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Abstract – We critically review and discuss the main glass-sintering models: Frenkel, Mackenzie–Shuttleworth, Scherer and the
recently developedClusters model, and focus on the problem of sintering with concurrent crystallization. TheClusters model is
tested under various practical conditions. Isothermal tests are carried out on a widely polydispersed alumino-borosilicate (ABS)
glass having jagged particles, which is stable against devitrification, and on a soda–lime–silica (SLS) glass with a narrow
spherical particle distribution, which crystallizes easily. The algorithm for non-isothermal processes is also tested with two
distinct systems: the same ABS glass and a narrow-sized cordierite glass, which is devitrification-prone. In addition to physical
parameters such as viscosity, surface tension, particle-size distribution, crystal growth rate and number of nucleation sites,
microscopic-particle-packing data are introduced into the model and it is demonstrated that the evolution of both density and
pore size distribution can be reasonably predicted. All the results are discussed taking into account the assumptions made in the
derivations and other complicating factors, such as irregular particle shape, compositional shifts due to crystallization, tempera-
ture gradients and degassing during sintering. Finally, we discuss the physical and processing parameters that determine whether
sintering will be favorable over crystallization. We demonstrate that theClusters model and related algorithm provide a powerful
simulation tool to design the isothermal or non-isothermal densification of devitrifying or stable glass compacts with any
particle-size distribution, thus minimizing the number of time-consuming laboratory experiments.To cite this article: M.O.
Prado, E.D. Zanotto, C. R. Chimie 5 (2002) 773–786 © 2002 Académie des sciences / Éditions scientifiques et médicales
Elsevier SAS
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Résumé– Cet article rapporte les principales théories relatives au frittage du verre en relation avec la cristallisation. Différents
modèles sont testés en regard de plusieurs paramètres physiques, comme la viscosité, la tension superficielle, la taille et
l’empilement des particules, la croissance et le nombre de nucléi. On montre que l’évolution de la densité et de la porosité est
prévisible. Pour citer cet article : M.O. Prado, E.D. Zanotto, C. R. Chimie 5 (2002) 773–786 © 2002 Académie des
sciences / Éditions scientifiques et médicales Elsevier SAS
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1. Introduction

The process of sintering loosely packed particles is
a very rich field of research, covering a wide range of
materials with different atomic structures and dissimi-
lar sintering behaviors. In some cases, sintering may
be considered only a physical process when matter
transport, such as atomic diffusion in crystalline sys-
tems or viscous flow in vitreous bodies, decreases the

body’s surface area. Alternatively, sintering may fol-
low a physicochemical course as, for instance, in
some sol–gel systems in which a condensation reac-
tion develops during sintering, with the concomitant
problem of expelling the gases thus generated. In sys-
tems that sinter at high temperatures, a low melting
second phase can be introduced or generated deliber-
ately by chemical reaction to wet all the particles,
aiding densification through capillarity. In addition,
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metallic crystalline nanoparticles, for instance, display
newly discovered sintering mechanisms, such as par-
ticle rotation and plastic deformation, which do not
occur in micron-sized particles.

The physical processes that control the densification
kinetics of porous glass bodies by reducing their sur-
face area are well known. In a variety of vitreous
systems, the particle’s surface energy is the driving
force, while viscous flow is the kinetic path through
which the surface area is minimized. In some cases,
however, a competing process, concomitant crystalli-
zation, typically surface crystallization, of the glass
particles occurs. The crystallized surface of the par-
ticles does not flow, slowing down the sintering kinet-
ics. The interplay between the kinetics of crystalliza-
tion and sintering can result in a variety of
microstructures with different porosities and crystal-
lized fractions. Crystallization is a desirable effect
only if one’s purpose is to produce sintered glass
ceramics, in which case controlled crystallization is
necessary; otherwise, it is a source of problems.

Different models have been developed to account
for the kinetics of sintering. Frenkel’s model of vis-
cous sintering [1], which describes the early stages of
sintering of spherical, monodispersed particles, allows
one to calculate the shrinkage rate of two equal par-
ticles whose centers approximate each other. The
energy released by the decrease of surface area is
used for viscous flow, which is responsible for the
mass transport that produces densification. Frenkel’s
model is valid roughly within the first 10% of linear
shrinkage. For compacts beginning with a relative
density of 0.6, 10% of linear shrinkage varies up to a
density of 0.8.

