Plan
Comptes Rendus

Hydrothermal synthesis and crystal structure of a new three-dimensional aluminum-organic framework MIL-69 with 2,6-naphthalenedicarboxylate (ndc), Al(OH)(ndc)·H2O
Comptes Rendus. Chimie, Crystalline and organized porous solids, Volume 8 (2005) no. 3-4, pp. 765-772.

Résumés

A new three-dimensional aluminum-organic framework, MIL-69 or Al(OH)(O2C–C10H6–CO2)·H2O, has been hydrothermally synthesized at 210 °C for 16 h, by using 2,6-naphthalenedicarboxylic acid as a rigid ligand. The model for the crystal structure of MIL-69 was determined by means of lattice energy minimizations and further refined against the powder XRD data using the Rietveld refinement method. The crystal structure consists of infinite chains of AlO4(OH)2 octahedra corner-linked through the μ2-hydroxyl groups and connected by the 2,6-naphthalenedicarboxylate moieties. It results in the formation of flat channels parallel to the chains of aluminum octahedra, running along the c axis. A water molecule is trapped nearby the center of the tunnels and mainly interacts via hydrogen bonds with the hydroxyl groups and the oxygen atoms of the carboxylates. Although the three-dimensional aluminum-organic framework is stable up to 450 °C, the tunnels still remain shrunk upon removal of water molecule, because of the occurrence π–π interactions between the naphthalene groups. The MIL-69 phase was characterized by solid state NMR MAS 27Al, 1H and 13C{1H-decoupled}, which is consistent with the crystal structure description. Crystal data. – MIL-69, Al(OH)(O2C–C10H6–CO2)·H2O: Mr = 267.11 g mol–1, monoclinic, space group C2/c (no. 15), a = 24.598(2) Å, b = 7.5305(6) Å, c = 6.5472(5) Å, β = 106.863(8)°, V = 1160.6(2) Å3, Z = 4.

Synthèse hydrothermale et caractérisation structurale d’un solide tridimensionnel à base d’aluminium et d’acide 2,6-naphthalènedicarboxylique, Al(OH)(ndc)·H2O (MIL-69). Un nouveau composé tridimensionnel mixte aluminium-organique, MIL-69 ou Al(OH)(O2C–C10H6–CO2)·H2O, a été synthétisé par voie hydrothermale à 210 °C pendant 16 heures, en utilisant l’acide 2,6-naphthalènedicarboxylique comme ligand rigide. Le modèle utilisé pour la détermination structurale est obtenu à l’aide de calculs de minimisation d’énergie et ensuite affiné avec les données de diffraction de rayons X du diagramme de poudre (méthode Rietveld). La structure est construite à partir de chaînes infinies d’octaèdres AlO4(OH)2 liés entre eux par sommets via les groupements μ2-hydroxyles, et connectées par les ligands 2,6-naphthalènedicarboxylates. Cet arrangement atomique génère la formation d’un réseau comportant des tunnels aplatis se propageant suivant la direction parallèle aux chaînes d’octaèdre d’aluminium, suivant l’axe c. Une molécule d’eau est piégée au centre des tunnels et interagit principalement avec les groupements hydroxyles et les atomes d’oxygène des carboxylates par l’intermédiaire de liaison hydrogène. Bien que la charpente tridimensionnelle mixte aluminium-organique soit stable jusqu’à 450 °C, les tunnels restent contractés lors du retrait de la molécule d’eau, en raison de l’existence d’interactions π–π entre les groupements naphtalène. La phase MIL-69 a été caractérisée par RMN MAS du solide (27Al, 1H et 13C{1H-découplé}) et est en accord avec la description structurale proposée. Données cristallographiques. – MIL-69, Al(OH)(O2C–C10H6–CO2)·H2O : Mr = 267.11 g mol–1, monoclinique, groupe d’espace C2/c (no. 15), a = 24.598(2) Å, b = 7.5305(6) Å, c = 6.5472(5) Å, β = 106.863(8)°, V = 1160.6(2) Å3, Z = 4.

Métadonnées
Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crci.2004.10.011
Keywords: Aluminum, 2, 6-Naphthalenedicarboxylic acid, Hydrothermal synthesis, X-ray powder diffraction, Structure determination, 27Al, 1H, 13C MAS NMR
Mots-clés : Aluminium, Acide 2, 6-naphthalènedicarboxylique, Synthèse hydrothermale, Diffraction des rayons X, Détermination structurale, RMN MAS 27Al, 1H, 13C

Thierry Loiseau 1 ; Caroline Mellot-Draznieks 1 ; Hervé Muguerra 1 ; Gérard Férey 1 ; Mohamed Haouas 1 ; Francis Taulelle 1

1 Institut Lavoisier, IREM, UMR CNRS 8637, université de Versailles–Saint-Quentin, 45, avenue des États-Unis, 78035 Versailles cedex, France
@article{CRCHIM_2005__8_3-4_765_0,
     author = {Thierry Loiseau and Caroline Mellot-Draznieks and Herv\'e Muguerra and G\'erard F\'erey and Mohamed Haouas and Francis Taulelle},
     title = {Hydrothermal synthesis and crystal structure of a new three-dimensional aluminum-organic framework {MIL-69} with 2,6-naphthalenedicarboxylate (ndc), {Al(OH)(ndc){\textperiodcentered}H\protect\textsubscript{2}O}},
     journal = {Comptes Rendus. Chimie},
     pages = {765--772},
     publisher = {Elsevier},
     volume = {8},
     number = {3-4},
     year = {2005},
     doi = {10.1016/j.crci.2004.10.011},
     language = {en},
}
TY  - JOUR
AU  - Thierry Loiseau
AU  - Caroline Mellot-Draznieks
AU  - Hervé Muguerra
AU  - Gérard Férey
AU  - Mohamed Haouas
AU  - Francis Taulelle
TI  - Hydrothermal synthesis and crystal structure of a new three-dimensional aluminum-organic framework MIL-69 with 2,6-naphthalenedicarboxylate (ndc), Al(OH)(ndc)·H2O
JO  - Comptes Rendus. Chimie
PY  - 2005
SP  - 765
EP  - 772
VL  - 8
IS  - 3-4
PB  - Elsevier
DO  - 10.1016/j.crci.2004.10.011
LA  - en
ID  - CRCHIM_2005__8_3-4_765_0
ER  - 
%0 Journal Article
%A Thierry Loiseau
%A Caroline Mellot-Draznieks
%A Hervé Muguerra
%A Gérard Férey
%A Mohamed Haouas
%A Francis Taulelle
%T Hydrothermal synthesis and crystal structure of a new three-dimensional aluminum-organic framework MIL-69 with 2,6-naphthalenedicarboxylate (ndc), Al(OH)(ndc)·H2O
%J Comptes Rendus. Chimie
%D 2005
%P 765-772
%V 8
%N 3-4
%I Elsevier
%R 10.1016/j.crci.2004.10.011
%G en
%F CRCHIM_2005__8_3-4_765_0
Thierry Loiseau; Caroline Mellot-Draznieks; Hervé Muguerra; Gérard Férey; Mohamed Haouas; Francis Taulelle. Hydrothermal synthesis and crystal structure of a new three-dimensional aluminum-organic framework MIL-69 with 2,6-naphthalenedicarboxylate (ndc), Al(OH)(ndc)·H2O. Comptes Rendus. Chimie, Crystalline and organized porous solids, Volume 8 (2005) no. 3-4, pp. 765-772. doi : 10.1016/j.crci.2004.10.011. https://comptes-rendus.academie-sciences.fr/chimie/articles/10.1016/j.crci.2004.10.011/

Version originale du texte intégral

Le texte intégral ci-dessous peut contenir quelques erreurs de conversion par rapport à la version officielle de l'article publié.

1 Introduction

The synthesis of hybrid inorganic–organic porous solids or metal-organic frameworks (MOF-n) has recently grown exponentially, giving rise to the formation of new nanoporous materials with very high surface area [1–3]. The combination of the huge variety of possible organic linkers and the multiple physical properties of inorganic cations, allow a wide modulation of both the dimensions of the pores and the properties of the final porous compounds. In such structures, organic species (amines, carboxylates…) can act either as pillars, linkers and arrange, respectively, inorganic layers, chains or clusters of transition or rare-earth metals [4–9]. Usually rigid ligands containing aromatic ring are associated with mono or divalent metals, resulting in the construction of new architectures with different dimensionalities of pore system. Some of these materials exhibit significant properties in the field of gas adsorption [10,11]. For instance, the solid MOF-5 was recently found to be an excellent candidate for the methane [12] or hydrogen [13] adsorption.

We recently initiated a global study of the reactivity of trivalent metals (V3+ [14–18], Cr3+ [19], Fe3+ [20,21]) with aromatic dicarboxylic acids in water under mild hydrothermal conditions. We then extended this work to the p metal elements such as aluminum, gallium or indium. Up to now, the utilization of such cations was rarely reported in the literature since only the indium terephthalate In2(OH)3(bdc)1.5 [22] and the aluminum terephthalate MIL-53 [23] (Al(OH)(bdc)·xH2O, isostructural to the vanadium [14] and chromium [19]-based phases) were isolated (bdc = 1,4-benzenedicarboxylic acid). The latter was also tested for its hydrogen adsorption capacity and it can adsorb up to 3.8 wt.% of H2 under 16 MPa at 77 K [24]. This promising feature of MIL-53 incited us to continue our systematic study with other carboxylic acids and we report here the hydrothermal reaction of the another connector, 2,6-naphthalenedicarboxylic acid, with aluminum. This aromatic carboxylic acid was previously used with divalent metals such as Zn [25–27], Mn [26], Cd [26] and rare-earth metals such as Ce [28], Eu [28], Tb [28], Er [29], Yb [30]. The synthesis and the structural characterization of a new aluminum 2,6-naphthalenedicarboxylate called MIL-69 (Al(OH)(O2C–C10H6–CO2)·H2O are presented.

Indeed, simulations methods are particularly useful for predicting possible crystal structures of inorganic [31,32] and hybrid structures [33,34] and help the difficult process of structure determination. Here, an original simulation method is used in order to anticipate a possible crystal structure for MIL-69, starting with the knowledge of the existing MIL-53 structure and considering that very similar synthetic conditions than in MIL-53 were used. A structural model was proposed and further refined from the powder X-ray diffraction technique. The compound was further characterized by solid state NMR (27Al, 1H, 13C). MIL-69 exhibits a three-dimensional framework consisting of channels bound by infinite aluminum octahedra chains and 2,6-naphthalenedicarboxylate groups, encapsulating a water molecule.

