# Some basic tools 

# we use the following conventions: 

#    Signal is the binary signal to code/decode           - coded into a np.array 

#    Message is the molecular organisation of the signal  - coded into a list 

# converters 

Codon = 3  # number of bits carried by the monomers    3 ⇒ 8 monomers M1...M8 
 

def decodon(lett, code=Codon): 

    """ 

    given a letter returns bit pattern in given code 

    decodon("M1", 3) == [0 0 0] 

    decodon("M3", 2) == [1 0] 

    """ 

    n = int(lett[1:])-1 

    form = "{:0>%db}"%(code) 

    s = form.format(n) 

    return [int(l) for l in s]  # make it list 

def codon(pat): 

    """ 

    given a bit pattern, returns its name in letter 

    [0 0 0] = "M1" 

    [1 0] = "M3"   etc... 

    """ 

    s = sum([(2**i) * pat[-1-i] for i in range(len(pat))] )  

    return 'M%d'%(s+1) 
 

def sig2msg(signal, code=Codon): 

    "code a signal into a message" 

    return [codon(signal[i:i+code]) for i in range(0,len(signal),code)] 

def msg2sig(msg, code=Codon): 

    "decode a message into a signal" 

    return np.array(sum(map(decodon,msg),[])) 
 

# checksun handling 

def addcs(argsignal): 

    """this function takes a signal, as a list of bits and add on cs at the end 

    """ 

    signal = list(argsignal) 

    cs = sum(signal)%2 

    signal.append(cs) 

    return signal 

def checkcs(argsignal): 

    signal = list(argsignal) 

    cs = signal.pop() 

    if cs != sum(signal)%2: 

        print('**WARNING** the checsum is not valid') 

    else: 

        print('valid checksum') 

    return np.array(signal) 

# tools on pictures 

def pcheck(pict): 

    "verifies that pict (whatever format) is correct, and return a formated pict array" 

    p = np.array(pict) 

    if len(p.shape) == 1: 

        p = p.reshape(SizeH,SizeW) 

    else: 

        p.shape != (SizeW, SizeH) 

#        print(p.shape) 

    return p 

def draw( pict ): 

    "draws a pixelated picture" 

    plt.figure() 

    plt.imshow(pcheck(pict), cmap="Greys") 
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# exemple given 

sig = [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0] 

print('signal:\t\t',sig) 

sigcs = addcs(sig) 

print('signal +cs :\t',sigcs) 

msg = sig2msg(sigcs) 

print('coded message:\t',msg) 

signal:      [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0] 

signal +cs :     [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0] 

coded message:   ['M8', 'M8', 'M7', 'M1', 'M1', 'M1'] 

# the following code implements an arithmetic compresser 

# based on the code from "Project Nayuki", https://www.nayuki.io/page/reference-arithmetic-coding 

# dowloaded en march 11 2020 

import io 

import arithm_coding.arithmeticcoding  as ar 

class BitInputStream(object): 

    "Constructs a fake bit input stream" 

    def __init__(self, inp,nbits): 

        "inp is a list of 1 and 0" 

        self.inp = inp 

        self.nbits = nbits 

    def read(self): 

        try: 

            return self.inp.pop(0) 

        except: 

            return -1 

    def _repr_(self): 

        self.inp._repr_() 

class BitOutputStream(object): 

    "Constructs a fake bit output stream" 

    def __init__(self,nbits): 

        self.out = [] 

        self.nbits = nbits 

    def write(self, b): 

        "Writes a bit to the stream. The given bit must be 0 or 1." 

        if b not in (0, 1): 

            raise ValueError("Argument must be 0 or 1") 

        self.out.append(b) 

    def close(self): 

        pass 
#        print(self.out) 

    def _repr_(self): 

        self.out._repr_() 

# Code 

class ARCoder(): 

    def __init__(self,nbits, verbose=True): 

        if nbits <2 or nbits>8 : 

            raise ValueError('N should be a value between 2 and 8') 

        self.nbits = nbits 

        self.sz = 2**nbits 

        self.sig = None 

        self.verbose = verbose 

    def set_signal(self, signal): 

