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Abstract – Calculations were performed of the crystal growth rates in lithium disilicate glass in the low-temperature regime
where homogeneous nucleation is observed. The computations were executed using the gain-loss (Becker–Doring) equations that
form the framework of Classical Nucleation Theory (CNT). The growth rates were obtained in several different ways, using
various choices for the kinetic model, the generalized diffusion coefficient, and the physical input data. The results of these
calculations are compared with recently obtained experimental values of the growth rates.To cite this article: M.C. Weinberg et
al., C. R. Chimie 5 (2002) 765–771 © 2002 Académie des sciences / Éditions scientifiques et médicales Elsevier SAS
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Résumé – Des calculs de vitesse de croissance cristalline ont été réalisés pour un verre de disilicate de lithium, en régime de
basse température, où une nucléation homogène est observée. Les calculs sur ordinateur ont été exécutés en utilisant les
équations de perte de gain (Becker–Doring), qui forment le canevas de la théorie classique de la nucléation (TCN). Les vitesses
de croissance ont été obtenues de différentes manières, selon divers choix de modèle cinétique, de coefficient de diffusion
généralisée et de données physiques introduites. Les résultats de ces calculs sont comparés avec des valeurs de vitesse de
croissance récemment obtenues.Pour citer cet article : M.C. Weinberg et al., C. R. Chimie 5 (2002) 765–771 © 2002
Académie des sciences / Éditions scientifiques et médicales Elsevier SAS
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1. Introduction

There have been many attempts to evaluate the
validity of Classical Nucleation Theory (CNT) by
comparing computed nucleation rates with measured
values [1–5]. In making such comparisons several
important issues arise. First, one must decide upon the
meaning of CNT. Different investigators define CNT
in different manners. Second, despite one’s definition
of CNT the description of nucleation experiments with
a classical-type theory usual involves the simultaneous
testing of several assumptions or hypotheses. In par-
ticular, the starting point of analysis is the Becker-
–Doring (BD) equations[6, 7]. However, it is difficult
to test solely the applicability of these equations for
the description of nucleation experiments since they

contain certain unknown functions and parameters that
must be evaluated with the aid of some sort of model.
For example, in order to compute the thermodynamic
barrier to nucleation one must compute the work to
form a critical nucleus. To execute this task one may
invoke the capillarity approximation, where one
assumes that thermodynamic arguments can be used
to compute the surface and bulk energy contributions
to the free energy of critical particle formation. Some
individuals take this assumption as the definition of
CNT. In addition, the kinetic prefactor that appears in
the BD equations must be specified. This entails the
selection of a particular model. Finally, one must
determine how to treatσ, the liquid-crystal surface
tension. Does one treat this parameter as a constant or
allow it to be temperature dependent? It is apparent,
then, that when one compares nucleation data with
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CNT calculations, usually one is testing many
assumptions simultaneously.

The BD equations should describe crystal growth as
well as nucleation. Any comparison between the mea-
sured crystal growth rates obtained from nm-sized
particles and computed rates would encounter the
same difficulties as those mentioned above for nucle-
ation. However, crystal growth experiments are most
conveniently performed when particles are on the size
scale of microns. Under these circumstances certain
simplifications ensue. For example, as a result of the
large particle size, the capillarity approximation
should be valid. Thus, regardless of the model
employed, classical or non-classical, the thermody-
namic barrier should be given by ∆Gbulk, where the
latter quantity is the bulk free energy difference
between crystal and liquid. Also, for some models of
growth, knowledge of the liquid-crystal surface ten-
sion is not required. This constitutes a further simpli-
fication. Hence, by examining crystal growth, unlike
the case in nucleation, one can test certain portions of
CNT independently of others.

Most crystal growth measurements, though, are
made at high temperatures that are removed from the
temperature region where homogeneous nucleation
occurs. However, it is desirable to have growth kinet-
ics in the temperature regime where nucleation occurs
so that one can shed light on the viability of the
governing equations. Hence, one of the aims of this
work will be to utilize newly gained crystal growth
data, obtained in the nucleation region of a simple,
pseudo-one-component, inorganic material, to compare
with several versions of classical theory. Another goal
of this work is to test the sensitivity of the computed
crystal growth rates to the physical parameters
selected. Finally, we will examine the influence of the
kinetic model and the manner by which one computes
the kinetic barrier on the resulting growth rate.