2 Experimental procedure

2.1 Synthesis

Al(OH)(O2C–C10H6–CO2)·H2O (MIL-69) was synthesized hydrothermally in a 23 ml Teflon-lined bomb Parr under autogeneous pressure. The starting reactants were aluminum nitrate (Al(NO3)3·9 H2O, Carlo Erba Regenti, 98%), 2,6-naphthalenedicarboxylic acid (HO2C–C10H6–CO2H, Avocado, 98%, hereafter noted ndc), potassium hydroxide (KOH, Aldrich, 90%) and distilled water. The molar ratio was 1 Al (3.5 mmol, 1.314 g); 0.5 ndc (1.75 mmol, 0.3783 g); 1.2 KOH (4.35 mmol, 0.2440 g); 80 H2O (277.8 mmol, 5 ml). The reaction pH was 1–2. The mixture was placed in the autoclave at 210 °C for 16 h, which are the optimized conditions for the synthesis of the titled compound. For longer reaction times (24, 36 or 48 h), the formation of the aluminum oxyhydroxide AlO(OH) (boehmite form) was observed together with MIL-69. When the reaction time increases, the MIL-69 phase progressively disappears indicating its dissolution during the hydrothermal treatment and the aluminum re-crystallizes under the AlO(OH) form. A kinetic study of the hydrothermal reaction showed that maximal yield of formation of MIL-69 is observed for 16 h. It was 75% based on aluminum. For shorter reaction times, an additional unknown minor phase with Bragg peaks at 5.78 and 3.31 Å appears with MIL-69. The presence of KOH is required for setting the pH value around 1–2 otherwise a mixture of the phases MIL-69 and AlO(OH) is systematically observed. The obtained crystalline product was filtered off, washed with distilled water and dried at room temperature. Scanning electronic microscope examination showed that samples of MIL-69 consist of a very fine powder with grain sizes lower than 1 μm.

2.2 Simulations and structure solution

The structure of Al(OH)(O2C–C10H6–CO2)·H2O (MIL-69) was determined from structural computer simulation and laboratory powder X-ray diffraction data. The diffraction intensities were collected on a Siemens D5000 diffractometer (θ–2θ mode, step size: 0.02°(2θ), time acquisition/step: 65 s) using the Cu Kα radiation (λ = 1.5418 Å) at room temperature, between 6 and 76°(2θ). By using the DICVOL91 [35] software, a monoclinic cell with satisfactory figures of merit was found for MIL-69, with cell parameters of a = 24.6254 Å, b = 7.5285 Å, c = 6.5597 Å, β = 106.791°, V = 1164.27 Å3 (obtained with the figures of merit M11 = 56.9 and F11 = 57.6 (0.0035, 54)). The examination of the systematic extinctions led to the space group C2/c or Cc.

Then, lattice energy minimizations were used with the aim of anticipating the crystal structure of the MIL-69 compound. Considering that similar synthetic conditions were used than in for the synthesis of MIL-53, particularly regarding the organic: metal ratios, and also the similarity of cell parameters between MIL-53 and MIL-69, we assumed that a similar framework topology to that of aluminum terephthalate MIL-53 might occur in the aluminum naphthalate, MIL-69, with the aim of simply replacing the 1,4-bdc acid by the 2,6-ndc acid. Starting from the crystal structure of the as-synthesized aluminum terephthalate MIL-53 [23] in the C2/c space group, a model for the MIL-69 was derived as follows in the C2/c space group: the aromatic rings of the terephthalate molecules were removed from the MIL-53 structure file, while keeping the carboxylate functions. Such a modification leaved us with the infinite aluminum octahedra chains typical of the MIL-53 topology, where each aluminum atom is still fully coordinated with terminal water molecules and oxygen atoms of the carboxylic functions. The intermediate model was then submitted to a cell extension along the a axis (from 19.5 Å in MIL-53 [23], to 24.6 Å in MIL-69) which corresponds to the move of the chains away from each other, leaving the required space for the insertion of 2,6-naphthalenedicarboxylic acid. The naphthalene aromatic rings were inserted between the chains, while using the carboxylic functions as anchorage points so that the naphthalene molecule are placed in a similar way than in the MIL-53 topology. Finally, the constructed model was submitted to a full lattice energy minimization, allowing all atoms to relax while keeping the cell parameters fixed at the experimental values, using the universal forcefield [36] and Cerius2 software suite [37]. The minimizations rapidly converged towards a plausible crystal structure.

The atomic coordinates predicted by the simulations were then directly used as a starting model in our Rietveld refinement. The pattern matching procedures were performed with Fullprof2k using the WinPLOTR software package [38]. The final reliability factors including 47 refined parameters and 386 independent reflections are RP = 0.122, RWP = 0.140, RB = 0.0622 and RF = 0.0566 with the following cell parameters: a = 24.598(2) Å, b = 7.5305(6) Å, c = 6.5472(5) Å, β = 106.863(8)° and V = 1160.6(2) Å3. The corresponding Rietveld plot is reported in Fig. 1. Atomic coordinates and selected interatomic distances of MIL-69 (Al) are given in Tables 1 and 2, respectively. The chemical formula deduced from the structure determination is Al(OH)(O2C–C10H6–CO2)·H2O and is in agreement with the elemental analysis (CNRS Analysis Center, Vernaison, France): Al: obs.: 9.7% (calc.: 9.8%); C: obs.: 3.4% (calc.: 3.3%); H: obs.: 3.4% (calc.: 3.3%). Density measurement gave 1.606(5) g cm–3 (calc.: 1.529 g cm3).

Fig. 1

Final Rietveld plot of Al(OH)(O2C–C10H6–CO2)·H2O (MIL-69). The observed data are shown by the open circles and the calculated data by the solid line.

Table 1

Atomic coordinates of Al(OH)(O2C–C10H6–CO2)·H2O (MIL-69)

AtomWyckoff positionxyz
Al4a000
O14e0–0.099(1)3/4
O28f0.0465(3)–0.825(1)0.654(1)
O38f0.0678(4)–0.8618(9)0.984(1)
Ow4e0–0.458(1)3/4
C18f0.1442(3)–0.769(2)0.857(2)
C28f0.1835(3)–0.812(2)0.068(1)
C38f0.2803(4)–0.818(2)0.290(2)
C48f0.0870(4)–0.824(2)0.828(2)
C58f0.242(4)–0.797(2)0.080(2)
C68f0.3390(3)–0.794(2)0.307(2)
Table 2

Selected interatomic distances (Å) in Al(OH)(O2C–C10H6–CO2)·H2O (MIL–69)

Al–O1 = 1.780(4)C1–C2 = 1.48(1)
Al–O2 = 1.845(8)C1–C6 = 1.34(1)
Al–O3 = 1.994(9)C2–C5 = 1.44(1)
O2–C4 = 1.28(1)C5–C3 = 1.43(1)
O3–C4 = 1.28(1)C5–C5 = 1.40(2)
C4–C1 = 1.43(1)C3–C6 = 1.43(1)
OwO1 = 2.70(1)

2.3 Solid-state NMR

NMR spectra were acquired on a Bruker Avance 500 spectrometer with a 11.7 T field, equipped with a Bruker 4 and 2.5 mm probes, with resonance frequencies for 1H, 13C and 27Al of 500.13, 125.77, and 130.32 MHz, respectively. Typically, π/4 pulse widths of 2.1 μs, repetition times of 2 s, and spectral widths of 100 kHz were used for single pulse 1H MAS experiments. The MAS speed employed was 30 kHz. The Hahn echo pulse sequence was performed for 27Al MAS experiment using selective pulses with a π/2 pulse length of 1 μs corresponding to a radiofrequency strength of 83 kHz, and a relaxation delay of 1 s. The experiment was synchronized with rotation speed (30 kHz), for which an echo delay of 2.33 ms corresponding to the fid length was set. 13C MAS spectra were acquired using a 4-mm ZrO2 rotor under conditions of high-power proton decoupling using a pulse length of 5.9 μs (π/2), a repetition delay of 20 s, a rotation rate of 12.5 kHz, and decoupling power of 9 kHz. All spectra were referenced relative to standards tetramethylsilane for 1H and 13C NMR and Al(NO3)3 aqueous solution for 27Al using adamantane (1.74 ppm for 1H and 38.3 ppm for 13C) and NH4Al(SO4)2·12 H2O (–0.6 ppm for 27Al) as secondary references. Decomposition of spectra was achieved using the dmfit2004 NMR simulation software [39].

3 Description of the structure

The structure of Al(OH)(O2C–C10H6–CO2)·H2O (MIL-69) consists of a three-dimensional framework built up from the connection of infinite chains of corner-sharing octahedral AlO4(OH)2 units with naphthalate ligand ndc (Fig. 2). The aluminum cation (on special position 4a) is octahedrally coordinated to four oxygen atoms from the carboxylic function and two hydroxyl groups located in trans position. The Al–O distances are 1.845(8) and 1.994(9) Å, and Al–OH one is 1.780(4) Å (Fig. 3). Bond valence calculations [40] give values of 1.41 and confirm the occurrence of a μ2-hydroxide anion for the bridging oxygen O1. The resulting AlO4(OH)2 units are linked to each other through the two opposite hydroxyl groups and this generates an infinite chain of corner-sharing octahedra running along the c axis. The files of octahedra are connected to each other through the naphthalenedicarboxylate molecules. The carboxylate ion, R-CO2, acts as a bridging bidentate ligand adopting an usual synsyn configuration [41,42]; the oxygen atoms of each carboxylic acid function are linked to two consecutive aluminum atoms (Fig. 4). This particular connection mode gives rise to the formation of a three-dimensional organic-inorganic network with flat channels running along the c axis, parallel to the AlO4(OH)2 chains. The accessible pore size of this one-dimensional tunnel is approximately 2.7 × 19.4 Å (it was taken into account the oxygen radius of 1.35 Å) and does not include significant void. However, a water molecule is trapped nearby the center of the tunnels (at the special position 4e, 0 0.458(1) 3/4). It mainly interacts with the bridging hydroxyl groups (dOwO1 = 2.70(1) Å) and the oxygen atoms of carboxylic acids dOwO2 = 3.12(1) Å). Weak π–π interactions (dCC ≈ 3.9 Å) are also observed between the aromatic rings of two adjacent naphthalate species along the b axis. The occurrence of the hydrogen bond interactions together with the π–π ones contributes to the shrinkage of the channels along the b axis. A similar flat tunnel shape is also observed in the ytterbium-ndc framework CUmof-9 [30].

Fig. 2

Representation of the structure of Al(OH)(O2C–C10H6–CO2)·H2O·(MIL-69) showing the channels running along c and encapsulating water molecules (open circles). Grey octahedra: AlO4(OH)2.

Fig. 3

Coordination surrounding with atoms labels for the unique crystallographically aluminum cation.

Fig. 4

Representation of the structure of Al(OH)(O2C–C10H6–CO2)·H2O (MIL-69) showing the infinite chains of AlO4(OH)2 units (gray octahedra) connected via the 2,6-naphtalenedicarboxylate ligand along c.

Such an atomic arrangement of octahedra-based chains is obviously reminiscent to that encountered in the compound series synthesized in the presence of 1,4-benzenedicarboxylic acid with aluminum [23] (MIL-53), chromium [19] (MIL-53) or vanadium (MIL-47 [14] and MIL-68 [17]). In these compounds, identical infinite MO4(OH)2 files are observed and are connected to each other via the terephthalate ligand instead of 2,6-naphthalenedicarboxylate one. The same structure of MIL-69 was also obtained with vanadium replacing aluminum [43].