        "to be called after initialization for coding" 

        self.sig = self.align(signal) 

        self.comp_frequencies() 

    # compute frequencies 

    def set_freq(self, freqs): 

        "to be called after initialization for decoding - freqs is the frequency table computed by the coder" 

        self.freqs = freqs 

    def align(self, sig): 

        "complete signal with trailing 0 so length is a multiple of 2^nbits" 

        asig = [s for s in sig] 

        while len(asig) % self.sz != 0: 

            asig.append(0) 

        return asig 
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    def comp_frequencies(self): 

        "compute the frequency table from the signal" 

        freqs = ar.SimpleFrequencyTable([0] * (self.sz+1)) 

        for i in range(0,len(self.sig), self.nbits): 

            symb = 0 

            for j in range(self.nbits): 

                if i+j < len(self.sig): 

                    v = self.sig[i+j] 

                    symb = 2*symb + v 

                else: 

                    break 
            freqs.increment(symb) 

        freqs.increment(self.sz)  # marks end of stream 

        self.freqs = freqs 

    def compress(self): 

        "return the compressed signal from the signal" 

        out = open('toto','wb') 

        bits = ar.BitOutputStream(out) 

        coder = ar.ArithmeticEncoder(32,bits) 

        for i in range(0,len(self.sig), self.nbits): 

            symb = 0 

            for j in range(self.nbits): 

                if i+j < len(self.sig): 

                    v = self.sig[i+j] 

                    symb = 2*symb + v 

                else: 

                    break 
            if self.verbose: print(symb,end=' ') 

            coder.write(self.freqs, symb) 

        coder.write(self.freqs, self.sz)     # marks end of stream 

        coder.finish() 

        bits.close() 

        res = [] 

        bylst = open('toto','rb').read() 

        for by in bylst: 

            for _ in range(8): 

                res.append(by%2) 

                by = by//2 

        return res 

    def decomp(self, inp): 

        inp = ar.BitInputStream(open('toto','rb')) 

        dec = ar.ArithmeticDecoder(32,inp) 

        res = [] 

        while True: 

            symb = dec.read(self.freqs) 

            if symb == self.sz:           # EOF symbol 

                break 
            if self.verbose: print(symb, end=' ') 

            # decode symb 

            bb = [0]*self.nbits 

            for j in range(self.nbits): 

                if symb%2 == 1: 

                    bb[self.nbits-j-1] = 1 

                symb = symb//2 

            for b in bb: 

                res.append(b) 

#            res.append(symb) 

        return res 

def ARcode(image, N): 

    "a minimum coder" 

    C = ARCoder(N, verbose=False) 

    C.set_signal(image) 

    #print(C.freqs.frequencies) 

    s = C.compress() 

    return s 
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A.4. The Lavoisier picture. 

Lavoisier = np.array 

     ([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 
       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 
       [0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 
       [0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0], 
       [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0], 
       [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0], 
       [0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0], 
       [0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0], 
       [0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0], 
       [0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0], 
       [0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0], 
       [0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0], 
       [0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0], 
       [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0], 
       [0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0], 
       [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0], 
       [0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0], 
       [0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0], 
       [0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0], 
       [0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0], 
       [0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0], 
       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]) 
SizeW, SizeH = (20, 22)  # size of the picture 

draw(Lavoisier) 

 

png 
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A.5. Compression and coding of the Lavoisier picture. 

stream = Lavoisier.ravel() 

lenstream = len(stream) 

print('raw bit stream:\n', stream, '\nlength:',lenstream) 

raw bit stream: 
 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 
 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
 0 1 1 1 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 
 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 1 1 1 1 1 1 0 0 1 1 0 0 0 0 0 1 0 
 0 0 1 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 0 1 1 0 0 0 0 
 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 1 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 1 1 1 0 0 
 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 
 1 1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 
 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 
 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]  
length: 440 

streamcs = np.array(addcs(stream))                # add the checksum 

lenstreamcs = len(streamcs) 

print('stream with added checksum:\n', streamcs, '\nlength:',lenstreamcs) 

