Outline
Comptes Rendus

Combined analysis of Cymbopogon giganteus Chiov. leaf oil from Ivory Coast by GC/RI, GC/MS and 13C-NMR
Comptes Rendus. Chimie, Volume 9 (2006) no. 1, pp. 164-168.

Abstracts

The composition of the essential oil isolated by hydrodistillation from the leaves of Cymbopogon giganteus Chiov. growing wild in Ivory Coast, was determined by GC/RI, GC/SM and 13C-NMR after fractionation on silica gel. The oil was characterized by high contents of trans- and cis-p-mentha-2,8-dien-1-ols (18.4% and 8.7%, respectively), cis- and trans-p-mentha-1(7),8-dien-2-ols (16.0% and 15.7% respectively), and limonene (12.5%). Forty-six components were identified, including 25 compounds reported for the first time in the oils of this species. .

La composition de l'huile essentielle obtenue par hydrodistillation des feuilles de C. giganteus Chiov., poussant à l'état spontané en Côte d'Ivoire, a été déterminée par CPG/IR, (IR = indices de rétention) CPG/SM et RMN-13C. L'huile essentielle est caractérisée par une forte proportion de trans- et de cis-p-mentha-2,8-diène-1-ols (18,4 et 8,7 %), des cis- et trans-p-mentha-1(7),8-diène-2-ols (16,0 et 15,7 %) et de limonène (12,5 %). Quarante-six composés ont été identifiés, dont 25 observés pour la première fois dans les huiles essentielles de cette espèce. .

Metadata
Received:
Accepted:
Published online:
DOI: 10.1016/j.crci.2005.10.003
Keywords: Cymbopogon giganteus Chiov., Poaceae, Essential oil composition, p-Mentha-1(7), 8-dien-2-ols, p-Menth-2, 8-dien-1-ols, Limonene, 13C-NMR
Keywords: Cymbopogon giganteus Chiov., Poaceae, Composition de l'huile essentielle, p-mentha-1(7), 8-diène-2-ols, p-menth-2, 8-diène-1-ols, limonène, RMN-13C

Jean Brice Boti 1, 2; Alain Muselli 3; Félix Tomi 1; Gérard Koukoua 2; Thomas Yao N’Guessan 2; Jean Costa 3; Joseph Casanova 1

1 Équipe « Chimie et Biomasse », UMR CNRS 6134, université de Corse, route des Sanguinaires, 20000 Ajaccio, France
2 Équipe des produits naturels, laboratoire de chimie organique structurale, université de Cocody–Abidjan, 22 BP 582 Abidjan 22, Ivory Coast
3 Équipe « Chimie des produits naturels », UMR CNRS 6134, université de Corse, BP 52, 20250 Corte, France
@article{CRCHIM_2006__9_1_164_0,
     author = {Jean Brice Boti and Alain Muselli and F\'elix Tomi and G\'erard Koukoua and Thomas Yao N{\textquoteright}Guessan and Jean Costa and Joseph Casanova},
     title = {Combined analysis {of~\protect\emph{Cymbopogon~giganteus}} {Chiov.} leaf oil from {Ivory} {Coast} {by~GC/RI,} {GC/MS} {and~\protect\textsuperscript{13}C-NMR}},
     journal = {Comptes Rendus. Chimie},
     pages = {164--168},
     publisher = {Elsevier},
     volume = {9},
     number = {1},
     year = {2006},
     doi = {10.1016/j.crci.2005.10.003},
     language = {en},
}
TY  - JOUR
AU  - Jean Brice Boti
AU  - Alain Muselli
AU  - Félix Tomi
AU  - Gérard Koukoua
AU  - Thomas Yao N’Guessan
AU  - Jean Costa
AU  - Joseph Casanova
TI  - Combined analysis of Cymbopogon giganteus Chiov. leaf oil from Ivory Coast by GC/RI, GC/MS and 13C-NMR
JO  - Comptes Rendus. Chimie
PY  - 2006
SP  - 164
EP  - 168
VL  - 9
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crci.2005.10.003
LA  - en
ID  - CRCHIM_2006__9_1_164_0
ER  - 
%0 Journal Article
%A Jean Brice Boti
%A Alain Muselli
%A Félix Tomi
%A Gérard Koukoua
%A Thomas Yao N’Guessan
%A Jean Costa
%A Joseph Casanova
%T Combined analysis of Cymbopogon giganteus Chiov. leaf oil from Ivory Coast by GC/RI, GC/MS and 13C-NMR
%J Comptes Rendus. Chimie
%D 2006
%P 164-168
%V 9
%N 1
%I Elsevier
%R 10.1016/j.crci.2005.10.003
%G en
%F CRCHIM_2006__9_1_164_0
Jean Brice Boti; Alain Muselli; Félix Tomi; Gérard Koukoua; Thomas Yao N’Guessan; Jean Costa; Joseph Casanova. Combined analysis of Cymbopogon giganteus Chiov. leaf oil from Ivory Coast by GC/RI, GC/MS and 13C-NMR. Comptes Rendus. Chimie, Volume 9 (2006) no. 1, pp. 164-168. doi : 10.1016/j.crci.2005.10.003. https://comptes-rendus.academie-sciences.fr/chimie/articles/10.1016/j.crci.2005.10.003/