TG experiments were performed under nitrogen with heating rate of 3 °C min–1 between room temperature and 800 °C using a TA Instrument TG2050 apparatus. The thermogravimetric analysis (Fig. 5) indicates that water can be removed upon heating below 100 °C (obs.: 6.1%; calc.: 6.9%). The water weight loss is reversible and the product rapidly re-adsorbs water in air atmosphere. The solid is thermally stable up 450 °C and then a second weight loss is observed. It is assigned to the departure of the 2,6-naphthalenedicarboxylate ligand together with the collapse of the structure (obs.: 67.2%; calc.: 74.0%). At 800 °C, the XRD pattern shows that the product is amorphous. The vanadium [43] analog of MIL-69 showed no cell parameter modification on water removal. This is in contrast with the breathing phenomenon encountered in the parent series of MIL-53 (Cr [19], Al [23]). Flat lozenge-shape tunnels (2.6 × 13.6 Å2) were observed in the hydrated form, in which a water molecule is engaged in the hydrogen bond interactions with anions of the hybrid network. In the anhydrous form, the tunnels become larger (8.5 × 8.5 Å2) and exhibit a square-like shape. The origin of these two different structural behaviors might come from the existence of π–π interactions between the aromatic ligands, which are stronger for the naphthalene-based molecule than those of the single aromatic ring of the terephthalate ligand. Concerning the MIL-69 (Al) phase, a study of its thermal behavior is currently in progress in order to characterize the cell expansion when water molecules are removed from the structure pores.

Fig. 5

TG curve of Al(OH)(O2C–C10H6–CO2)·H2O or MIL-69 under N2 (heating rate 3 °C min–1).

4 Solid-state NMR of MIL-69

The 27Al 30 kHz-MAS NMR spectrum indicates a unique resonating signal with a powder pattern indicative of second-order quadrupolar interaction (Fig. 6). Simulation of the line shape (bottom pattern in Fig. 6) results in a quadrupolar coupling constant of 11.1 MHz, an asymmetry parameter of 0.17 and an isotropic chemical shift value of 3.1 ppm, confirming aluminum is octahedrally coordinated. These findings strictly agree with structure analysis for which, only one crystallographic site is found for aluminum with an octahedral coordination.

Fig. 6

Experimental Hahn echo 27Al MAS NMR spectrum (top) of MIL-69 acquired at a spinning speed of 30 kHz. The simulated spectrum (bottom) using a powder model with an isotropic chemical shift δiso of 3.1 ppm, a quadrupolar coupling constant CQ of 11.1 MHz, and an asymmetry parameter η of 0.17.

The 1H 30-kHz MAS NMR spectrum exhibits a broad signal, which can be decomposed into four components (Fig. 7). The most intense signal at 7.0 ppm is assigned to hydrogen belonging to the benzene rings of the 2,6-naphthalenediacarboxylate, as expected for this chemical shift value. The peaks at 5.3 and 4.4 ppm could correspond to the hydrogen of the water molecules. Only one water species is observed in the structure and the occurrence of the two contributions for water may result from two locally inequivalent environments for the encapsulated molecule. The fourth signal is assigned to the μ2-hydroxyl group, bridging the aluminum cations to each other. It is noted that no resonating line is observed in the range 10–15 ppm relating to the protonated carboxylic acid R-CO2H, as expected from the structure analysis.

Fig. 7

Experimental 1H MAS NMR spectrum (top) of MIL-69 collected at a spinning speed of 30 kHz. The simulated spectrum and its decomposition are included (bottom) showing four components at 7.0 ppm (46%), 5.3 ppm (18%), 4.4 ppm (11%) and 3.1 ppm (27%).

The 13C{1H-decoupled} MAS NMR spectrum shows two groups of signal at 176 and 134 ppm (Fig. 8). The peak resonating at 176 ppm corresponds to the carbon of the carboxylate R-CO2 and the broader line at 134 ppm is assigned to the different carbon atoms of the two aromatic rings of the naphthalene species.

Fig. 8

13C{1H} high-power decoupling MAS spectrum of MIL-69 acquired at a spinning speed of 12.5 kHz. The star denotes satellite side band.

Acknowledgements

The authors thank Dr. C. Serre (Institut Lavoisier, University of Versailles) for fruitful discussions.


Bibliographie

[1] O.M. Yaghi; M. O’Keeffe; N.W. Ockwig; H.K. Chae; M. Eddaoudi; J. Kim Nature, 423 (2003), p. 705

[2] H.K. Chae; D.Y. Siberio-Pérez; J. Kim; Y.B. Go; M. Eddaoudi; A.J. Matzger; M. O'Keeffe; O.M. Yaghi Nature, 427 (2004), p. 523

[3] G. Férey Chem. Mater., 13 (2001), p. 3084

[4] S.R. Batten; R. Robson Angew. Chem. Int. Ed. Engl., 37 (1998), p. 1460

[5] B. Moulton; M.J. Zaworotko Chem. Rev., 101 (2001), p. 1629

[6] M.J. Zaworotko Chem. Commun., 1 (2001), p. 1

[7] S.L. James Chem. Soc. Rev., 32 (2003), p. 276

[8] C. Janiak Dalton Trans., 14 (2003), p. 2781

[9] S. Kitagawa; R. Kitaura; S.-I. Noro Angew. Chem. Int. Ed. Engl., 43 (2004), p. 2334

[10] T. Düren; L. Sarkisov; O.M. Yaghi; R.Q. Snurr Langmuir, 20 (2004), p. 2683

[11] J.L.C. Rowsell; A.R. Millward; K.S. Park; O.M. Yaghi J. Am. Chem. Soc., 126 (2004), p. 5666

[12] M. Eddaoudi; J. Kim; N. Rosi; D. Vodak; J. Wachter; M. O’Keeffe; O.M. Yaghi Science, 295 (2002), p. 469

[13] N.L. Rosi; J. Eckert; M. Eddaoudi; D.T. Vodak; J. Kim; M. O’Keeffe; O.M. Yaghi Science, 300 (2003), p. 1127

[14] K. Barthelet; J. Marrot; D. Riou; G. Férey Angew. Chem. Int. Ed. Engl., 41 (2002), p. 281

[15] K. Barthelet; D. Riou; M. Nogues; G. Férey Inorg. Chem., 42 (2003), p. 1739

[16] K. Barthelet; K. Adil; F. Millange; C. Serre; D. Riou; G. Férey J. Mater. Chem., 13 (2003), p. 2208

[17] K. Barthelet; J. Marrot; G. Férey; D. Riou Chem. Commun., 5 (2004), p. 520

[18] K. Barthelet; D. Riou; G. Férey Chem. Commun., 14 (2002), p. 1492

[19] C. Serre; F. Millange; C. Thouvenot; M. Nogues; G. Marsolier; D. Louër; G. Férey J. Am. Chem. Soc., 124 (2002), p. 13519

[20] C. Serre; F. Millange; S. Surblé; J.M. Grenèche; G. Férey Chem. Mater., 16 (2004), p. 2706

[21] C. Serre; F. Millange; S. Surblé; G. Férey Angew. Chem. Int. Ed. Engl., 43 (2004), p. 6285

[22] B. Gomez-Lor; E. Gutierrez-Puebla; M.A. Monge; C. Ruiz-Valero; N. Snejko Inorg. Chem., 41 (2002), p. 2429

[23] T. Loiseau; C. Serre; C. Huguenard; G. Fink; F. Taulelle; M. Henry; T. Bataille; G. Férey Chem. Eur. J., 10 (2004), p. 1373

[24] G. Férey; M. Latroche; C. Serre; F. Millange; T. Loiseau; A. Percheron-Guégan Chem. Commun. (2003), p. 2976

[25] N.L. Rosi; M. Eddaoudi; J. Kim; M. O’Keeffe; O.M. Yaghi Angew. Chem. Int. Ed. Engl., 41 (2002), p. 284

[26] K.O. Kongshaug; H. Fjellvag Solid-State Sci., 4 (2002), p. 443

[27] K.O. Kongshaug; H. Fjellvag J. Solid-State Chem., 177 (2004), p. 1852

[28] Z. Wang; C.M. Jin; T. Shao; Y.Z. Li; K.L. Zhang; H.T. Zhang; X.Z. You Inorg. Chem. Commun., 5 (2002), p. 642

[29] A. Deluzet; W. Maudez; C. Daiguebonne; O. Guillou Cryst. Growth Des., 3 (2003), p. 475

[30] F.A. Almeida Paz; J. Klinowski Chem. Commun., 13 (2003), p. 1484

[31] C. Mellot-Draznieks; J.M. Newsam; A.M. Gorman; C.M. Freeman; G. Férey Angew. Chem. Int. Ed. Engl., 39 (2000), p. 2270

[32] C. Mellot-Draznieks; S. Girard; G. Férey; J.C. Schön; Z. Cancarevic; M. Jansen Chem. Eur. J., 8 (2002), p. 4102

[33] C. Mellot-Draznieks; J. Dutour; G. Férey Angew. Chem. Int. Ed. Engl., 43 (2004), p. 6290

[34] G. Férey; C. Serre; C. Mellot-Draznieks; F. Millange; S. Surblé; J. Dutour; I. Margiolaki Angew. Chem. Int. Ed. Engl., 43 (2004), p. 6296

[35] A. Boultif; D. Louër J. Appl. Crystallogr., 24 (1991), p. 987

[36] A.K. Rappé; C.J. Casewit; K.S. Colwell; W.A. Goddart-III; W.M. Skiff J. Am. Chem. Soc., 114 (1992), p. 10024

[37] Cerius2, Program suite from Accelrys, San Diego, USA and Cambridge, UK.

[38] T. Roisnel; J. Rodriguez-Carvajal WinPLOTR: a Windows tool for powder diffraction patterns analysis, Materials Science Forum, Proceedings of the Seventh European Powder Diffraction Conference (EPDIC 7), 2000, p. 118

[39] D. Massiot; F. Fayon; M. Capron; I. King; S. LeCalve; B. Alonso; J.O. Durand; B. Bujoli; Z. Gan; G. Hoatson Magn. Reson. Chem., 40 (2002), p. 70

[40] N.E. Brese; M. O’Keeffe Acta Crystallogr. Sect. B, 47 (1991), p. 192

[41] G.B. Deacon; R.J. Phillips Coord. Chem. Rev., 33 (1980), p. 227

[42] R.L. Rardin; W.B. Tolman; S.J. Lippard New J. Chem., 15 (1991), p. 417

[43] K. Barthelet, PhD Thesis Dissertation, University of Versailles France, 2002.