stream with added checksum: 
 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 
 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
 0 1 1 1 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 
 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 1 1 1 1 1 1 0 0 1 1 0 0 0 0 0 1 0 
 0 0 1 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 0 1 1 0 0 0 0 
 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 1 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 1 1 1 0 0 
 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 
 1 1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 
 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 
 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1]  

length: 441 

# set-up the coder 

N = 8                               # we'll code on 8bits 

C = ARCoder(N, verbose=False)       # create the code 

C.set_signal(streamcs)              # set the signal - computes the frequency table 

freq_table = C.freqs                # and store it 

# print("frequency table:\n",freq_table.frequencies)     # uncomment to print the frequency 

table    

# do the compression 

compstream = np.array(C.compress()) 

complength = len(compstream) 

print('compressed stream:\n', compstream, '\nlength:', complength, 'bits' ) 
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print ("that's a %.0f%% reduction compared to non compressed"%(100*(1-

complength/len(streamcs)))) 

compressed stream: 
 [0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 1 1 0 0 1 1 1 1 1 1 1 0 1 0 0 1 1 0 1 1 1 
 1 1 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 
 1 1 0 1 0 0 0 1 0 0 1 0 1 1 1 1 1 0 1 1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 0 0 1 
 0 1 0 1 1 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 1 0 0 1 1 1 0 1 0 0 0 0 1 0 1 1 1 
 1 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 1 1 0 0 1 0 0 1 0 1 1 1 1 0 0 
 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 0 1 0 0 0 1 0 1 1 1 0 1 0 0 0 
 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 0 0 0 1 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 
 0 1 1 1 1]  
length: 264 bits 

that's a 40% reduction compared to non compressed 

 

A.6. Transcription into the chemical alphabet. 

msgLavoisier = sig2msg(compstream) 

print('message:') 

print(*msgLavoisier, sep='-') 

print('length:', len(msgLavoisier), 'monomers') 

message: 

M1∙M1∙M2∙M7∙M7∙M4∙M2∙M8∙M8∙M3∙M4∙M4∙M8∙M7∙M4∙M1∙M7∙M4∙M2∙M7∙M7∙M5∙M6∙M5∙M8-

M6∙M1∙M5∙M6∙M8∙M6∙M5∙M8∙M6∙M6∙M2∙M2∙M3∙M7∙M5∙M1∙M6∙M5∙M4∙M2∙M7∙M5∙M2∙M4∙M8-

M6∙M1∙M8∙M3∙M1∙M8∙M8∙M5∙M5∙M6∙M8∙M1∙M2∙M8∙M1∙M8∙M7∙M2∙M8∙M3∙M2∙M4∙M6∙M1∙M8-

M8∙M5∙M8∙M8∙M4∙M1∙M8∙M4∙M4∙M4∙M2∙M6∙M8 

length: 88 coded monomers (without RISC2 and mass tags) 

M1∙M1∙M2∙M7∙M7∙M4∙M2∙M8-RISC2-M8∙M3∙M4∙M4∙M8∙M7∙M4∙M1∙D-RISC2-M7∙M4∙M2∙M7∙M7

∙M5∙M6∙M5∙P-RISC2-M8∙M6∙M1∙M5∙M6∙M8∙M6∙M5∙R-RISC2-M8∙M6∙M6∙M2∙M2∙M3∙M7∙M5∙F-R

ISC2-M1∙M6∙M5∙M4∙M2∙M7∙M5∙M2∙I-RISC2-M4∙M8∙M6∙M1∙M8∙M3∙M1∙M8∙B-RISC2-M8∙M5∙M5

∙M6∙M8∙M1∙M2∙M8∙G-RISC2-M1∙M8∙M7∙M2∙M8∙M3∙M2∙M4∙A-RISC2-M6∙M1∙M8∙M8∙M5∙M8∙M8∙

M4∙C-RISC2-M1∙M8∙M4∙M4∙M4∙M2∙M6∙M8-T. 