Version originale du texte intégral

1 Introduction

The Cymbopogon genus comprises 56 species [1] among which four species including Cymbopogon giganteus Chiov. grow wild in Ivory Coast. C. giganteus, an aromatic Poaceae, is a perennial and sweet-smelling grass that grows spontaneously in the savannahs of Asian and African tropical regions. It possesses a rhizome-bearing stem and can grow up to 3 m high [2]. Decoctions of the leaves and flowers are used as an effective treatment against skin disorders [3], conjunctiva and migraine [4] and hepatitis [5]. Solvent extracts of C. giganteus have been reported to contain flavonoids [6] and amino acids [7]. The composition of essential oils, obtained from aerial parts of plants growing in different countries, has been investigated: Benin [8], Burkina Faso [9], Mali [10,11], and Cameroon [12]. The composition of two samples of leaf oil from Ivory Coast was briefly investigated; however, only six to eight components were identified [12,13]. The major constituents of C. giganteus oils were p-menthane derivatives such as cis- and trans-p-mentha-2,8-dien-1-ols, cis- and trans-p-mentha-1(7),8-dien-2-ols cis- and trans-isopiperitenols, limonene and carvone. Conversely, the oils differed from sample to sample by the occurrence of different minor components.

The aim of the present work was to get a better insight on the composition of C. giganteus leaf oil from Ivory Coast, using a combination of column chromatography, GC, GC/MS and 13C-NMR following a methodology developed and computerized in our laboratories [14,15].

2 Experimental

2.1 Essential oil

The leaves of C. giganteus (1.8 kg) were harvested in August 2002, near Bouaké (Ivory Coast) and water distilled, using a Clevenger-type apparatus (3 h). The leaf oil (9.6 ml) was the cumulative oil of three independent hydrodistillations (yield = 0.20% v/w).

2.2 Oil fractionation

One part of C. giganteus leaf oil (2 g) was separated by flash chromatography: silica gel, 63–200 μm, elution using pentane with increasing amount of diethyl ether (from 100/0 to 0/100) as eluent. Nineteen fractions were obtained and analyzed by GC/RI and GC/MS or 13C-NMR.

2.3 Analytical GC

GC analyses were carried out using a PerkinElmer Autosystem GC apparatus equipped with dual FID and fused-silica capillary columns (50 m × 0.22 mm i.d., film thickness 0.25 μm), BP-1 (polydimethylsiloxane) and BP-20 (polyethyleneglycol). Carrier gas: helium at 1 ml/min (split 1/50); injector temperature, 250 °C; oven temperature programmed from 60 to 220 °C at 2 °C/min and then held isothermal (20 min); detector temperature, 250 °C.

2.4 GC/MS analysis

Samples were analyzed with a PerkinElmer TurboMass detector (quadrupole), directly coupled to a PerkinElmer Autosystem XL equipped with fused-silica capillary columns (60 m × 0.22 mm i.d., film thickness 0.25 μm), Rtx-1 (polydimethylsiloxane) and Rtx-Wax (polyethyleneglycol). Ion source temperature: 150 °C; energy ionization: 70 eV; electron ionization mass spectra were acquired over the mass range 35–350-Da scan rate. Split: 1/80. Other GC conditions were the same as described under GC.