Cité par

  • Longfei Yan; Lijuan Su; Yu Zhang; Qihui Zhang; Bin Wu; Fuweng Zhang; Weiping Deng Synthesis of lactic acid from glucose catalyzed by MOFs, Applied Catalysis O: Open, Volume 204 (2025), p. 207051 | DOI:10.1016/j.apcato.2025.207051
  • Gullit Deffo; Arnaud Kamdem Tamo; Cyrille Ghislain Fotsop; Honorine Hortense Bougna Tchoumi; Donald Eric Njiajo Talla; Calice Gildas Wabo; Marcel Cédric Ngaha Deussi; Ranil Clément Tonleu Temgoua; Giscard Doungmo; Evangeline Njanja; Ignas Kenfack Tonle; Panchanan Puzari; Claudia Birkemeyer; Emmanuel Ngameni Metal-organic framework-based materials: From synthesis and characterization routes to electrochemical sensing applications, Coordination Chemistry Reviews, Volume 536 (2025), p. 216680 | DOI:10.1016/j.ccr.2025.216680
  • Metal–Organic Framework based on Functional Materials for Photocatalytic Degradation of Micro‐ and Nano‐Plastic, Emerging Materials for Photodegradation and Environmental Remediation of Micro‐ and Nano‐Plastics (2025), p. 105 | DOI:10.1002/9781394361892.ch6
  • Francesca Di Lauro; Marco Balsamo; Roberto Solimene; Maria Laura Alfieri; Paola Manini; Piero Salatino; Fabio Montagnaro Valorisation of metal-contaminated biomass by hydrothermal liquefaction: The case study of tannery sludge, Fuel, Volume 399 (2025), p. 135595 | DOI:10.1016/j.fuel.2025.135595
  • Guillaume Esser; Robin Crits; Joséphine de Meester; Koen Robeyns; Tom Leyssens; Dmitry Chernyshov; Laura G. Graversen; Adam F. Sapnik; Kirsten M. Ø. Jensen; Catherine Dejoie; Meng He; Yaroslav Filinchuk; Sophie Hermans; Timothy Steenhaut Toward Reversible Crystalline-to-Amorphous Guest-Induced Transitions in Manganese(III) Carboxylate Metal–Organic Frameworks, Inorganic Chemistry, Volume 64 (2025) no. 9, p. 4491 | DOI:10.1021/acs.inorgchem.4c05337
  • Clara López‐García; Alina A. Skorynina; Fátima Esteban‐Betegón; Javier Pérez‐Carvajal; Marta Iglesias; M. Angeles Monge; Enrique Gutiérrez‐Puebla; Felipe Gándara Precisely Controlled Integration of Multiple Metal Cations in Diverse Metal‐Organic Framework Topologies via Messenger Building Unit Approach, Small Structures, Volume 6 (2025) no. 7 | DOI:10.1002/sstr.202400581
  • Junjie Qi; Meng Zhang; Ting Xu; Kun Liu; Yaxuan Wang; Han Zhang; Xuan Wang; Zhanhui Yuan; Chuanling Si Nanocellulose/metal-organic frameworks composites for advanced energy storage of electrodes and separators, Chemical Engineering Journal, Volume 500 (2024), p. 157318 | DOI:10.1016/j.cej.2024.157318
  • Longyue Zhang; Xipao Chen; Yaoping Hu Pyrolysis of Al‐Based Metal–Organic Frameworks to Carbon Dot‐Porous Al2O3 Composites With Time‐Dependent Phosphorescence Colors for Advanced Information Encryption, Small, Volume 20 (2024) no. 1 | DOI:10.1002/smll.202305185
  • Nikita Hanikel; Daria Kurandina; Saumil Chheda; Zhiling Zheng; Zichao Rong; S. Ephraim Neumann; Joachim Sauer; J. Ilja Siepmann; Laura Gagliardi; Omar M. Yaghi MOF Linker Extension Strategy for Enhanced Atmospheric Water Harvesting, ACS Central Science, Volume 9 (2023) no. 3, p. 551 | DOI:10.1021/acscentsci.3c00018
  • Akeem Adeyemi Oladipo; Saba Derakhshan Oskouei; Mustafa Gazi Metal-organic framework-based nanomaterials as opto-electrochemical sensors for the detection of antibiotics and hormones: A review, Beilstein Journal of Nanotechnology, Volume 14 (2023), p. 631 | DOI:10.3762/bjnano.14.52
  • Weidong Fan; Kun-Yu Wang; Claire Welton; Liang Feng; Xiaokang Wang; Xiuping Liu; Yue Li; Zixi Kang; Hong-Cai Zhou; Rongming Wang; Daofeng Sun Aluminum metal–organic frameworks: From structures to applications, Coordination Chemistry Reviews, Volume 489 (2023), p. 215175 | DOI:10.1016/j.ccr.2023.215175
  • Sang A Han; Hamzeh Qutaish; Jong‐Won Lee; Min‐Sik Park; Jung Ho Kim Metal‐organic framework derived porous structures towards lithium rechargeable batteries, EcoMat, Volume 5 (2023) no. 2 | DOI:10.1002/eom2.12283
  • Hao-Tian An; Xin Zhang; Chen Dong; Mu-Yao Lu; Rui Li; Yabo Xie; Lin-Hua Xie; Jian-Rong Li Seed-aided green synthesis of metal-organic frameworks in water, Green Chemical Engineering, Volume 4 (2023) no. 1, p. 64 | DOI:10.1016/j.gce.2022.04.004
  • Yongbiao hua; Younes Ahmadi; Ki-Hyun Kim Novel strategies for the formulation and processing of aluminum metal-organic framework-based sensing systems toward environmental monitoring of metal ions, Journal of Hazardous Materials, Volume 444 (2023), p. 130422 | DOI:10.1016/j.jhazmat.2022.130422
  • Ranjit Gaikwad; Sanjit Gaikwad; Sangil Han Green and facile production of UTSA-16 (Zn) in aqueous media with improved CO2 adsorption performance, Journal of Industrial and Engineering Chemistry, Volume 126 (2023), p. 444 | DOI:10.1016/j.jiec.2023.06.032
  • Zhiling Zheng; Ali H. Alawadhi; Saumil Chheda; S. Ephraim Neumann; Nakul Rampal; Shengchao Liu; Ha L. Nguyen; Yen-hsu Lin; Zichao Rong; J. Ilja Siepmann; Laura Gagliardi; Anima Anandkumar; Christian Borgs; Jennifer T. Chayes; Omar M. Yaghi Shaping the Water-Harvesting Behavior of Metal–Organic Frameworks Aided by Fine-Tuned GPT Models, Journal of the American Chemical Society, Volume 145 (2023) no. 51, p. 28284 | DOI:10.1021/jacs.3c12086
  • Qian Wei; Sen Xue; Weijie Wu; Suli Liu; Shanshan Li; Chunmei Zhang; Shahua Jiang Plasma Meets MOFs: Synthesis, Modifications, and Functionalities, The Chemical Record, Volume 23 (2023) no. 6 | DOI:10.1002/tcr.202200263
  • Yulin Li; Xiangyunxiu Meng; Ruiwen Luo; Haonan Zhou; Shuyan Lu; Shuning Yu; Peng Bai; Xianghai Guo; Jiafei Lyu Aluminum/Tin-doped UiO-66 as Lewis acid catalysts for enhanced glucose isomerization to fructose, Applied Catalysis A: General, Volume 632 (2022), p. 118501 | DOI:10.1016/j.apcata.2022.118501
  • Junyi Qiao; Xinyao Liu; Lirong Zhang; Yunling Liu Self-assembly of 3p-Block Metal-based Metal-Organic Frameworks from Structural Perspective, Chemical Research in Chinese Universities, Volume 38 (2022) no. 1, p. 31 | DOI:10.1007/s40242-021-1406-x
  • Biswa Nath Bhadra; Imteaz Ahmed; Hye Jin Lee; Sung Hwa Jhung Metal-organic frameworks bearing free carboxylic acids: Preparation, modification, and applications, Coordination Chemistry Reviews, Volume 450 (2022), p. 214237 | DOI:10.1016/j.ccr.2021.214237
  • Emile R. Engel; Bernardo Castro‐Dominguez; Janet L. Scott Green Synthesis of Bio‐based Metal–Organic Frameworks, High‐Performance Materials from Bio‐based Feedstocks (2022), p. 261 | DOI:10.1002/9781119655749.ch12
  • Z. Rajabalizadeh; D. Seifzadeh; A. Khodayari; Sh. Sohrabnezhad Corrosion protection and mechanical properties of the electroless Ni-P-MOF nanocomposite coating on AM60B magnesium alloy, Journal of Magnesium and Alloys, Volume 10 (2022) no. 8, p. 2280 | DOI:10.1016/j.jma.2021.08.013
  • Alexander E. J. Hoffman; Irena Senkovska; Jelle Wieme; Alexander Krylov; Stefan Kaskel; Veronique Van Speybroeck Unfolding the terahertz spectrum of soft porous crystals: rigid unit modes and their impact on phase transitions, Journal of Materials Chemistry A, Volume 10 (2022) no. 33, p. 17254 | DOI:10.1039/d2ta01678h
  • Refilwe Mogale; Kovo G. Akpomie; Jeanet Conradie; Ernst H.G. Langner Isoreticular aluminium-based metal-organic frameworks with structurally similar organic linkers as highly efficient dye adsorbents, Journal of Molecular Structure, Volume 1268 (2022), p. 133648 | DOI:10.1016/j.molstruc.2022.133648
  • Clara López-García; Stefano Canossa; Joke Hadermann; Giulio Gorni; Freddy E. Oropeza; Víctor A. de la Peña O’Shea; Marta Iglesias; M. Angeles Monge; Enrique Gutiérrez-Puebla; Felipe Gándara Heterometallic Molecular Complexes Act as Messenger Building Units to Encode Desired Metal-Atom Combinations to Multivariate Metal–Organic Frameworks, Journal of the American Chemical Society, Volume 144 (2022) no. 36, p. 16262 | DOI:10.1021/jacs.2c06142
  • A.J.R. Thom; D.G. Madden; R. Bueno-Perez; A.N. Al Shakhs; C.T. Lennon; R.J. Marshall; C.A. Walshe; C. Wilson; C.A. Murray; S.P. Thompson; G.F. Turner; D. Bara; S.A. Moggach; D. Fairen-Jimenez; R.S. Forgan Modulated self-assembly of an interpenetrated MIL-53 Sc metal–organic framework with excellent volumetric H2 storage and working capacity, Materials Today Chemistry, Volume 24 (2022), p. 100887 | DOI:10.1016/j.mtchem.2022.100887
  • Mohammad Yasir Khan; M. Shahid A contemporary report on explications of flexible metal-organic frameworks with regards to structural simulation, dynamics and material applications, Polyhedron, Volume 225 (2022), p. 116041 | DOI:10.1016/j.poly.2022.116041
  • Zahra Khoshbin; Negin Davoodian; Seyed Mohammad Taghdisi; Khalil Abnous Metal organic frameworks as advanced functional materials for aptasensor design, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Volume 276 (2022), p. 121251 | DOI:10.1016/j.saa.2022.121251
  • Joel M. Kolle; Mohammadreza Fayaz; Abdelhamid Sayari Understanding the Effect of Water on CO2 Adsorption, Chemical Reviews, Volume 121 (2021) no. 13, p. 7280 | DOI:10.1021/acs.chemrev.0c00762