2. Growth models

2.1. Gain-Loss equations

If one lets n designate the number of units (e.g.,
atoms, molecules) in a cluster, then the rate of cluster
growth can be written as [8]:

dn/dt = kn
+ − kn

− (1)

where kn
+ is the reaction rate for formation of a par-

ticle of size n and kn
− is the rate of elimination of a

particle of size n. If one assumes that the clusters are
spherical, with radius R, and the volume/atom is v,
then equation (1) can be transformed to the following:

dR/dt = (m/36 p)1/3 kn
+ n−2/3(1 − kn

− /kn
+) (2)

For large n, we have that kn
− ≈ kn+1. So, using the

condition of detailed balance:

Nn kn
+ = kn+1

− Nn+1 (3)

where Nn is the equilibrium number of clusters of size
n, one finds:

dR/dt =

(m/36 p)1/3 Dn
+(1 − exp�− �U(n) − U(n + 1) � /kT �) (4)

In equation (4), U(n) is the free energy of a cluster
of size n and Dn

+ is kn
+ n−2/3. The growth equation

embodied by equation (4) is quite general, and relies
only on the basic notions of the Becker–Doring gain-
loss theory. No use of CNT has been made nor has
the kinetic model for the rate coefficient been speci-
fied.

2.2. Large particle limit

If one invokes CNT, then the capillarity approxima-
tion can be used to find the free energy of a cluster.
If this free energy expression is used in equation (4),
then one finds:

dR/dt =

(m/36 p)1/3 Dn
+(1 − exp � (DG/kT) (R*/R − 1) � ) (5)

In equation (5), R* is the critical radius and ∆G is
the bulk free energy difference between the liquid and
the crystal. When the growing particle is large, i.e.
R >> R*, then the crystal growth rate reduces to:

dR/dt = (m/36 p)1/3 Dn
+
�1 − exp(− DG/kT) � (6)

Although Classical Nucleation Theory was used to
obtain equation (6), it is clear that this expression
must be valid whenever the particle dimension, R, is
much larger than the critical size. At large sizes, it is
legitimate to treat the particle as a small, but macro-
scopic, particle and compute the free energy differ-
ence between liquid and crystal in terms of the mac-
roscopic bulk and surface contributions. Even if at
small particle sizes equation (5) is invalid due to non-
classical effects, at large sizes the non-classical free
energy difference must approach the classical one and
equation (6) will be valid. Since crystal growth data is
nearly always obtained from the growth of crystals
whose sizes are far in excess of R*, equation (6) will
be quite appropriate for the analysis of such experi-
ments.

2.3. Kinetic models

Here, we shall consider two kinetic models: the
Fisher–Turnbull (FT) and ballistic models [9, 10]. If
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we denote Dn at the critical size as Dn
*, and if we

suppress the plus on Dn
+, then one may write equation

(6) formally as follows:

dR/dt = (m/36 p)1/3 Dn
*�Dn /Dn

* � �1 − exp(−DG/kT) �
(7)

In the FT model, Dn ∼ exp{–[U(n+1) – U(n)]/2k T},
so, in the large R limit it is easy to show that one
obtains the following expression for the growth rate:

(dR/dt)FT = 2 (m/36 p)1/3 Dn
* sinh (DG/2 k T) (8)

In the ballistic model, kn
+ ∼ n2/3, so Dn = constant.

Thus, the growth rate becomes:

(dR/dt)B = (m/36 p)1/3 Dn
*(1 − exp(− DG/kT)) (9)

There are several ways of computing the general-
ized diffusion coefficient, Dn

*. Kelton [5, 11] has
expressed Dn

* in terms of the ordinary diffusion coeffi-
cient, D, as Dn

* = 24 D/k2. Furthermore, if the
Stokes–Einstein relation is invoked, then the general-
ized diffusion coefficient is given by:

Dn
* = A T/g (10)

In equation (10), A is a constant and η is the shear
viscosity. An alternative method to compute Dn

* has
been discussed by Shneidman [12]. If one makes the
parabolic approximation to the barrier shape, then one
finds:

Dn
* = D2 /2 s (11a)

with

D−2 = (− 1/2 kT) (d2 U(n)/dn2)n=n* (11b)

where τ is the nucleation transient time. The latter
quantity can be found by fitting experimental nucle-
ation data to theoretical expressions for the transient
nucleation rate [13, 14].