2.5 13C-NMR analysis

All NMR spectra were recorded on a Bruker AC 200 Fourier transform spectrometer operating at 50.323 MHz for 13C, equipped with a 10 mm (or 5 mm) probe, in deuterated chloroform (CDCl3), with all shifts referred to internal tetramethylsilane (TMS). 13C-NMR spectra were recorded with the following parameters: pulse width (PW), 5 μs (or 3 μs) (flip angle 45°); acquisition time, 1.3 s for 32 K data table with a spectral width (SW) of 12 500 Hz (250 ppm); CPD mode decoupling; digital resolution 0.763 Hz per pt. In a typical procedure, 200 mg (or 70 mg) of the oil were used in 2 ml (or 0.5 ml) of CDCl3. The number of accumulated scans ranged between 2000 and 10 000 for each sample, depending on the amount of oil available. Exponential line broadening multiplication (LB = 1 Hz) of the free induction decay (FID) was applied before Fourier transformation.

2.6 Component identification

Identification of the components in each oil and fractions of chromatography was based: (a) on their GC retention indices (RI) on polar and apolar columns, determined relative to the retention times of a series of n-alkanes with linear interpolation with those of authentic compounds or literature data [16]; (b) on computer matching with laboratory-made and commercial mass spectral libraries [17,18] and comparison of spectra with those of our own library or literature data [19,20]; (c) and by carbon-13 NMR following the methodology developed and computerized in our laboratories [14,15]. The chemical shift of each carbon in the mixture spectrum is compared with those of the spectra of pure compounds listed in a laboratory made computerized data bank. Each compound is identified taking into account (i) the number of identified carbons, (ii) the number of overlapped signals, (iii) the difference of chemical shift of each resonance in the mixture spectrum and in the reference. The structure of 3,9-oxy-p-mentha-1,8(10)-diene (2,3,3a,4,5,7a-hexahydro-6-methyl-3-methylenebenzofurane) (Fig. 1), not present in our MS and 13C-NMR data libraries was determined by extensive NMR studies. Spectral data (1H, 13C, DEPT, 1H-1H-COSY, HSQC) were measured on a fraction of chromatography (80.0% purity on GC). 1H-NMR (400 MHz, CDCl3, δ = ppm, J = Hertz): 5.51 (1H, br s, H-2), 4.95 (1H, q, 2.4 Hz, H-10), 4.91 (1H, q, 2.0 Hz, H-10), 4.37 (1H, dq, 13.3, 1.9 Hz, H-9), 4.24 (1H, dq, 13.3, 2.1 Hz, H-9), 4.28 (1H, br s, H-3), 2.60 (1H, br s, H-4), 1.90 (2H, m, H-6), 1.71 (3H, s, H-7), 1.63 (2H, m, H-5). 13C-NMR, δ = ppm: 152.30 (C-8), 140.78 (C-1), 119.90 (C-2), 103.46 (C-10), 76.17 (C-3), 70.02 (C-9), 41.15 (C-4), 28.18 (C-6), 24.76 (C-5), 23.84 (C-7).

Fig. 1

Structure of 3,9-oxy-p-mentha-1,8(10)-diene ((2,3,3a,4,5,7a-hexahydro-6-methyl-3-methylenebenzofurane).

3 Results and discussion

Fractionation on SiO2 of the C. giganteus leaf oil from Ivory Coast led to 19 fractions that were analyzed by GC/RI. Some fractions, selected on the basis of their chromatographic profile were also analyzed by MS and/or 13C-NMR, depending of the available amount of product. The quantitative and qualitative data on the composition of the essential oil, as well as the mode of identification of the individual components, are reported in Table 1. Forty-six constituents, who represented 91.0% of the oil, were identified. The major constituents of the essential oil were: trans-p-mentha-2,8-dien-1-ol (18.4%), cis-p-mentha-1(7),8-dien-2-ol (16.0%), trans-p-mentha-1(7),8-dien-2-ol (15.7%), limonene (12.5%), cis-p-mentha-2,8-dien-2-ol (8.7%), while trans- and cis-isopiperitenols (3.1% and 2.2% respectively), carvone (2.7%) and trans-carveol (2.2%) were present at appreciable contents.