  • Ali Saad; Subharanjan Biswas; Effrosyni Gkaniatsou; Clémence Sicard; Eddy Dumas; Nicolas Menguy; Nathalie Steunou Metal–Organic Framework Based 1D Nanostructures and Their Superstructures: Synthesis, Microstructure, and Properties, Chemistry of Materials, Volume 33 (2021) no. 15, p. 5825 | DOI:10.1021/acs.chemmater.1c01034
  • Timo Rabe; Erik Svensson Grape; Tobias A. Engesser; A. Ken Inge; Jonas Ströh; Gitta Kohlmeyer‐Yilmaz; Mohammad Wahiduzzaman; Guillaume Maurin; Frank D. Sönnichsen; Norbert Stock Metal‐Dependent and Selective Crystallization of CAU‐10 and MIL‐53 Frameworks through Linker Nitration, Chemistry – A European Journal, Volume 27 (2021) no. 28, p. 7696 | DOI:10.1002/chem.202100373
  • Cesar Maximo Oliva González; Eder Moisés Cedeño Morales; Ana de Monserrat Navarro Tellez; Thelma Elizabeth Serrano Quezada; Oxana V. Kharissova; Miguel Angel Méndez-Rojas CO2 capture by MOFs, Handbook of Greener Synthesis of Nanomaterials and Compounds (2021), p. 407 | DOI:10.1016/b978-0-12-822446-5.00018-6
  • Kwinten Maes; Lisa I. D. J. Martin; Samira Khelifi; Alexander Hoffman; Karen Leus; Pascal Van Der Voort; Etienne Goovaerts; Philippe F. Smet; Veronique Van Speybroeck; Freddy Callens; Henk Vrielinck Identification of vanadium dopant sites in the metal–organic framework DUT-5(Al), Physical Chemistry Chemical Physics, Volume 23 (2021) no. 12, p. 7088 | DOI:10.1039/d1cp00695a
  • Pameli Ghosh; Tanmoy Maity; Saptarshi Biswas; Rakesh Debnath; Subratanath Koner Thermally stable and robust gadolinium-based metal-organic framework: Synthesis, structure and heterogeneous catalytic O-arylation reaction, Polyhedron, Volume 194 (2021), p. 114934 | DOI:10.1016/j.poly.2020.114934
  • Diem Thi-Xuan Dang; Hieu Trung Hoang; Tan Le Hoang Doan; Nam Thoai; Yoshiyuki Kawazoe; Duc Nguyen-Manh Effect of axial molecules and linker length on CO2 adsorption and selectivity of CAU-8: a combined DFT and GCMC simulation study, RSC Advances, Volume 11 (2021) no. 21, p. 12460 | DOI:10.1039/d0ra10121d
  • Jie Liang; Xiaohang Li; Rubing Xi; Guangcun Shan; Pei-Zhou Li; Jia Liu; Yanli Zhao; Ruqiang Zou A Robust Aluminum Metal-Organic Framework with Temperature-Induced Breathing Effect, ACS Materials Letters, Volume 2 (2020) no. 3, p. 220 | DOI:10.1021/acsmaterialslett.9b00399
  • Zachary L. Mensinger; Brenna L. Cook; Elsie L. Wilson Adsorption of Amyloid Beta Peptide by Metal–Organic Frameworks, ACS Omega, Volume 5 (2020) no. 51, p. 32969 | DOI:10.1021/acsomega.0c04019
  • Mégane Muschi; Anusha Lalitha; Saad Sene; Damien Aureau; Mathieu Fregnaux; Imène Esteve; Lucie Rivier; Naseem Ramsahye; Sabine Devautour‐Vinot; Clémence Sicard; Nicolas Menguy; Christian Serre; Guillaume Maurin; Nathalie Steunou Formation of a Single‐Crystal Aluminum‐Based MOF Nanowire with Graphene Oxide Nanoscrolls as Structure‐Directing Agents, Angewandte Chemie, Volume 132 (2020) no. 26, p. 10439 | DOI:10.1002/ange.202000795
  • Simon Krause; Nobuhiko Hosono; Susumu Kitagawa Die Chemie verformbarer poröser Kristalle – Strukturdynamik und Gasadsorptionseigenschaften, Angewandte Chemie, Volume 132 (2020) no. 36, p. 15438 | DOI:10.1002/ange.202004535
  • Mégane Muschi; Anusha Lalitha; Saad Sene; Damien Aureau; Mathieu Fregnaux; Imène Esteve; Lucie Rivier; Naseem Ramsahye; Sabine Devautour‐Vinot; Clémence Sicard; Nicolas Menguy; Christian Serre; Guillaume Maurin; Nathalie Steunou Formation of a Single‐Crystal Aluminum‐Based MOF Nanowire with Graphene Oxide Nanoscrolls as Structure‐Directing Agents, Angewandte Chemie International Edition, Volume 59 (2020) no. 26, p. 10353 | DOI:10.1002/anie.202000795
  • Simon Krause; Nobuhiko Hosono; Susumu Kitagawa Chemistry of Soft Porous Crystals: Structural Dynamics and Gas Adsorption Properties, Angewandte Chemie International Edition, Volume 59 (2020) no. 36, p. 15325 | DOI:10.1002/anie.202004535
  • Sanha Jang; Sehwan Song; Ji Hwan Lim; Han Seong Kim; Bach Thang Phan; Ki-Tae Ha; Sungkyun Park; Kang Hyun Park Application of Various Metal-Organic Frameworks (MOFs) as Catalysts for Air and Water Pollution Environmental Remediation, Catalysts, Volume 10 (2020) no. 2, p. 195 | DOI:10.3390/catal10020195
  • Stefano Canossa; Adrian Gonzalez‐Nelson; Leonid Shupletsov; Maria del Carmen Martin; Monique A. Van der Veen Overcoming Crystallinity Limitations of Aluminium Metal‐Organic Frameworks by Oxalic Acid Modulated Synthesis, Chemistry – A European Journal, Volume 26 (2020) no. 16, p. 3564 | DOI:10.1002/chem.201904798
  • Timo Rabe; Harm Pewe; Helge Reinsch; Tom Willhammar; Erik Svensson Grape; Norbert Stock Influence of the substitution pattern of four naphthalenedicarboxylic acids on the structures and properties of group 13 metal–organic frameworks and coordination polymers, Dalton Transactions, Volume 49 (2020) no. 15, p. 4861 | DOI:10.1039/d0dt00387e
  • Ayesha Rehman; Sarah Farrukh; Arshad Hussain; Erum Pervaiz Synthesis and effect of metal–organic frame works on CO2 adsorption capacity at various pressures: A contemplating review, Energy Environment, Volume 31 (2020) no. 3, p. 367 | DOI:10.1177/0958305x19865352
  • Tongrong Wu; Nicholaus Prasetya; Kang Li Recent advances in aluminium-based metal-organic frameworks (MOF) and its membrane applications, Journal of Membrane Science, Volume 615 (2020), p. 118493 | DOI:10.1016/j.memsci.2020.118493
  • Michael T. Wharmby; Felicitas Niekiel; Jannik Benecke; Steve Waitschat; Helge Reinsch; Dominik Daisenberger; Norbert Stock; Pascal G. Yot Influence of Thermal and Mechanical Stimuli on the Behavior of Al-CAU-13 Metal–Organic Framework, Nanomaterials, Volume 10 (2020) no. 9, p. 1698 | DOI:10.3390/nano10091698
  • Chongxiong Duan; Yi Yu; Jing Xiao; Xuelian Zhang; Libo Li; Pengfei Yang; Junliang Wu; Hongxia Xi Water-based routes for synthesis of metal-organic frameworks: A review, Science China Materials, Volume 63 (2020) no. 5, p. 667 | DOI:10.1007/s40843-019-1264-x
  • Shing Bo Peh; Avishek Karmakar; Dan Zhao Multiscale Design of Flexible Metal–Organic Frameworks, Trends in Chemistry, Volume 2 (2020) no. 3, p. 199 | DOI:10.1016/j.trechm.2019.10.007
  • Pia Rönfeldt; Helge Reinsch; Erik Svensson Grape; A. Ken Inge; Huayna Terraschke; Norbert Stock Water‐based Synthesis and Properties of a Scandium 1,4‐Naphthalenedicarboxylate, Zeitschrift für anorganische und allgemeine Chemie, Volume 646 (2020) no. 16, p. 1373 | DOI:10.1002/zaac.202000063
  • Sujing Wang; Christian Serre Toward Green Production of Water-Stable Metal–Organic Frameworks Based on High-Valence Metals with Low Toxicities, ACS Sustainable Chemistry Engineering (2019) | DOI:10.1021/acssuschemeng.9b01022
  • Sergio Rodrigues Tavares; Naseem Ahmed Ramsahye; Karim Adil; Mohamed Eddaoudi; Guillaume Maurin; Rocio Semino Computationally Assisted Assessment of the Metal‐Organic Framework/Polymer Compatibility in Composites Integrating a Rigid Polymer, Advanced Theory and Simulations, Volume 2 (2019) no. 11 | DOI:10.1002/adts.201900116
  • Y. Jafari Tarzanagh; D. Seifzadeh; Z. Rajabalizadeh; A. Habibi-Yangjeh; A. Khodayari; S. Sohrabnezhad Sol-gel/MOF nanocomposite for effective protection of 2024 aluminum alloy against corrosion, Surface and Coatings Technology, Volume 380 (2019), p. 125038 | DOI:10.1016/j.surfcoat.2019.125038
  • Timo Rabe; Helge Reinsch A Ga‐MIL‐53‐type Framework based on 1,4‐Phenylenediacetate Showing Subtle Flexibility, Zeitschrift für anorganische und allgemeine Chemie, Volume 645 (2019) no. 23, p. 1334 | DOI:10.1002/zaac.201900241
  • Yongwu Peng; Meiting Zhao; Bo Chen; Zhicheng Zhang; Ying Huang; Fangna Dai; Zhuangchai Lai; Xiaoya Cui; Chaoliang Tan; Hua Zhang Hybridization of MOFs and COFs: A New Strategy for Construction of MOF@COF Core–Shell Hybrid Materials, Advanced Materials, Volume 30 (2018) no. 3 | DOI:10.1002/adma.201705454
  • Shuai Yuan; Liang Feng; Kecheng Wang; Jiandong Pang; Matheiu Bosch; Christina Lollar; Yujia Sun; Junsheng Qin; Xinyu Yang; Peng Zhang; Qi Wang; Lanfang Zou; Yingmu Zhang; Liangliang Zhang; Yu Fang; Jialuo Li; Hong‐Cai Zhou Stable Metal–Organic Frameworks: Design, Synthesis, and Applications, Advanced Materials, Volume 30 (2018) no. 37 | DOI:10.1002/adma.201704303
  • Anahid Sabetghadam; Xinlei Liu; Marvin Benzaqui; Effrosyni Gkaniatsou; Angelica Orsi; Magdalena M. Lozinska; Clemence Sicard; Timothy Johnson; Nathalie Steunou; Paul A. Wright; Christian Serre; Jorge Gascon; Freek Kapteijn Influence of Filler Pore Structure and Polymer on the Performance of MOF‐Based Mixed‐Matrix Membranes for CO2 Capture, Chemistry – A European Journal, Volume 24 (2018) no. 31, p. 7949 | DOI:10.1002/chem.201800253
  • Sameh K. Elsaidi; Mona H. Mohamed; Debasis Banerjee; Praveen K. Thallapally Flexibility in Metal–Organic Frameworks: A fundamental understanding, Coordination Chemistry Reviews, Volume 358 (2018), p. 125 | DOI:10.1016/j.ccr.2017.11.022