∆2 will depend upon the manner by which one
computes the free energy of an n-sized cluster. If one
uses CNT, then one can show that:

D2 = 6 k T n*/DG (12)

If one uses diffuse interface theory [4], then ∆–2 is
given by:

D−2 = (DG/3 k T n*) �1 − 1/ �1 + (T Ds/Dh)1/2
� �

(13)

In equation (13), n* is the critical number found
using diffuse interface theory (DIT) and ∆s, ∆h are
entropy and enthalpy parameters [15]. Also, one
observes that the number of particles in a critical
nucleus differ for the CNT and DIT models. One can
find (n*)DIT by using:

(n*)Class /(n*)DIT = (RClass
* )3/(RDIT

* )3 (14)

and the expression for RDIT
* shown below:

RDIT
* = −(r/DG) � (Dh/Dhf) (1 + �T Ds/Dh �

1/2) � (15)

In equation (15), σ is the liquid-crystal surface ten-
sion and ∆hf is the enthalpy of fusion. Also, one
should note that if one employs ∆G J, then
∆h/∆hf = 1.

3. Results

The physical parameters used in the calculations are
shown in Table 1. Two different functions were
employed to calculate the temperature variation of
∆G. One of these functions is a simple linear varia-
tion used by James [16], and henceforth will be
denoted by J. The other function is a polynomial of
order three that has been derived from experimental
data from JANAF tables. It has been used previously
by Kelton and Weinberg [17], and will be designated
by KW. Also, two expressions were employed for the
description of the temperature dependence of the shear
viscosity, η. In both cases, a Fulcher equation was
chosen, but the Fulcher parameters differed. One of
the viscosity equations was used by Matusita and
Tashiro [18] in their study of lithium disilicate (LS2)
crystal nucleation (denoted MT), and the other equa-
tion was given by Zanotto [19] (denoted EDZ). There
have been several other reported sets of viscosity data
for this system. However, the two mentioned above
were selected, since they represent limiting values in
that the data of most other investigators, which fall
somewhere between those represented by the MT and
EDZ Fulcher Equations. The experimental growth data
[20, 21] for LS2 in the lower temperature region
where homogeneous nucleation has been observed
was taken from the recent work of Burgner [20],
while the higher temperature data was obtained from
the work of Barker et al. [21].

In Fig. 1, the temperature variations of both free
energy functions and viscosities are shown. The MT
and EDZ Fulcher plots are virtually identical at high
temperatures (not shown), but there is significant
deviation in the low temperature region, as observed
in Fig. 1.

Fig. 2 shows the influence of the free energy and
viscosity parameters upon the calculated growth rate,
U. These calculations were performed using equations
(8) and (10) and the two different free energy and
viscosity equations. One observes that both free
energy expressions give essentially identical results.
However, use of the MT and EDZ viscosity functions
lead to significantly different magnitudes of U and
different temperature variations.

The results of the latter calculations, using the KW
free energy, are compared with experimental growth
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rate data in Fig 3. One observes that the calculated
values of U using the MT viscosity are a couple of
orders of magnitude larger than the experimental ones.
However, the temperature dependence of U is given
nearly precisely, as illustrated by the dashed curve
which is a normalized version of the calculated U(T).
On the other hand, computations of U(T) with the
EDZ viscosity leads to reasonably good agreement
between calculated and measured growth values in the
low temperature regime where homogeneous nucle-
ation occurs, but leads to an increasing divergence
between experimental and computed values with
increasing temperature.

In Fig. 4, the results for U(T) computed using the
FT model and equations (11a,b) are shown. The open
squares show the results employing the CNT model,
while the open circles represent the findings using the
Diffuse Interface Theory (DIT) of Granasy. It is
observed that DIT and CNT give virtually identical
results, and both theories give good agreement with
experiment in the low temperature region, but predict
growth rates that are increasingly too large as the
temperature increases.