Total length: 108 residues (88 coded monomers + 10 RISC2 + 10 mass tags) 
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B. Measurements and analyses 

B.1. Size exclusion chromatography (SEC). Size exclusion chromatography was carried out 

on a DIONEX HPLC system, Ultimate 3000 (degasser, pump, auto sampler) equipped with 4 

Shodex OH-pak columns 30 cm (802.5HQ, 804HQ, 806HQ, 807HQ) and a guard column (from 

500 to 100 000 000 g∙mol–1). The eluent used as a solvent was 60% water (Millipore quality) + 

40% acetonitrile (HPLC grade) + 0.1 M NaNO3 with a flow rate of 0.5∙mL min–1. The polymer 

was diluted in the same solvent during 12 h and filtered on Dyanagard filter (cellulose ester) 

0.2 µm. It was detected with the help of a differential refractometer OPTILAB rEX (Wyatt 

Techn.) and a light scattering detector DAWN HELEOS II (Wyatt Techn.). The reported Mn, 

Mp and Ð values were obtained from light scattering using a dn/dc value of 0.107 mL∙g–1. 

 

B.2. Mass spectrometry. For sample preparation, reagents were from Sigma Aldrich (St Louis, 

MO) and solvents (HPLC grade) were from Carlo Erba (Peypin, France). The polymer was 

dissolved in H2O/ACN (50:50, v/v) solution containing 0.1% formic acid, further diluted (1/10) 

in methanol and introduced at a 10 μL min–1 flow rate in the electrospray ionization (ESI) source 

of a hybrid QTOF mass spectrometer Synapt G2-HDMS (Waters, Manchester, UK). The ESI 

source was operated in the negative mode (capillary voltage: –2.27 kV) under a desolvation gas 

(N2) flow of 100 L h-1 heated at 35°C. The cone voltage was set to –60 V. Collision-induced 

dissociation (CID) was performed in the ion trap device using argon as the collision gas after 

selection of precursor ions in the quadrupole mass analyzer of the instrument. Instrument 

control, data acquisition and data processing of all experiments were achieved with the 

MassLynx 4.1 programs provided by Waters. 

MALDI-TOF MS experiments were carried out using a Bruker Autoflex (Bruker Daltonics, 

Leipzig, Germany) equipped with a nitrogen laser emitting at 337 nm, a single-stage pulsed ion 

extraction source and dual microchannel plate detectors. Data acquisition was performed in the 

linear mode and the MALDI source was operated in the negative ion mode, using a laser 

frequency of 10 Hz and an accelerating voltage of 20 kV. The delay time used in delayed 

extraction mode was optimized to 100 ns. Mass spectra were acquired using a 55% laser fluence 

by performing a series of 400 shots while moving the laser around the sample surface. Ions 

below m/z 500 were deflected to suppress high intensity matrix signals. MALDI sample 

preparation was inspired from a protocol for mass analysis of oligonucleotides,[4] using 3-

hydroxypicolinic acid (3-HPA) as the matrix. A saturated solution of 3-HPA was prepared in a 

water/acetonitrile (75/25, v/v) binary mixture. A two-step MALDI sample preparation was 

used, with 2 µL of the polymer solution first deposited and left dried on the sample plate before 

1 µL of the 3-HPA matrix solution was added on top and dried under atmospheric conditions. 
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B.3. Automated sequencing by MS-DECODER. An algorithm for RISC2-based 

poly(phosphodiester)s was implemented in MS-DECODER as previously described.[2] This 

algorithm works for sequences of 8 entities per fragmentation spectrum, and can therefore 

adjust to entities of one, two or three bits as it is the case in the present work. This adjustment 

is possible thanks to a table of all theoretical m/z values for each composition and tag. Based 

on this table, it is possible to compute the theoretical masses to search for every possible 

combination of N-bits entities and charge state. Although the number of combinations increases 

with the value of N, the algorithm manages to automatically detect a consequent number of 

impossible combinations, prevents their full computation and in memory storage and thus tends 

to reduce the algorithmic complexity of MS-DECODER. After generating the possible 

combinations, the next step is to check which combination(s) fit the experimental MS/MS 

spectra the best. This is done in a single parsing of the spectrum, by storing each fragment 

matching a theoretical fragment from one of the combinations. At the end, combinations are 

ordered by the number of matching m/z values. Only the 10 best combinations are kept and 

returned to the user. Through the graphical interface, the user can visualize the output of 

possible combinations for each MS/MS spectrum, thus sub-segment, and can select the most 

appropriate match. 