Mackenzie and Shuttleworth [2] developed a model
to explain the final sintering steps of a matrix with
spherical monodispersed pores. This model applies to
relative densities of more than 0.9.

There was also a gap between the densities of 0.8
and 0.9 to which no model applied. This gap was
much larger when the initial density of the compact
was about 0.15, as in gel-derived materials. This prob-
lem was solved by Scherer [3], who considered a
geometric array of sintering particles that mimicked
the structure of dry gels. Scherer’s calculations were
similar to those of Frenkel: the energy dissipated in
viscous flow was established as being equal to the
energy change resulting from the reduction in surface
area. He succeeded in describing the sintering of bod-
ies from a very low relative density, 0.15, up to 0.94.
Scherer’s model also applies for the densification of
bodies having higher initial densities (even with par-
ticle arrangements that are unlike those of dry-gels),
demonstrating that modeling results are virtually
insensitive to geometric features. For instance, the

results of Scherer’ s and Frenkel’ s models almost coin-
cide for the first 10% of linear shrinkage.

The Scherer model was successfully applied to the
sintering of pure SiO2 preforms produced by flame
hydrolysis of SiCl4 with a pore size distribution. In
this case, the pore-size distribution data was required
for the calculations [4, 5].

The Clusters model [6], which allows both Frenkel
and M–S regions to occur simultaneously, was later
developed to work with compacts having any particle-
size distribution. This model is based on three sinter-
ing stages: a pure ‘Frenkel’ (F) first step, a mixed
‘Frenkel/Mackenzie-Shuttleworth’ stage, and a third,
pure ‘Mackenzie-Shuttleworth’ (M–S) step. The model
considers the sample’s shrinkage as the sum of the
partial shrinkage of several clusters, each consisting of
equally sized particles and each showing an indepen-
dent F or M–S behavior. The overall set of clusters
mimics the specimen’s real particle-size distribution.
The model also introduced the ‘neck forming ability-
�r’ , which allows for the formation of necks among
different sized particles, thus relaxing the clustering
condition.

The data necessary to calculate the sintering kinet-
ics of non-devitrifying glasses are: viscosity vs tem-
perature curve, glass–vapor surface energy, particle-
size distribution and thermal history. If the particles
are not spherical, an (empirical) shape factor is also
needed. The Clusters model also allows one to intro-
duce the number of necks that each particle forms
with its neighbors. If there is concurrent crystalliza-
tion or pre-existing refractory particles (or crystals) on
the glass particle surfaces, not all particle–particle
contacts are available for viscous flow [7–9]. With
such input data, the model offers the advantage of
providing pore size distribution as an output.

It is common practice in modeling glass sintering to
fit measured to theoretical density using viscosity as a
free parameter, and to compare the viscosity thus
obtained with measured data. When this procedure is
used, it must be kept in mind that the fitted viscosity
may include opposite effects on the sintering kinetics,
such as a slowing down of the sintering kinetics by
crystallization or an increase in the kinetics by shape
factors greater than 1 for some jagged powders. To
avoid such problems, in this article we use the experi-
mental viscosity curve as an input parameter.

If crystallization occurs during sintering, viscous
flow is hindered. When all particle surfaces crystal-
lize, sintering (by viscous flow) ceases and a fully or
partially crystallized porous body is obtained [7, 10].
However, concurrent sintering and crystallization may
have a significant technological importance, since
various glass-ceramic products are made by viscous
sintering followed by controlled crystallization [11].
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The kinetics of homogeneous or heterogeneous
crystallization is well described by the Johnson-
–Mel–Avrami–Kolmogorov (JMAK) equation of phase
transformations [12]. To calculate the surface fraction
transformed on a given thermal path, all the data one
needs are the density of nucleation sites Ns (for sur-
face crystallization), the crystal growth rate U for
each crystalline phase and the crystal geometry.

Most glasses crystallize from the surface, so a con-
stant number of nucleation sites Ns at the particle’s
surface is normally considered. The value of Ns is
strongly dependent on the quality of the surface,
which, in turn, depends on the method used to obtain
the powder [13, 14]. When the particle size is smaller
than the product Ut (U = crystal growth rate and
t = time), then the JMAK equation for surface crystal-
lization describes only the first stages of crystalliza-
tion kinetics.