The predicted crystal growth rates using the ballis-
tic model are shown in Figs 5 and 6. In Fig 5, the
temperature-dependent growth rate was calculated
using equation (9), in conjunction with equations
(11a) and (12). One observes that the ballistic model
gives an incorrect temperature dependence of the crys-
tal growth rate over the entire temperature region. In
addition, crystal growth rates were computed using
the ballistic model (equation (9)) in concert with
equation (10). The results, using the viscosity fits of
MT and EDZ, are shown in Fig. 6. If one employs the
EDZ viscosity, then once again one notes that the
ballistic model yields an erroneous temperature depen-
dence of the growth rate. However, use of the MT
viscosity expression produces a better fit of the tem-
perature dependence of the growth rate.

Table 1. Parameters used in Growth Rate Models.

Property Symbol Formula/Value* Ref.

Viscosity (Pa s) η MT log η = –2.44 + [3370/(T – 460)] [18]
η EDZ log η = –2.55 + [3385.5/(T – 491.2)] [19]

Free Energy (J mol–1) ∆G J 53 370 – 39.37 T [16]
∆G KW 48 045 – 36.81 T + 5.607 × 10–3 T2 – 4.3179 × 10–6 T3 [17]

Molar Volume (m3 mol–1) VM 6.15 × 10–5 [20]

Surface Tension (J m–2) σ 0.029 11 + 0.1617 × 10–3 T [16]
Transient time (s) τ log τ = –28.420 + 23.291 (1000/T) [13]
Entropy (J mol–1 K–1) ∆s –39.37 (J) [16]
Enthalpy (J mol–1) ∆h 53 370 (J) [16]
A (Kelton) (J m–3 K–1) A 1.44 × 106 (from 8 k/π z3, where z = 0.29 × 10–9 m) [11]

* All temperatures in Kelvin.

Fig. 1. Temperature variations of viscosity and free energy relation-
ships for the different functions shown in Table 1.

Fig. 2. Calculated growth rate versus temperature for the Fisher–
Turnbull model (equation (8)) with the Kelton expression for Dn

*

(equation (10)) using the different equations for viscosity and free
energy listed in Table 1.
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4. Discussion

It has been mentioned previously that the Becker-
Doring Equations that form the basis for nucleation
theory should also apply to crystal growth in the tem-
perature regime where nucleation occurs. This feature
stems from the fact that nucleation and growth are not

separable and independent processes. Hence compari-
sons between calculations and experimental data of
crystal growth can shed some light on the validity of
similar calculations for nucleation events.

It is almost certainly true that some form of the
gain-loss equations provides an adequate description
of nucleation and growth processes. However, uncer-
tainties enter due to the selections made for certain
quantities that appear in these equations and to the
various approximations that are made.

Fig. 3. Comparison of calculated and experimental growth rates
versus temperature. The calculated growth rate is for the Fisher–
Turnbull model (equation (8)) with the Kelton expression for Dn

*

(equation (10)), using the two different viscosity functions and the
KW free energy. The dashed line shows the upper calculated
growth rate (∆G KW, η MT) divided by a constant.

Fig. 4. Comparison of calculated and experimental growth rates
versus temperature. The calculated growth rate is for the Fisher–
Turnbull model (equation (8)) with the Shneidman expression for
Dn

* (equation (11a)), using the classical and DIT methods for calcu-
lating R* and the KW free energy.

Fig. 5. Comparison of calculated and experimental growth rates
versus temperature. The calculated growth rate is for the Ballistic
model (equation (9)) with the Shneidman expression for Dn

* (equa-
tion (11a)), using the classical method for calculating R* and the
KW free energy.

Fig. 6. Comparison of calculated and experimental growth rates
versus temperature. The calculated growth rate is for the Ballistic
model with the Kelton expression for Dn

* (equation (10)), using the
two different viscosity functions and the KW free energy.
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Certainly, the capillarity approximation (using a
thermodynamic description of a cluster) is suspect, in
many situations, when applied to clusters of the size
of the critical radius. However, in the case of crystal
growth, one can invoke this assumption with assur-
ance if one limits one’s attention to large clusters.
Since traditional crystal growth experiments probe
clusters in the micron size range, the capillarity
approximation is justified.