 

B.4. Decoding the chemical message. 

# first decode the message into a compressed signal 

decstream = msg2sig(msgLavoisier) 

print('decoded signal:\n',decstream) 

decoded signal: 
 [0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 1 1 0 0 1 1 1 1 1 1 1 0 1 0 0 1 1 0 1 1 1 
 1 1 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 
 1 1 0 1 0 0 0 1 0 0 1 0 1 1 1 1 1 0 1 1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 0 0 1 
 0 1 0 1 1 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 1 0 0 1 1 1 0 1 0 0 0 0 1 0 1 1 1 
 1 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 1 1 0 0 1 0 0 1 0 1 1 1 1 0 0 
 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 0 1 0 0 0 1 0 1 1 1 0 1 0 0 0 
 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 0 0 0 1 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 
 0 1 1 1 1] 

# decode the signal 

D = ARCoder(N, verbose=False)          # create the decoder 

D.set_freq(freq_table)                 # load the frequency table 

decoded = D.decomp(decstream)  

decoded = np.array(decoded[:lenstreamcs]) 

decoded = checkcs(decoded) 

print('decoded signal\n',decoded) 

valid checksum 

decoded signal 
 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 
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 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
 0 1 1 1 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 
 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 1 1 1 1 1 1 0 0 1 1 0 0 0 0 0 1 0 
 0 0 1 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 0 1 1 0 0 0 0 
 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 1 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 1 1 1 0 0 
 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 
 1 1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 
 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 
 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] 

draw(decoded) 
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C. Additional data and figures 

 

Figure S1. Molecular structure of the different phosphoramidite monomers used in this work. 

The protecting groups displayed in light grey on the purine and pyrimidine rings are removed 

during cleavage, leading to primary amines. 

 

 

 

 

(M1) (M2) (M3) (M4)

(M5) (M6) (M7) (M8)

(RISC2)
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Figure S2. MALDI(–)-TOF mass spectrum recorded in the linear mode for the “Lavoisier” 

polymer. The poorly resolved signal centered at m/z 24529 was assigned to the intact polymer 

ionized as a deprotonated molecule. Mass analysis in this m/z range using linear TOF combined 

with multiple H/Na exchanges usually observed in poly(phosphodiester)s would account for 

the low accuracy of this measurement, as compared to the expected m/z 24407 value at isotopic 

maximum. Yet, this assignment was supported by detection of in-source fragments induced by 

the quite high laser fluence (55%) requested to desorb the polymer from the MALDI sample. 

These fragments are formed upon alkoxyamine bond cleavages that can be either competitive 

or consecutive. Based on major signals measured in the low m/z range, the preferential pathway 

annotated in this MALDI spectrum would consist of successive release of coded segments from 

the left- to the right-hand side of the chain (see m/z values in the bottom raw of the top scheme). 

Yet, due to large width of most peaks as well as additional low intensity signals next to the main 

low m/z ions, it cannot be excluded that release of coded segments also occurs i) from the right- 

to the left-hand side (see m/z values in the top raw of the top scheme) and ii) in a random manner 

(for example, alternatives to losing the three first (B1-B3) or the three last (B9-B11) blocks can 

be elimination of B1, B2 and B11 or elimination of B1, B10 and B11, leading to fragments that 

do no longer contain any of the original chain ends and expected at m/z 18529 and m/z 18393, 

respectively). Of note, defective molecules lacking entire block(s) would also contribute to 

these signals and their presence in the sample hence cannot be excluded.  
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Figure S3. SEC chromatograms recorded in water/acetonitrile for the “Lavoisier” polymer: 

(a) Light scattering signal. (b) Refractomer signal. 