Several authors have discussed the competition
between sintering and crystallization. Ulhmann et al.
[15], for instance, combined calculated TTT transfor-
mation curves with densification curves, calculated
from the theory of viscous sintering, to discover
whether densification of a porous body without simul-
taneous crystallization was possible. Zarzycki [16]
noted that densification and crystallization are equally
dependent on viscosity; thus, a decrease in viscosity
causes the same acceleration in both processes. Due to
this fact, Scherer showed that the real competition
occurs between the driving forces for sintering and
crystallization [10].

While the driving force for sintering – generally the
solid–vapor surface energy – is almost temperature
independent, the driving force for crystallization
depends to a great extent on temperature. Therefore, a
sintering temperature above the range in which the
driving force for crystallization is too high will privi-
lege sintering. However, because it may crystallize
along the heating path, the sample must reach this
temperature quickly.

Muller [14] studied the concurrence of sintering and
crystallization in cordierite glass. The competition in
this concurrency is so fierce that only very small par-
ticle compacts sintered to almost full density before
crystallizing. Particle size and heating rate were used
as variables to analyze this concurrence and the author
found that, at a heating rate of 12 K min–1, only par-
ticles smaller than 1 µm sintered to full density.

Gutzow et al. [17] studied the problems that control
surface-induced nucleation of glasses. They empha-
sized the influence of elastic strains, surface contami-
nation by active substrates, and the dependence of
crystal growth and overall crystallization kinetics on
the average size of an ensemble of sintering glass
grains. They also derived a formalism connecting

overall crystallization with the average size of the
glass particles. Finally, they investigated the interde-
pendence of sintering and crystallization. Finite-
particle effects on the crystallization kinetics were also
studied by Weinberg [18].

Boccaccini et al. [19] experimentally demonstrated
that cylindrical compacts (5 × 5 mm) of crushed
Ba–Mg–Al–Si–O glass powder with a narrow particle-
size distribution of around 10 µm can be fully densi-
fied when heated at q = 15 °C min–1 to 1050 °C. How-
ever, this same powder crystallized and the compact
therefore densified to only 89% of the glass density,
at a heating rate of 1 K min–1. Thus, the high heating
rate favored sintering in detriment to crystallization.

Using the proposal of reference [20], the present
authors extended the Clusters model to describe the
concurrence of sintering and surface crystallization in
isothermal and non-isothermal experiments [7, 8].
This model considers the effect of the surface crystal-
lization on the sintering rate, an approach unlike that
of Uhlmann [15], who considered volume crystalliza-
tion and treated sintering and crystallization as inde-
pendent processes. The Clusters model was also used
to predict the sintering kinetics and pore size distribu-
tion of an array of spherical soda–lime–silica glass
particles having a partially crystallized surface at the
beginning of sintering [9]. In real systems, a pre-
existing crystallized surface fraction or crystalline
impurities on the particle surfaces strongly affect the
sintering kinetics.

Non-stoichiometric crystallization, when the crystal
phase composition differs from that of the parent
glass, may cause variations in the glass matrix com-
position, viscosity and surface energy, complicating
the analysis of the sintering kinetics. Finally, gas
expelled from the growing crystals, gases entrapped
during sintering or exiting the glass particles can gen-
erate porosity, which deteriorates the properties of sin-
tered glasses or glass ceramics.

Next, we will summarize the governing models,
describe relevant experiments and discuss several tests
involving the Clusters model.

2. The models
2.1. Frenkel’s model

The Frenkel model (equations (1a) and (1b)) offers
a description of the onset of isotropic sintering of
monodispersed spherical particles

DL
L0

= 3 c
8 g(T) r

t (1a)

Equation (1b) is commonly used to describe the
change in density during sintering:

q(t) =
q0

qg�1 − 3 c t
8 g(T) r�−3

(1b)
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where L0 is the sample’s original length, ∆L the linear
shrinkage after a sintering time t, η(T) the
temperature-dependent shear viscosity, γ the glass-
vapor surface energy (whose temperature dependence
is very slight), r the initial particle radius, ρ0 the
initial bulk green density of the compact and ρg the
glass density.

A deviation from equation (1a) is found [21] when
the particles are nonspherical. To account for the
effect of particle shape on the sintering kinetics, an
empirical constant, called shape factor, ks, is normally
used to fit the measurements. The ks values used in
the literature vary from 1.8 to 3. Nevertheless, when
one compares the sintering kinetics of spherical par-
ticles having a size distribution with that of irregular
particles (such as crushed particles) having the same
size distribution, one is comparing not only shapes,
because the particle packing is also different. Thus,
the real effect of the particles’ shape on the sintering
kinetics deserves further attention.