However, there are several more choices that one
must make in utilizing the gain-loss equations. First,
one must choose a kinetic model. Here we have con-
sidered two such models; the FT and ballistic models.
Also, one must select a way of computing the gener-
alized diffusion coefficient. Here, we have utilized
methods discussed by both Shneidman and Kelton.
Furthermore, in the former approach, we have exam-
ined both classical and diffuse interface theories.
Finally, we desire to ascertain the sensitivity of our
conclusions to our selection of physical input param-
eters.

First, let us focus on the question of the kinetic
model. It appears that the FT model is in better agree-
ment with the experimental data than the ballistic
model. Although there is a bit of uncertainty in this
finding due to choice of input data (to be discussed),
the temperature dependence of the growth rate is not
in accordance with the ballistic model. Similar conclu-
sions have been drawn from comparisons of nucle-
ation calculations and experiments.

The generalized diffusion coefficient was computed
using the Stokes–Einstein assumption and also by
making use of the scheme outlined in [12] (i.e. equa-
tions (11a,b)). For the latter method, calculations were
performed using both CNT and DIT. From an inspec-
tion of Fig. 4, one sees that the CNT and DIT compu-
tations give virtually identical results. Hence, one sus-
pects that the diffuseness of the interface is not an
important effect in this case. This appears to be a
reasonable conclusion since the clusters are very
large. The results are in good agreement with the
experimental data in the lower temperature regime,
but they deviate from the experimental results as the
temperature increases. It is difficult to draw a firm
conclusion regarding the extent of agreement between
theory and experiment displayed in Fig. 4 for the fol-
lowing reason. Homogeneous nucleation is observed
in LS2 glass up to a temperature of approximately
800 K. One observes that, in the temperature range
from about 730 to 800 K (normal nucleation regime),
the agreement between theory and experiment is
excellent. Hence, the question arises as to whether
one would expect these calculations to be valid at
higher temperatures. Burgner [20] has observed that,
in the nucleation regime, the growing crystals are

needle-shaped, but at a temperature of 863 K (or pos-
sibly lower), the growing particles are spherulitic.
This change in morphology could signal a more com-
plex growth mechanism that cannot be described by
the simple models given here. Hence, in the tempera-
ture region where the equations appear to be most
applicable, the combined use of equations (8) and
(11a,b) give very good agreement with experimental
growth data.

The computation of the growth rate via use of the
Stokes–Einstein equation will depend upon the choice
of viscosity, as seen in Fig. 3. However, neither the
MT nor the EDZ viscosity appears to produce a result
in agreement with experiment. The MT calculation
yields growth rates that are too large, and the EDZ
viscosity gives an incorrect temperature dependence of
the growth rate. However, if one scales the calculation
using the MT viscosity by a constant, then one
obtains the dashed line shown in Fig. 4. Hence, the
latter calculation reproduces the magnitude and tem-
perature dependence of the experimental growth rate
over the entire temperature range. However, in light
of the discussion in the above paragraph, this agree-
ment might only be coincidental.

We have tested the sensitivity of the calculated
growth rate to two input parameters, the free energy
difference function and the viscosity. We have
observed that the computed crystal growth rates are
rather independent of the former factor, but very sen-
sitive to the latter. Of course, if one avoids use of the
Stokes-Einstein approximation, then this dependency
is no longer a problem.

Crystal growth is probably a more complex prob-
lem than envisioned in any of the existing descrip-
tions of growth. More sophisticated and complex
methods have been formulated [22–25] to describe
crystal growth, but such methods cannot be applied to
real systems without simplifying assumptions and/or
the specification of one or more unknown parameters.
Also, the agreement between theory and experiment
for such methods has not been as good as that shown
by the simplest gain-loss equations. Clearly, none of
the existing methods seem to capture some of the
essential features of growth. For example, it is known
that crystal growth in LS2 is anisotropic, and hence
one must specify two growth rates. Yet, there are no
geometrical features in the Becker–Doring equations.
Also, it is possible that the geometric features of
growing nano-clusters differ from those of the macro-
scopic sized clusters observed in the usual growth
experiments. It has been observed that macroscopic
crystals undergo morphological changes during iso-
thermal growth [26], and thus it is possible that nano-
clusters exhibit similar behavior.
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5. Conclusions

From a comparison between calculated and mea-
sured crystal growth rates for LS2, the following con-
clusions may be drawn.
1. The FT model appears to give closer agreement
with experimental results than the ballistic model.
2. The computed growth rates are relatively insensi-
tive to choice of free energy difference function, but
are quite dependent upon the viscosity.