  • Franck Millange; Richard I. Walton MIL‐53 and its Isoreticular Analogues: a Review of the Chemistry and Structure of a Prototypical Flexible Metal‐Organic Framework, Israel Journal of Chemistry, Volume 58 (2018) no. 9-10, p. 1019 | DOI:10.1002/ijch.201800084
  • Jun-Kai Chen; Shan-Min Yang; Bing-Han Li; Chia-Her Lin; Szetsen Lee Fluorescence Quenching Investigation of Methyl Red Adsorption on Aluminum-Based Metal–Organic Frameworks, Langmuir, Volume 34 (2018) no. 4, p. 1441 | DOI:10.1021/acs.langmuir.7b04240
  • Georges Mouchaham; Sujing Wang; Christian Serre The Stability of Metal–Organic Frameworks, Metal‐Organic Frameworks (2018), p. 1 | DOI:10.1002/9783527809097.ch1
  • Xiqu Wang; Pradeep Samarasekere; Allan J. Jacobson Synthesis and single crystal structures of V(OH)ndc·H2O, V(OH)ndc, and VOndc, Microporous and Mesoporous Materials, Volume 267 (2018), p. 20 | DOI:10.1016/j.micromeso.2018.03.020
  • J. Wieme; K. Lejaeghere; G. Kresse; V. Van Speybroeck Tuning the balance between dispersion and entropy to design temperature-responsive flexible metal-organic frameworks, Nature Communications, Volume 9 (2018) no. 1 | DOI:10.1038/s41467-018-07298-4
  • Mohammad Wahiduzzaman; Nele Reimer; Jean-Paul Itié; Norbert Stock; Guillaume Maurin; Pascal G. Yot Mechanical-pressure induced response of the MOF Al-MIL-53-TDC, Polyhedron, Volume 155 (2018), p. 144 | DOI:10.1016/j.poly.2018.08.045
  • V. A. Saleev; A. V. Shipilova Quantum-Mechanical Modeling of the Elastic Properties of Aluminum-Based Metal-Organic Frameworks, Russian Journal of Physical Chemistry A, Volume 92 (2018) no. 10, p. 1940 | DOI:10.1134/s003602441810028x
  • Karim Adil; Youssef Belmabkhout; Renjith S. Pillai; Amandine Cadiau; Prashant M. Bhatt; Ayalew H. Assen; Guillaume Maurin; Mohamed Eddaoudi Gas/vapour separation using ultra-microporous metal–organic frameworks: insights into the structure/separation relationship, Chemical Society Reviews, Volume 46 (2017) no. 11, p. 3402 | DOI:10.1039/c7cs00153c
  • Paul D. Greenstein; Leah B. Casabianca Interplay Between π-Stacking and Hydrogen Bonding in the Self-Association of Different Isomers of Naphthalenedicarboxylic Acid, The Journal of Physical Chemistry B, Volume 121 (2017) no. 19, p. 5086 | DOI:10.1021/acs.jpcb.7b01465
  • Raynald Giovine; Christophe Volkringer; Marie-Anne Springuel-Huet; Andrei Nossov; Frédéric Blanc; Julien Trébosc; Thierry Loiseau; Jean-Paul Amoureux; Olivier Lafon; Frédérique Pourpoint Study of Xenon Mobility in the Two Forms of MIL-53(Al) Using Solid-State NMR Spectroscopy, The Journal of Physical Chemistry C, Volume 121 (2017) no. 35, p. 19262 | DOI:10.1021/acs.jpcc.7b06006
  • Carsten B. L. Tschense; Nele Reimer; Ching‐Wen Hsu; Helge Reinsch; Renée Siegel; Wen‐Jin Chen; Chia‐Her Lin; Amadine Cadiau; Christian Serre; Jürgen Senker; Norbert Stock New Group 13 MIL‐53 Derivates based on 2,5‐Thiophenedicarboxylic Acid, Zeitschrift für anorganische und allgemeine Chemie, Volume 643 (2017) no. 21, p. 1600 | DOI:10.1002/zaac.201700260
  • Gérard Férey Structural flexibility in crystallized matter: from history to applications, Dalton Transactions, Volume 45 (2016) no. 10, p. 4073 | DOI:10.1039/c5dt03547c
  • Helge Reinsch; Renjith S. Pillai; Renée Siegel; Jürgen Senker; Alexandra Lieb; Guillaume Maurin; Norbert Stock Structure and properties of Al-MIL-53-ADP, a breathing MOF based on the aliphatic linker molecule adipic acid, Dalton Transactions, Volume 45 (2016) no. 10, p. 4179 | DOI:10.1039/c5dt03510d
  • Yu-Ting Gong; Bing-Han Li; Tsung Pei; Chia-Her Lin; Szetsen Lee Raman investigation on carbonization process of metal-organic frameworks, Journal of Raman Spectroscopy, Volume 47 (2016) no. 10, p. 1271 | DOI:10.1002/jrs.4952
  • Gérard Férey Giant flexibility of crystallized organic–inorganic porous solids: facts, reasons, effects and applications, New Journal of Chemistry, Volume 40 (2016) no. 5, p. 3950 | DOI:10.1039/c5nj02747k
  • In-Hwan Choi; Youngmee Kim; Do Nam Lee; Seong Huh Three-dimensional cobalt(II) and cadmium(II) MOFs containing 1,4-naphthalenedicarboxylate: Catalytic activity of Cd-MOF, Polyhedron, Volume 105 (2016), p. 96 | DOI:10.1016/j.poly.2015.12.022
  • Lars-Hendrik Schilling; Helge Reinsch; Norbert Stock Synthesis, Structure, and Selected Properties of Aluminum-, Gallium-, and Indium-Based Metal-Organic Frameworks, The Chemistry of Metal-Organic Frameworks: Synthesis, Characterization, and Applications (2016), p. 105 | DOI:10.1002/9783527693078.ch5
  • Zhuo‐Wei Wang; Min Chen; Chun‐Sen Liu; Xi Wang; Hui Zhao; Miao Du A Versatile AlIII‐Based Metal–Organic Framework with High Physicochemical Stability, Chemistry – A European Journal, Volume 21 (2015) no. 48, p. 17215 | DOI:10.1002/chem.201502615
  • Nele Reimer; Helge Reinsch; A. Ken Inge; Norbert Stock New Al-MOFs Based on Sulfonyldibenzoate Ions: A Rare Example of Intralayer Porosity, Inorganic Chemistry, Volume 54 (2015) no. 2, p. 492 | DOI:10.1021/ic502242j
  • William P. Mounfield; Krista S. Walton Effect of synthesis solvent on the breathing behavior of MIL-53(Al), Journal of Colloid and Interface Science, Volume 447 (2015), p. 33 | DOI:10.1016/j.jcis.2015.01.027
  • E. S. Sanil; Kyung-Ho Cho; Su-Kyung Lee; U-Hwang Lee; Sam Gon Ryu; Hae Wan Lee; Jong-San Chang; Young Kyu Hwang Size and morphological control of a metal–organic framework Cu-BTC by variation of solvent and modulator, Journal of Porous Materials, Volume 22 (2015) no. 1, p. 171 | DOI:10.1007/s10934-014-9883-7
  • Dandan Liu; Fangna Dai; Zhe Tang; Yunqi Liu; Chenguang Liu The structure-directed effect of Al-based metal–organic frameworks on fabrication of alumina by thermal treatment, Materials Research Bulletin, Volume 65 (2015), p. 287 | DOI:10.1016/j.materresbull.2015.02.011
  • Caroline Mellot-Draznieks; Ben Slater; Raimondas Galvelis Computational Approaches to the Design, Crystal Structure Prediction, and Structure–Property Relationships of Metal–Organic Frameworks, Metal-Organic Frameworks (2015), p. 1 | DOI:10.1201/b18039-2
  • Gesa Zahn; Hendrik Albert Schulze; Jann Lippke; Sandra König; Uta Sazama; Michael Fröba; Peter Behrens A water-born Zr-based porous coordination polymer: Modulated synthesis of Zr-fumarate MOF, Microporous and Mesoporous Materials, Volume 203 (2015), p. 186 | DOI:10.1016/j.micromeso.2014.10.034
  • Selda Halis; Nele Reimer; Arne Klinkebiel; Ulrich Lüning; Norbert Stock Four new Al-based microporous metal-organic framework compounds with MIL-53-type structure containing functionalized extended linker molecules, Microporous and Mesoporous Materials, Volume 216 (2015), p. 13 | DOI:10.1016/j.micromeso.2015.01.030
  • Chih-Chieh Wang; Chang-Tsung Yeh; Szu-Yu Ke; Yi-Ting Cheng; Ching-Chun Yang; Gene-Hsiang Lee; Chung-Kai Chang; Hwo-Shuenn Sheu Assembly of three Nd(iii) 2,6-naphthalenedicarboxylates (ndc2−) 3D coordination polymers based on various secondary building units (SBUs): structural diversity and gas sorption properties, RSC Advances, Volume 5 (2015) no. 112, p. 92378 | DOI:10.1039/c5ra10799g
  • Kira Khaletskaya; Stuart Turner; Min Tu; Suttipong Wannapaiboon; Andreas Schneemann; Robert Meyer; Alfred Ludwig; Gustaaf Van Tendeloo; Roland A. Fischer Self‐Directed Localization of ZIF‐8 Thin Film Formation by Conversion of ZnO Nanolayers, Advanced Functional Materials, Volume 24 (2014) no. 30, p. 4804 | DOI:10.1002/adfm.201400559
  • Karen Leus; Ying-Ya Liu; Pascal Van Der Voort Metal-Organic Frameworks as Selective or Chiral Oxidation Catalysts, Catalysis Reviews, Volume 56 (2014) no. 1, p. 1 | DOI:10.1080/01614940.2014.864145
  • A. Schneemann; V. Bon; I. Schwedler; I. Senkovska; S. Kaskel; R. A. Fischer Flexible metal–organic frameworks, Chem. Soc. Rev., Volume 43 (2014) no. 16, p. 6062 | DOI:10.1039/c4cs00101j
  • Thomas Devic; Christian Serre High valence 3p and transition metal based MOFs, Chem. Soc. Rev., Volume 43 (2014) no. 16, p. 6097 | DOI:10.1039/c4cs00081a
  • Michael T. Wharmby; Malte Snoyek; Timo Rhauderwiek; Knut Ritter; Norbert Stock Group 13 Metal Carboxylates: Using Molecular Clusters As Hybrid Building Units in a MIL-53 Type Framework, Crystal Growth Design, Volume 14 (2014) no. 10, p. 5310 | DOI:10.1021/cg501189n
  • Daniela Frahm; Frank Hoffmann; Michael Fröba Two Metal–Organic Frameworks with a Tetratopic Linker: Solvent-Dependent Polymorphism and Postsynthetic Bromination, Crystal Growth Design, Volume 14 (2014) no. 4, p. 1719 | DOI:10.1021/cg4018536
  • Paolo Falcaro; Mark J. Styles Metal‐Organic Frameworks: Materials Patterning, Encyclopedia of Inorganic and Bioinorganic Chemistry (2014), p. 1 | DOI:10.1002/9781119951438.eibc2227
  • Norbert Stock Metal‐Organic Frameworks: Aluminium‐Based Frameworks, Encyclopedia of Inorganic and Bioinorganic Chemistry (2014), p. 1 | DOI:10.1002/9781119951438.eibc2197