Table 1

Composition of the essential oil of C. giganteus from Ivory Coast

CompoundsRIaRIp%Identification
Myrcene97811570.1RI, MS, 13C-NMR
p-Cymene101012670.3RI, MS, 13C-NMR
Limonene*1020120012.5RI, MS, 13C-NMR
1,8-Cineole*102012090.1RI, 13C-NMR
γ-Terpinene104512420.1RI, MS, 13C-NMR
p-Cymenene106914300.2RI, MS, 13C-NMR
Terpinolene107612780.1RI, MS, 13C-NMR
Nonanal107813870.1RI, MS, 13C-NMR
Trans-p-mentha-2,8-dien-1-ol1102161918.4RI, MS, 13C-NMR
Cis-p-mentha-2,8-dien-1-ol111416608.7RI, MS, 13C-NMR
Cis-limonene 1,2-oxide111814490.5RI, MS, 13C-NMR
Trans-limonene-1,2-oxide112114700.2RI, 13C-NMR
Citronellal112714720.2RI, MS, 13C-NMR
Trans-p-mentha-1(7),8-dien-2-ol *1168179015.7RI, MS, 13C-NMR
3,9-Oxy-mentha-1,8(10)-diene*116815512.21H-NMR, 13C-NMR
Trans-dihydrocarvone *117116000.2RI, 13C-NMR
Cis-dihydroperillaldehyde *117115960.6RI, 13C-NMR
Trans-dihydroperillaldehyde117416061.3RI, 13C-NMR
Trans-isopiperitenol117817443.1RI, MS, 13C-NMR
Decanal11831489trRI, MS, 13C-NMR
Trans-carveol *119518292.2RI, MS, 13C-NMR
Cis-isopiperitenol *119517392.2RI, MS, 13C-NMR
Cis-p-mentha-1(7),8-dien-2-ol1204188516.0RI, MS, 13C-NMR
Cis-carveol120718600.5RI, 13C-NMR
Carvone121317252.7RI, 13C-NMR
3-Methylbutyl hexanaote *122914500.1RI, MS, 13C-NMR
Geraniol*122918400.4RI, 13C-NMR
Geranial123817270.1RI, 13C-NMR
Perillaldehyde124217790.4RI, 13C-NMR
Safrole126018720.1RI, MS, 13C-NMR
Thymol126221780.9RI, 13C-NMR
Ascaridole127318600.2RI, 13C-NMR
β-Elemene13841580trRI, MS
Tetradecane14001400trRI, MS
(E)-β-Caryophyllene141515870.1RI, MS
3-Methylbutyl octanoate142316480.1RI, MS, 13C-NMR
Precocene I142820750.2RI, MS, 13C-NMR
β-Selinene14751706trRI, MS
δ-Cadinene15111746trRI, MS
Caryophyllene oxide156819800.1RI, MS, 13C-NMR
Hexadecane16001600trRI, MS
2-Phenylethyl hexanoate160621660.1RI, MS
Benzyl benzoate17192379trRI, MS
Octadecane18001800trRI, MS
2-Phenylethyl octanoate18142232trRI, MS
Eicosane20002000trRI, MS
Total91.0

Although some quantitative differences could be observed, the major components of the investigated sample are qualitatively and quantitatively similar to those already reported in Ivory Coast [12,13] and other countries [8–11]. However, the detailed analysis carried out after fractionation of the bulk sample, gives a better insight on the composition of the C. giganteus leaf oil from Ivory Coast and allows the comparison with oils from other countries. Indeed, 25 compounds were reported for the first time in C. giganteus leaf oil, including oxygenated acyclic monoterpenes (citronellal, geraniol, geranial), oxygenated menthane derivatives (cis- and trans-dihydroperylaldehydes, thymol), phenylpropanoids (safrole), phenylethyl derivatives (hexanoate, octanoate) and oxides (ascaridole, precocene, caryophyllene oxyde) as well as sesquiterpene hydrocarbons (β-elemene (E)-β-caryophyllene, β-selinene, δ-cadinene) and linear aldehydes (nonanal, decanal) and alkanes.

4 Conclusion

The present study confirmed that the composition of the leaf oil of C. giganteus growing wild in Ivory Coast, is dominated by unsaturated alcohols bearing the menthane skeleton (p-menthadienol isomers) as the oils from other countries of West Africa. These compounds have been reported as components of the essential oils of other species of Cymbopogon: Cymbopogon densiflorus from Angola, Congo and Zambia [12,21], and Cymbopogon martinii var sofia from India [22]. However the detailed analysis of a sample from Ivory Coast, by combination of chromatographic (CC, GC) and spectroscopic (MS, 13C-NMR) techniques, allowed the identification of 25 components found for the first time in C. giganteus leaf oil (whatever the origin) including oxygenated monoterpenes, sesquiterpene hydrocarbons, aromatic esters, alkanes and linear aldehydes.

