ORR Activity of Metalated Phenanthroline-Strapped Porphyrin Adsorbed on Carbon Nanotubes

Manel Hanana,^{*a*} Christophe Kahlfuss,^{*b*} Jean Weiss,^{*b*} Renaud Cornut,^{*a*} Bruno Jousselme,^{*a*} Jennifer A. Wytko^{*b*,*} and Stéphane Campidelli^{*a*,*}

^aUniversité Paris-Saclay, CEA, CNRS, NIMBE, LICSEN, 91191, Gif-sur-Yvette, France. Telephone: +33 (0)1-69-08-51-34

^bInstitut de Chimie de Strasbourg, UMR 7177 CNRS-Université de Strasbourg, 4 rue Blaise Pascal, 67008 Strasbourg, France. Telephone: +33-(0)3-68-85-14-24

Email: stephane.campidelli@cea.fr; jwytko@unistra.fr

Contents

Synthesis	S2
Sample preparation	S2
Fig. S1 Cyclic voltammetry of Fe-P and Cu/FeP	S4
Fig. S2 Polarization curves at different rotation rates	S5
Fig. S3 RRDE curves with disk and ring currents	S6

Synthesis.

Synthesis of Fe-P. A suspension of strapped porphyrin H_2P (51 mg, 49 µmol) was in DMF was degassed by bubbling Ar through it for 30 min. The mixture was heated at 160 °C, then FeCl₂ (62 mg, 0.49 mmol) was added through a solid addition tube. The mixture was stirred at the same temperature for 18 h under Ar, then cooled to rt and exposed to air for 1 h. The solvent was evaporated under reduced pressure and the crude product was taken in CH₂Cl₂ and washed with 2M HCl_(aq). The organic phase was filtered over an alumina plug (CH₂Cl₂) and evaporated under reduced pressure. The product was redissolved in CH₂Cl₂ and HCl was bubbled through the solution for 15 min at rt. The solvent was evaporated under reduced pressure to yield Fe-P (44 mg, 38 µmol, 80%) as a brownish solid. MS (ESI+) m/z calc. for [M+H]⁺: 1136.42, found: 1136.42; MS (MALDI-TOF): m/z calc. for [M-CI]⁺: 1110.444, found: 1100.473.

Synthesis of Cu/Fe-P. Tetrakis(acetonitrile)copper(I) hexafluorophosphate (15 mg, 40 μmol) was added through a solid addition tube to a degassed solution of **Fe-P** (45 mg, 40 μmol) in dry dichloromethane. The resulting mixture was stirred at rt for 18 h under argon and then evaporated to dryness to yield **Cu/Fe-P** (50 mg, 40 μmol, 100%) as a brown solid. MS (MALDI-TOF) m/z calc. for [M-Cl]⁺: 1198.342, found: 1198.430.

Sample preparation.

MWNT. MWNTs (Nanocyl NC3100TM) (60 mg) were sonicated in nitric acid (35 vol %) (150 mL) with an ultrasound bath (Fisherbrand, 37 kHz, power 100% for 10 min and then 40% for 30 min) and then heated at 100 °C for 5 h. The suspension was then cooled and filtered under vacuum through a 0.2 μ m PTFE membrane and washed with water. The nanotubes were redispersed in 2 M NaOH (100 mL) using the ultrasound bath (100% for 10 min) and then filtered through a PTFE membrane and washed with deionized water, and then 1 M HCl followed by deionized water until the filtrate was neutral. **MWNT-Fe-P and MWNT-Cu/Fe-P.** A mixture of purified **MWNT** (9 mg) and porphyrin **Fe-P** or **Cu/Fe-P** (3 mg) in dry THF (10 mLl) was homogenized using an ultrasound bath (Fisherbrand, 37 kHz, power 100%) for 15 min. The THF was gently evaporated with a steam of N₂ and the mixtures were dried under vacuum.