  • Lionel Fédèle; Frédéric Sauvage; Joackim Bois; Jean-Marie Tarascon; Matthieu Bécuwe Lithium Insertion / De-Insertion Properties of π-Extended Naphthyl-Based Dicarboxylate Electrode Synthesized by Freeze-Drying, Journal of The Electrochemical Society, Volume 161 (2014) no. 1, p. A46 | DOI:10.1149/2.013401jes
  • Mays Alhamami; Huu Doan; Chil-Hung Cheng A Review on Breathing Behaviors of Metal-Organic-Frameworks (MOFs) for Gas Adsorption, Materials, Volume 7 (2014) no. 4, p. 3198 | DOI:10.3390/ma7043198
  • Pascal Van Der Voort; Karen Leus; Ying-Ya Liu; Matthias Vandichel; Veronique Van Speybroeck; Michel Waroquier; Shyam Biswas Vanadium metal–organic frameworks: structures and applications, New J. Chem., Volume 38 (2014) no. 5, p. 1853 | DOI:10.1039/c3nj01130e
  • Norbert Stock; Helge Reinsch; Lars‐Hendrik Schilling Synthesis of MOFs, Metal Organic Frameworks as Heterogeneous Catalysts (2013), p. 9 | DOI:10.1039/9781849737586-00009
  • Helge Reinsch; Norbert Stock High-throughput studies of highly porous Al-based MOFs, Microporous and Mesoporous Materials, Volume 171 (2013), p. 156 | DOI:10.1016/j.micromeso.2012.12.024
  • E. A. Karakhanov; A. L. Maksimov; A. V. Zolotukhina; Yu. S. Kardasheva Hydrogenation catalysts based on metal nanoparticles stabilized by organic ligands, Russian Chemical Bulletin, Volume 62 (2013) no. 7, p. 1465 | DOI:10.1007/s11172-013-0212-0
  • Paolo Falcaro; Dario Buso; Anita J. Hill; Cara M. Doherty Patterning Techniques for Metal Organic Frameworks, Advanced Materials, Volume 24 (2012) no. 24, p. 3153 | DOI:10.1002/adma.201200485
  • Norbert Stock; Shyam Biswas Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites, Chemical Reviews, Volume 112 (2012) no. 2, p. 933 | DOI:10.1021/cr200304e
  • Mohamed Haouas; Christophe Volkringer; Thierry Loiseau; Gérard Férey; Francis Taulelle In Situ NMR, Ex Situ XRD and SEM Study of the Hydrothermal Crystallization of Nanoporous Aluminum Trimesates MIL-96, MIL-100, and MIL-110, Chemistry of Materials, Volume 24 (2012) no. 13, p. 2462 | DOI:10.1021/cm300439e
  • Tim Ahnfeldt; Daniel Gunzelmann; Julia Wack; Jürgen Senker; Norbert Stock Controlled modification of the inorganic and organic bricks in an Al-based MOF by direct and post-synthetic synthesis routes, CrystEngComm, Volume 14 (2012) no. 12, p. 4126 | DOI:10.1039/c2ce06620c
  • Patrick L. Feng; Kirsty Leong; Mark D. Allendorf Charge-transfer guest interactions in luminescent MOFs: implications for solid-state temperature and environmental sensing, Dalton Transactions, Volume 41 (2012) no. 29, p. 8869 | DOI:10.1039/c2dt30649b
  • Ying‐Ya Liu; Karen Leus; Maciej Grzywa; David Weinberger; Katrien Strubbe; Henk Vrielinck; Rik Van Deun; Dirk Volkmer; Veronique Van Speybroeck; Pascal Van Der Voort Synthesis, Structural Characterization, and Catalytic Performance of a Vanadium‐Based Metal–Organic Framework (COMOC‐3), European Journal of Inorganic Chemistry, Volume 2012 (2012) no. 16, p. 2819 | DOI:10.1002/ejic.201101099
  • Inês Rodrigues; Ionut Mihalcea; Christophe Volkringer; Thierry Loiseau; Marc Visseaux Water-Free Neodymium 2,6-Naphthalenedicarboxylates Coordination Complexes and Their Application as Catalysts for Isoprene Polymerization, Inorganic Chemistry, Volume 51 (2012) no. 1, p. 483 | DOI:10.1021/ic2019346
  • Dipendu Saha; Renju Zacharia; Lyubov Lafi; Daniel Cossement; Richard Chahine Synthesis, characterization and hydrogen adsorption properties of metal–organic framework Al-TCBPB, International Journal of Hydrogen Energy, Volume 37 (2012) no. 6, p. 5100 | DOI:10.1016/j.ijhydene.2011.12.072
  • Manuela Gaab; Natalia Trukhan; Stefan Maurer; Raghu Gummaraju; Ulrich Müller The progression of Al-based metal-organic frameworks – From academic research to industrial production and applications, Microporous and Mesoporous Materials, Volume 157 (2012), p. 131 | DOI:10.1016/j.micromeso.2011.08.016
  • Christophe Volkringer; Hervé Leclerc; Jean-Claude Lavalley; Thierry Loiseau; Gérard Férey; Marco Daturi; Alexandre Vimont Infrared Spectroscopy Investigation of the Acid Sites in the Metal–Organic Framework Aluminum Trimesate MIL-100(Al), The Journal of Physical Chemistry C, Volume 116 (2012) no. 9, p. 5710 | DOI:10.1021/jp210671t
  • Daniela Frahm; Michael Fischer; Frank Hoffmann; Michael Fröba An Interpenetrated Metal–Organic Framework and Its Gas Storage Behavior: Simulation and Experiment, Inorganic Chemistry, Volume 50 (2011) no. 21, p. 11055 | DOI:10.1021/ic201596x
  • Chun-Hong Jiang; Li-Fang Song; Cheng-Li Jiao; Jian Zhang; Li-Xian Sun; Fen Xu; Huan-Zhi Zhang; Qing-Yang Xu; Zelimir Gabelica Determination of heat capacities and thermodynamic properties of two structurally unrelated but isotypic calcium and manganese(II) 2,6-naphthalene dicarboxylate-based MOFs, Journal of Thermal Analysis and Calorimetry, Volume 103 (2011) no. 3, p. 1095 | DOI:10.1007/s10973-010-1197-7
  • Matjaz Mazaj; Christophe Volkringer; Thierry Loiseau; Venčeslav Kaučič; Gérard Férey Synthesis and crystal structure of a new MOF-type indium pyromellitate (MIL-117) with infinite chains of unusual cis connection of octahedra InO4(OH)2, Solid State Sciences, Volume 13 (2011) no. 8, p. 1488 | DOI:10.1016/j.solidstatesciences.2011.05.006
  • Fabrice Salles; Sandrine Bourrelly; Hervé Jobic; Thomas Devic; Vincent Guillerm; Philip Llewellyn; Christian Serre; Gérard Ferey; Guillaume Maurin Molecular Insight into the Adsorption and Diffusion of Water in the Versatile Hydrophilic/Hydrophobic Flexible MIL-53(Cr) MOF, The Journal of Physical Chemistry C, Volume 115 (2011) no. 21, p. 10764 | DOI:10.1021/jp202147m
  • Mohamed Haouas; Christophe Volkringer; Thierry Loiseau; Gérard Férey; Francis Taulelle Monitoring the Activation Process of the Giant Pore MIL-100(Al) by Solid State NMR, The Journal of Physical Chemistry C, Volume 115 (2011) no. 36, p. 17934 | DOI:10.1021/jp206513v
  • Christophe Volkringer; Thierry Loiseau; Thomas Devic; Gérard Férey; Dmitry Popov; M. Burghammer; C. Riekel A layered coordination polymer based on an azodibenzoate linker connected to aluminium (MIL-129), CrystEngComm, Volume 12 (2010) no. 10, p. 3225 | DOI:10.1039/c002214d
  • Christophe Volkringer; Thierry Loiseau; Nathalie Guillou; Gérard Férey; Mohamed Haouas; Francis Taulelle; Erik Elkaim; Norbert Stock High-Throughput Aided Synthesis of the Porous Metal−Organic Framework-Type Aluminum Pyromellitate, MIL-121, with Extra Carboxylic Acid Functionalization, Inorganic Chemistry, Volume 49 (2010) no. 21, p. 9852 | DOI:10.1021/ic101128w
  • Kyriakos C. Stylianou; Romain Heck; Samantha Y. Chong; John Bacsa; James T. A. Jones; Yaroslav Z. Khimyak; Darren Bradshaw; Matthew J. Rosseinsky A Guest-Responsive Fluorescent 3D Microporous Metal−Organic Framework Derived from a Long-Lifetime Pyrene Core, Journal of the American Chemical Society, Volume 132 (2010) no. 12, p. 4119 | DOI:10.1021/ja906041f
  • Tim Ahnfeldt; Nathalie Guillou; Daniel Gunzelmann; Irene Margiolaki; Thierry Loiseau; Gérard Férey; Jürgen Senker; Norbert Stock [Al4(OH)2(OCH3)4(H2N‐bdc)3]⋅x H2O: A 12‐Connected Porous Metal–Organic Framework with an Unprecedented Aluminum‐Containing Brick, Angewandte Chemie, Volume 121 (2009) no. 28, p. 5265 | DOI:10.1002/ange.200901409
  • David Farrusseng; Sonia Aguado; Catherine Pinel Metall‐organische Gerüste für die Katalyse, Angewandte Chemie, Volume 121 (2009) no. 41, p. 7638 | DOI:10.1002/ange.200806063
  • Tim Ahnfeldt; Nathalie Guillou; Daniel Gunzelmann; Irene Margiolaki; Thierry Loiseau; Gérard Férey; Jürgen Senker; Norbert Stock [Al4(OH)2(OCH3)4(H2N‐bdc)3]⋅x H2O: A 12‐Connected Porous Metal–Organic Framework with an Unprecedented Aluminum‐Containing Brick, Angewandte Chemie International Edition, Volume 48 (2009) no. 28, p. 5163 | DOI:10.1002/anie.200901409
  • David Farrusseng; Sonia Aguado; Catherine Pinel Metal–Organic Frameworks: Opportunities for Catalysis, Angewandte Chemie International Edition, Volume 48 (2009) no. 41, p. 7502 | DOI:10.1002/anie.200806063
  • Gérard Férey; Christian Serre Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences, Chemical Society Reviews, Volume 38 (2009) no. 5, p. 1380 | DOI:10.1039/b804302g
  • Christophe Volkringer; Thierry Loiseau; Mohamed Haouas; Francis Taulelle; Dmitry Popov; Manfred Burghammer; Christian Riekel; Claudia Zlotea; Fermin Cuevas; Michel Latroche; Delphine Phanon; Christina Knöfelv; Philip L Llewellyn; Gérard Férey Occurrence of Uncommon Infinite Chains Consisting of Edge-Sharing Octahedra in a Porous Metal Organic Framework-Type Aluminum Pyromellitate Al4(OH)8[C10O8H2] (MIL-120): Synthesis, Structure, and Gas Sorption Properties, Chemistry of Materials, Volume 21 (2009) no. 24, p. 5783 | DOI:10.1021/cm9023106