 

 

 elemental composition calculated m/z measured m/z 

[B1 – 3H]3– C59H116O33P8
3– 533.5105 533.5096 

[B2 – 3H]3– C85H160N4O43P10F
3– 751.2611 751.2592 

[B3 – 3H]3– C88H164N5O42P10
3– 757.6081 757.6054 

[B4 – 3H]3– C92H172N6O43P10Br3– 812.6011 812.5952 

[B5 – 3H]3– C85H158N6O43P10F
3– 759.9246 759.9225 

[B6 – 3H]3– C76H141N3O44P10I
3– 745.5109 745.5085 

[B7 – 3H]3– C86H161N3O44P10Br3– 776.2343 776.2321 

[B8 – 3H]3– C91H171N6O43P10
3– 781.9590 781.9570 

[B9 – 3H]3– C82H153N6O42P10
3– 734.5805 734.5792 

[B10 – 3H]3– C96H183N4O43P10
3– 796.6550 796.6528 

[B11 – 3H]3– C74H146N3O41P9
3– 670.5696 670.5679 

Table S1. Accurate measurements (monoisotopic m/z) of individual blocks released as triply 

deprotonated species during in-source dissociation of the “Lavoisier” polymer (Figure 3). 

  

30 32 34 36 38

b.

Elution volume [mL]

30 32 34 36 38

Elution volume [mL]

a.
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Figure S4. CID spectrum of (a) the m/z 533.5 ion containing the block 1 with no tag, (b) the 

m/z 751.3 ion containing block 2 tagged with D, (c) the m/z 757.6 ion containing block 3 tagged 

with P, and (d) the m/z 812.6 ion containing block 4 tagged with R. Dissociation of all 

precursors proceeds via cleavage of phosphate bonds in each repeating unit, yielding fragments 

containing either the α termination (ai
z–, bi

z–, ci
z–, di

z–) or the ω termination (wi
z–, xi

z–, yi
z–, zi

z–) 

that enable full coverage of each block sequence, as reported in Figure S7. For the sake of 

clarity, all fragments were not annotated. Peaks labeled in grey correspond to secondary 

fragments, including deprotonated monomers designated by #. 
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Figure S5. CID spectrum of (a) the m/z 759.9 ion containing the block 5 tagged with F, (b) the 

m/z 745.5 ion containing block 6 tagged with I, (c) the m/z 776.2 ion containing block 7 tagged 

with B, and (d) the m/z 782.0 ion containing block 8 tagged with G. Dissociation of all 

precursors proceeds via cleavage of phosphate bonds in each repeating unit, yielding fragments 

containing either the α termination (ai
z–, bi

z–, ci
z–, di

z–) or the ω termination (wi
z–, xi

z–, yi
z–, zi

z–) 

that enable full coverage of each block sequence, as summarized in Figure S7. Peaks annotated 

in grey correspond to secondary fragments, including deprotonated monomers designated by #. 
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Figure S6. CID spectrum of (a) the m/z 734.6 ion containing the block 9 tagged with A, (b) the 

m/z 796.7 ion containing block 10 tagged with C, and (c) the m/z 670.6 ion containing block 11 

tagged with T. Dissociation of all precursors proceeds via cleavage of phosphate bonds in each 

repeating unit, yielding fragments containing either the α termination (ai
z–, bi

z–, ci
z–, di

z–) or the 

ω termination (wi
z–, xi

z–, yi
z–, zi

z–) that enable full coverage of each block sequence, as 

summarized in Figure S7. Peaks annotated in grey correspond to secondary fragments, 

including deprotonated monomers designated by #. 
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Figure S7. Sequence coverage tables with each cell reporting charge states of sequencing 

fragments measured in CID spectra shown in Figures S4-S6. Fragments containing either the α 

termination (ai
z–, bi

z–, ci
z–, di

z–) allow each sequence to be re-constructed from the left- to the 

right-hand side (→) whereas fragments containing the ω termination (wi
z–, xi

z–, yi
z–, zi

z–) are 

used to read the sequence in the opposite direction (←). Due to the peculiar end-groups of the 

ion containing block 1, some fragments are not expected (n.e. in grey cells).  
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