Three milligrams of each mixture (**MWNT-Fe-P** and **MWNT-Cu/Fe-P**) were dispersed in 750 μ L of ethanol and 75 μ L of Nafion solution (5% in alcohol). The mixtures were homogenized using an ultrasound bath until they formed homogenous inks. For the **MWNT** ink, the same procedure was followed but without adding porphyrins. For the reference **Fe-P** and **Cu/Fe-P** inks, 3 mg of porphyrin were directly dispersed in 750 μ L of ethanol and 75 μ L of Nafion solution (5% in alcohol)

Electrochemical experiments.

Electrode preparation. Before each measurement, the glassy carbon (GC) disk (5 mm, 0.196 cm²) used as rotating electrode was polished with aqueous dispersions of synthetic diamonds (1 μ m), then rinsed and sonicated with water. Aliquots (5 μ L) of the catalyst inks were deposited by drop-casting onto the GC disk, then air-dried. For experiments at pH 6, a new ink was deposited onto the GC disk for each rotation step.

Electrochemical measurements. The instrument used was a VSP bipotentiostat (Bio-Logic SAS). The CVs of **Fe-P** and **Cu/Fe-P** were performed in a 0.1 M tetrabutylammonium hexafluorophosphate (NBu₄PF₆) THF solution in an electrochemical cell equipped with a glassy carbon working electrode, a platinum counter electrode and an Ag/AgNO₃ (10 mM) reference electrode. The potentials are reported *vs* ferrocene used as internal reference. The solutions were degassed by bubbling argon and the cyclic voltammetry was performed at a scan rate of 20 mV/s. For ORR, the electrochemical tests were carried out on solutions at pH 13 (0.1 M NaOH), 10 and 8 (phosphate buffers) in a three electrode glass cell, thermostated at 25 °C. A "CE to Ground" connection with a saturated KCl - Ag/AgCl electrode as reference and a graphite plate as counter electrode was used. As working electrode, a Pine rotating ring disk electrode (RRDE) with catalyst-loaded GC disk (0.196 cm²) and Pt

ring (0.110 cm²) was controlled by a speed control unit from Princeton Applied Research Model 636 Electrode Rotator. The voltammograms were recorded at 5 mV.s⁻¹ in stationary conditions (with various rotating rates: 0, 400, 800, 1200, 1600, and 2000 rpm) in O₂-saturated solutions. An average current was calculated from the forward and backward scans. All potentials reported in this paper refer to that of the Ag/AgCl electrode. H₂O₂ production was monitored in the RRDE configuration at 400 rpm with a CV at the GC disk (5 mV.s⁻¹). The collection coefficient of the RRDE (0.20) was measured using the one-electron [Fe(CN)₆]^{3–}/[Fe(CN)₆]^{4–} redox couple, according to the manufacturer's instructions.

Fig. S1 Cyclic voltammetry (second cycle) of 1 mM **Fe-P** (black curve) and **Cu/Fe-P** (blue curve) in 0.1 M Bu₄NPF₆ THF solution at 20 mV/s under argon.

Fig. S2 Polarization curves at different rotation rates (0, 400, 800, 1200, 1600 and 2000 rpm) for **Fe-P** (pink curves), **MWNT** (black curves) and **MWNT-Fe-P** (blue curves) and for **Cu/Fe-P** (green curves), **MWNT** (black curves) and **MWNT-Cu/Fe-P** (red curves) recorded for ORR in O₂-saturated phosphate buffer solutions at different pH (scan rate = 5 mV/s, room temperature).

Fig. S3 (a-c) RRDE curves with disk and ring currents for **MWNT-Fe-P** (blue), **MWNT** (black) and **Fe-P** (pink) at pH 13, 10 and 8, respectively with a rotation rate of 800 rpm; (d-f) RRDE curves with disk and ring currents for **MWNT-Cu/Fe-P** (red), **MWNT** (black) and **Cu/Fe-P** (green) at pH 13, 10 and 8, respectively with a rotation rate of 800 rpm.