3. Use of CNT or DIT gives virtually identical growth
rates, both of which are in good agreement with
experiment in the temperature region where homoge-
neous nucleation occurs.

4. Due to uncertainties regarding input parameters, it
is not clear which method gives the best generalized
diffusion coefficient.

5. Coincidence of experimental and theoretical results
does not necessarily suggest the physical reality of the
growth rate model.

Acknowledgements. One of us (MCW) expresses his gratitude for the support of Dr S. Slovin.

References

[1] G.F. Neilson, M.C. Weinberg, J. Non-Cryst. Solids 34 (1979) 137.

[2] E.G. Rowlands, P.F. James, Phys. Chem. Glasses 20 (1979) 1.

[3] M.C. Weinberg, E.D. Zanotto, J. Non-Cryst. Solids 108 (1989) 99.

[4] L. Granasy, P.F James, J. Chem. Phys. 111 (1999) 747.

[5] K.F. Kelton, A.L. Greer, Phys. Rev. B 38 (1988) 10089.

[6] R. Becker, W. Doring, Ann. Phys. 24 (1935) 719.

[7] K. Kelton, in: H. Ehrenreich, D. Turnbull (Eds.), Solid State Phys-
ics, Vol. 45, Academic Press, San Diego, CA, USA, 1991.

[8] V.A. Shneidman, M.C. Weinberg, J. Chem. Phys. 97 (1992) 3621.

[9] D. Turnbull, J.C. Fisher, J. Chem. Phys. 17 (1949) 71.

[10] V. Volterra, A.R. Cooper, J. Non-Cryst. Solids 74 (1985) 85.

[11] K.F. Kelton, A.L. Greer, J. Am. Ceram. Soc. 74 (1991) 1015.

[12] V.A. Shneidman, Sov. Phys. Tech. Phys. 32 (1987) 76.

[13] J. Deubener, M.C. Weinberg, J. Non-Cryst. Solids 231 (1998) 143.

[14] V.A. Shneidman, M.C. Weinberg, in: M.C. Weinberg (Ed.),
Ceramic Transactions, Vol. 30, Nucleation and Crystallization in
Liquids and Glasses, Am. Ceram. Soc., Westerville, OH, USA,
1993.

[15] (a) L. Granasy, J. Phys. Chem. 104 (1996) 5188; (b) L. Granasy,
J. Non-Cryst. Solids 162 (1993) 301.

[16] P.F. James, J. Non-Cryst. Solids 73 (1985) 517.
[17] K.F. Kelton, M.C. Weinberg, J. Non-Cryst. Solids 180 (1994) 17.
[18] K. Matusita, M. Tashiro, J. Jpn Ceram. Assoc. 81 (1973) 500.
[19] E.D. Zanotto, P.F. James, J. Non-Cryst. Solids 74 (1985) 373.
[20] L.L. Burgner, M.C. Weinberg, J. Non-Cryst. Solids 279 (2001) 28.
[21] M.F. Barker, T.H. Wang, P.F. James, Phys. Chem. Glasses 29

(1988) 240.
[22] L. Granasy, D.W. Oxtoby, J. Chem. Phys. 112 (2000) 2399.
[23] L. Granasy, D.W. Oxtoby, J. Chem. Phys. 112 (2000) 2410.
[24] D.W. Oxtoby, P. Harrowell, J. Chem. Phys. 96 (1992) 3834.
[25] C.K. Bagdassarian, D.W. Oxtoby, J. Chem. Phys. 100 (1994) 2139.
[26] G.L. Smith, M.C. Weinberg, Phys. Chem. Glasses 35 (1994) 6.

771

Pour citer cet article : M.C. Weinberg et al. / C. R. Chimie 5 (2002) 765–771


	Crystal growth and classical nucleation theory
	Introduction
	Growth models
	Gain-Loss equations
	Large particle limit
	Kinetic models

	Results
	Discussion
	Conclusions
	Acknowledgmements
	References