Acknowledgements

The authors thank Professor Laurent Aké Assi for his valuable help in the identification of the plant and they are indebted to Professor Antoine Koffi Ahibo and the ‘Ministère de l'Enseignement supérieur de Côte-d'Ivoire’ for providing a research grant (J.B.B.).


References

[1] D.J. Mabberley The Plant Book, Cambridge University Press, Cambridge, UK, 1990

[2] R. Letouzey Manuel de botanique forestière d’Afrique tropicale, Centre technique recherche forestière tropicale, Volume 2B (1972), p. 423

[3] E.J. Adjanohoun; L. Aké Assi; J.J. Floret; S. Guinko; M. Koumaré; A.M.R. Ahyi; J. Raynal Médecine traditionnelle et pharmacopée. Contribution aux études ethnobotaniques et floristiques au Mali, Agence de coopération culturelle et technique, Paris, 1979 (2e Ed.)

[4] E.J. Adjanohoun; L. Aké Assi Contribution au recensement des plantes médicinales de Côte d’Ivoire, Centre national floristique, Abidjan, 1979

[5] E.J. Adjanohoun; L. Aké Assi Contribution aux études ethnobotaniques et floristiques au Mali, Agence de coopération culturelle et technique, Paris, 1985 (5e Ed.)

[6] J.B. Cordoso do Vale; A. Proença da Cunha Garcia de Orta, 14 (1966), p. 61

[7] A. Kéita, Recherches phytochimiques et pharmacologiques sur une préparation utilisant Vepris heterophylla R. Let. (Rutaceae) et Cymbopogon giganteus Chiov. (Poaceae) comme antihypertenseur en médecine traditionnelle au Mali. PhD thesis, University of Toulouse, France, 1986.

[8] M.A. Ayedoun; M. Moudachirou; G. Lamaty Bioressources, Énergie, Développement, Environnement., 8 (1997), p. 4

[9] C. Menut; J.-M. Bessière; D. Samate; A.K. Djibo; G. Buchbauer; B. Schopper J. Essent. Oil Res. (2000) no. 12, p. 207

[10] L. Popielas; C. Moulis; A. Kéita; I. Fourasté; J.-M. Bessière Planta Med., 57 (1991), p. 586

[11] L. Sidibé; J.-C. Chalchat; R.-P. Garry; L. Lacombe J. Essent. Oil Res., 13 (2001), p. 110

[12] J.M. Ouamba, Valorisation chimique des plantes aromatiques du Congo, PhD thesis, University of Montpellier, France, 1991.

[13] C. Kanko; B.E.H. Sawaliho; S. Kone; G. Koukoua; Y.T. N’Guessan C. R. Chimie, 7 (2004), p. 1039

[14] F. Tomi; P. Bradesi; A. Bighelli; J. Casanova J. Magn. Reson. Anal., 1 (1995), p. 25

[15] F. Tomi; J. Casanova Ann. Fals & Expertise Chim., 93 (2000) no. 952, p. 313

[16] D. Joulain; W.A. König The Atlas of Spectral Data of Sesquiterpene Hydrocarbons, E. B.-Verlag, Hamburg, Germany, 1998

[17] National Institute of Standards and Technology PC Version 1.7 of The NIST/EPA/NIH Mass Spectral Library, PerkinElmer Corporation, 1999

[18] F.W. McLafferty, D.B. Stauffer, Wiley Registry of Mass Spectral Data, 6th ed., Mass Spectrometry Library Search System Bench-Top/PBM, version 3.10d. Palisade, Newfield, 1994.

[19] F.W. McLafferty; D.B. Stauffer The Wiley/NBS Registry of Mass Spectral Data, Wiley-Interscience, New York, 1988 (4th ed.)

[20] R.P. Adams Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy, Allured Publishing Corporation, Carol Stream, IL, USA, 1995

[21] E.H. Chisowa J. Essent. Oil Res., 9 (1997), p. 469

[22] C.S. Mathela; H. Lohani; C. Pande; D.K. Mathela Biochem. Syst. Ecol., 16 (1988), p. 167


Comments - Policy