  • Mohamed Haouas; Christophe Volkringer; Thierry Loiseau; Gérard Férey; Francis Taulelle The Extra‐Framework Sub‐Lattice of the Metal–Organic Framework MIL‐110: A Solid‐State NMR Investigation, Chemistry – A European Journal, Volume 15 (2009) no. 13, p. 3139 | DOI:10.1002/chem.200801856
  • Christophe Volkringer; Thierry Loiseau; Nathalie Guillou; Gérard Férey; Mohamed Haouas; Francis Taulelle; Nathalie Audebrand; Irene Margiolaki; Dmitry Popov; Manfred Burghammer; Christian Riekel Structural Transitions and Flexibility during Dehydration−Rehydration Process in the MOF-type Aluminum Pyromellitate Al2(OH)2[C10O8H2] (MIL-118), Crystal Growth Design, Volume 9 (2009) no. 6, p. 2927 | DOI:10.1021/cg900276g
  • Christophe Volkringer; Thierry Loiseau; Nathalie Guillou; Gérard Férey; Erik Elkaïm; Alexandre Vimont XRD and IR structural investigations of a particular breathing effect in the MOF-type gallium terephthalate MIL-53(Ga), Dalton Transactions (2009) no. 12, p. 2241 | DOI:10.1039/b817563b
  • Stephanie E. Wenzel; Michael Fischer; Frank Hoffmann; Michael Fröba Highly Porous Metal-Organic Framework Containing a Novel Organosilicon Linker − A Promising Material for Hydrogen Storage, Inorganic Chemistry, Volume 48 (2009) no. 14, p. 6559 | DOI:10.1021/ic900478z
  • Irena Senkovska; Frank Hoffmann; Michael Fröba; Juergen Getzschmann; Winfried Böhlmann; Stefan Kaskel New highly porous aluminium based metal-organic frameworks: Al(OH)(ndc) (ndc=2,6-naphthalene dicarboxylate) and Al(OH)(bpdc) (bpdc=4,4′-biphenyl dicarboxylate), Microporous and Mesoporous Materials, Volume 122 (2009) no. 1-3, p. 93 | DOI:10.1016/j.micromeso.2009.02.020
  • Christophe Volkringer; Thierry Loiseau; Gérard Férey Two metal-organic frameworks with infinite indium hydroxide chains connected through tetradentate carboxylate linkers, Solid State Sciences, Volume 11 (2009) no. 1, p. 29 | DOI:10.1016/j.solidstatesciences.2008.05.012
  • Christophe Volkringer; Thierry Loiseau; Nathalie Guillou; Gérard Férey; Erik Elkaïm Syntheses and structures of the MOF-type series of metal 1,4,5,8,-naphthalenetetracarboxylates M2(OH)2[C14O8H4] (Al, Ga, In) with infinite trans-connected M–OH–M chains (MIL-122), Solid State Sciences, Volume 11 (2009) no. 8, p. 1507 | DOI:10.1016/j.solidstatesciences.2009.05.017
  • David S. Coombes; Furio Corà; Caroline Mellot-Draznieks; Robert G. Bell Sorption-Induced Breathing in the Flexible Metal Organic Framework CrMIL-53: Force-Field Simulations and Electronic Structure Analysis, The Journal of Physical Chemistry C, Volume 113 (2009) no. 2, p. 544 | DOI:10.1021/jp809408x
  • Raffaele Cioffi; Luca De Stefano; Raffaele Lamanna; Fabio Montagnaro; Luciano Santoro; Stanislao Senatore; Armando Zarrelli TG, FT-IR and NMR characterization of n-C16H34 contaminated alumina and silica after mechanochemical treatment, Chemosphere, Volume 70 (2008) no. 6, p. 1068 | DOI:10.1016/j.chemosphere.2007.07.061
  • Christophe Volkringer; Mohamed Meddouri; Thierry Loiseau; Nathalie Guillou; Jérôme Marrot; Gérard Férey; Mohamed Haouas; Francis Taulelle; Nathalie Audebrand; Michel Latroche The Kagomé Topology of the Gallium and Indium Metal-Organic Framework Types with a MIL-68 Structure: Synthesis, XRD, Solid-State NMR Characterizations, and Hydrogen Adsorption, Inorganic Chemistry, Volume 47 (2008) no. 24, p. 11892 | DOI:10.1021/ic801624v
  • Yun Liu; Jae-Hyuk Her; Anne Dailly; Anibal J. Ramirez-Cuesta; Dan A. Neumann; Craig M. Brown Reversible Structural Transition in MIL-53 with Large Temperature Hysteresis, Journal of the American Chemical Society, Volume 130 (2008) no. 35, p. 11813 | DOI:10.1021/ja803669w
  • Angiolina Comotti; Silvia Bracco; Piero Sozzani; Satoshi Horike; Ryotaro Matsuda; Jinxi Chen; Masaki Takata; Yoshiki Kubota; Susumu Kitagawa Nanochannels of Two Distinct Cross-Sections in a Porous Al-Based Coordination Polymer, Journal of the American Chemical Society, Volume 130 (2008) no. 41, p. 13664 | DOI:10.1021/ja802589u
  • Hepeng Wang; Jürgen Getzschmann; Irena Senkovska; Stefan Kaskel Structural transformation and high pressure methane adsorption of Co2(1,4-bdc)2dabco, Microporous and Mesoporous Materials, Volume 116 (2008) no. 1-3, p. 653 | DOI:10.1016/j.micromeso.2008.05.037
  • Christophe Volkringer; Thierry Loiseau; Nathalie Guillou; Jérome Marrot; Gérard Ferey; Mohamed Haouas; Francis Taulelle; Dimitriy Popov; Manfred Burghammer; Christian Riekel; Michel Latroche; Sandrine Bourrely; Philip L. Lewellyn The use of aluminium and others p elements (gallium, indium) for the generation of MOF-type materials, Zeolites and related materials: Trends, targets and challenges, Proceedings of the 4th International FEZA Conference, Volume 174 (2008), p. 447 | DOI:10.1016/s0167-2991(08)80237-6
  • Irena Senkovska; Julia Fritsch; Stefan Kaskel New Polymorphs of Magnesium‐Based Metal–Organic Frameworks Mg3(ndc)3 (ndc = 2,6‐Naphthalenedicarboxylate), European Journal of Inorganic Chemistry, Volume 2007 (2007) no. 35, p. 5475 | DOI:10.1002/ejic.200700728
  • S. Bourrelly; C. Serre; A. Vimont; N.A. Ramsahye; G. Maurin; M. Daturi; Y. Filinchuk; G. Férey; P.L. Llewellyn A multidisciplary approach to understanding sorption induced breathing in the metal organic framework MIL53(Cr), From Zeolites to Porous MOF Materials - The 40th Anniversary of International Zeolite Conference, Proceedings of the 15th International Zeolite Conference, Volume 170 (2007), p. 1008 | DOI:10.1016/s0167-2991(07)80953-0
  • Marie Vougo-Zanda; Xiqu Wang; Allan J. Jacobson Influence of Ligand Geometry on the Formation of In−O Chains in Metal-Oxide Organic Frameworks (MOOFs), Inorganic Chemistry, Volume 46 (2007) no. 21, p. 8819 | DOI:10.1021/ic701126t
  • Thierry Loiseau; Gérard Férey Crystalline oxyfluorinated open-framework compounds: Silicates, metal phosphates, metal fluorides and metal-organic frameworks (MOF), Journal of Fluorine Chemistry, Volume 128 (2007) no. 4, p. 413 | DOI:10.1016/j.jfluchem.2006.09.009
  • Thomas Devic; Olivier David; Marion Valls; Jérôme Marrot; François Couty; Gérard Férey An Illustration of the Limit of the Metal Organic Framework's Isoreticular Principle Using a Semirigid Tritopic Linker Obtained by “Click” Chemistry, Journal of the American Chemical Society, Volume 129 (2007) no. 42, p. 12614 | DOI:10.1021/ja0744091
  • Christophe Volkringer; Thierry Loiseau; Gérard Férey; Cláudia M. Morais; Francis Taulelle; Valérie Montouillout; Dominique Massiot Synthesis, crystal structure and 71Ga solid state NMR of a MOF-type gallium trimesate (MIL-96) with μ3-oxo bridged trinuclear units and a hexagonal 18-ring network, Microporous and Mesoporous Materials, Volume 105 (2007) no. 1-2, p. 111 | DOI:10.1016/j.micromeso.2007.05.018
  • Christophe Volkringer; Dimitry Popov; Thierry Loiseau; Nathalie Guillou; Gerard Ferey; Mohamed Haouas; Francis Taulelle; Caroline Mellot-Draznieks; Manfred Burghammer; Christian Riekel A microdiffraction set-up for nanoporous metal–organic-framework-type solids, Nature Materials, Volume 6 (2007) no. 10, p. 760 | DOI:10.1038/nmat1991
  • Philip L. Llewellyn; Sandrine Bourrelly; Christian Serre; Yaroslav Filinchuk; Gérard Férey How Hydration Drastically Improves Adsorption Selectivity for CO2 over CH4 in the Flexible Chromium Terephthalate MIL‐53, Angewandte Chemie, Volume 118 (2006) no. 46, p. 7915 | DOI:10.1002/ange.200602278
  • Philip L. Llewellyn; Sandrine Bourrelly; Christian Serre; Yaroslav Filinchuk; Gérard Férey How Hydration Drastically Improves Adsorption Selectivity for CO2 over CH4 in the Flexible Chromium Terephthalate MIL‐53, Angewandte Chemie International Edition, Volume 45 (2006) no. 46, p. 7751 | DOI:10.1002/anie.200602278
  • R. A. Kresiński Aluminium, gallium, indium and thallium, Annu. Rep. Prog. Chem., Sect. A: Inorg. Chem., Volume 102 (2006), p. 88 | DOI:10.1039/b508246n
  • Thierry Loiseau; Ludovic Lecroq; Christophe Volkringer; Jérôme Marrot; Gérard Férey; Mohamed Haouas; Francis Taulelle; Sandrine Bourrelly; Philip L. Llewellyn; Michel Latroche MIL-96, a Porous Aluminum Trimesate 3D Structure Constructed from a Hexagonal Network of 18-Membered Rings and μ3-Oxo-Centered Trinuclear Units, Journal of the American Chemical Society, Volume 128 (2006) no. 31, p. 10223 | DOI:10.1021/ja0621086
  • Christophe Volkringer; Thierry Loiseau A new indium metal-organic 3D framework with 1,3,5-benzenetricarboxylate, MIL-96 (In), containing μ3-oxo-centered trinuclear units and a hexagonal 18-ring network, Materials Research Bulletin, Volume 41 (2006) no. 5, p. 948 | DOI:10.1016/j.materresbull.2006.01.022
  • Thierry Loiseau; Hervé Muguerra; Mohamed Haouas; Francis Taulelle; Gérard Férey Hydrothermal synthesis and structural characterization of a gallium pyromellitate Ga(OH)(btec)⋅0.5H2O, with infinite Ga-(-OH)-Ga chains (MIL-61), Solid State Sciences, Volume 7 (2005) no. 5, p. 603 | DOI:10.1016/j.solidstatesciences.2005.01.014

Cité par 149 documents. Sources : Crossref


Commentaires - Politique