Frenkel’s equation, equation (1a), is actually derived
for a linear arrangement of particles. In passing to
volume shrinkage, one can use equation (1b). This
passage assumes isotropic sintering behavior in three
spatial coordinates, which is equivalent to considering
a cubic array of particles. Thus, each particle should
have six neighbors and should therefore develop six
sintering necks in the beginning of the process. How-
ever, experimental data for an array of a narrow size
distribution of spherical glass particles shows that
there is a distribution of necks per particle (between 3
and 8) and that the average is 5 [9]. This distribution
varies in different systems and should therefore be
tested on a case-by-case basis.

2.2. The Mackenzie–Shuttleworth model

For higher relative densities (q > 0.9), when the
pores are spherical and isolated in the glass, the
Mackenzie–Shuttleworth, M–S model, gives the fol-
lowing densification rate [2]:

dq
dt = 3 c

2 a0 g(T)
(1 − q) (2a)

where a0 is the initial radius of the spherical pores.
Equation (2a) is presented in a simplified form that
allows for a simple mathematical treatment [22].
Actually, we approximate (1 − q)/a by (1 − q)/a0,
where a is the pore radius, which is assumed to
shrink, while the pore number remains fixed. a0 is the
pore radius at time = 0. This approximation underesti-
mates the actual sintering kinetics.

The original M–S kinetics, without approximations,
is expressed as [23]:

da(t)
dt = c

a(t) q� t �
(2b)

Although the initial particle boundaries have van-
ished by the time the M–S stage is reached, the pore
size distribution is inherited from the initial particle-
size distribution.

On a laboratory time scale, sintering is only accom-
plished above the glass transition temperature, Tg. In
this range of temperatures, the viscosity η(T) is nor-
mally described by the Vogel–Fulcher–Tamman (VFT)
equation [24]:

g = g∞ e
Ev

R� T − T0 � (3)

where R is the gas constant, T0 is an empirical con-
stant, Ev an apparent activation energy associated to
molecular transport by viscous flow, and η∞ the vis-
cosity at an ‘ infinite’ temperature. In this paper, we
use measured values of viscosity as an input param-
eter in the simulations.

The surface energy can be estimated from the glass
composition. The other relevant parameters are mea-
sured.

2.3. The Scherer model

Scherer’s model [3] uses a basic cell, pictured as a
cubic array of intersecting cylinders, which describes
low-density microstructures such as those of dry gels
and flame hydrolysis preforms. The cylinders stand
for strings of particles. Because the particles, in this
case, are aligned along the borders of a cubic struc-
tural unit, each particle has a small number of neigh-
bors and, hence, a small number of contacts (six for
particles in the string crossovers and two otherwise).

Scherer’s model is an excellent (and perhaps the
only) way to deal with the sintering kinetics of these
types of structures. Although it can also be applied to
high-density systems, the geometry of the unit cell is
very dissimilar to the geometry of packed particles.
However, since the calculations are apparently insensi-
tive to the geometry assumed in different models, this
cylinder geometry has been applied to different situa-
tions with good results [25]. It also solves the prob-
lem of describing the medium range densities, espe-
cially when one starts from low-density compacts.

Scherer’s model was developed to include, as input
data, the measured pore-size distribution obtained
through mercury porosimetry. However, one must con-
sider that if a pore-size distribution is present, poro-
simetry can be misleading, because the access of Hg
or of any other liquid to the large pores may be
through the small ones. In addition, mercury porosim-
etry depends on the rate at which the pressure
increases during measurement. Thus, the information
provided by mercury intrusion porosimetry does not
always reflect actual pore sizes and may be a source
of problems (Fig. 1).
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2.4. The ‘Clusters model’ . Glass densification with a
particle-size distribution

Giess et al. [23] reported that a pure M–S analysis
does not accurately describe the final stages of sinter-
ing of pressed compacts of polydispersed, irregular
shape cordierite-glass particles. He suggested that this
drawback may be the result of smaller-size particle
fractions sintering more rapidly at the outset and of
larger ones sintering towards the end of the process.
Fig. 2 illustrates this fact in a cross-section of a com-
pact of an alumino-borosilicate glass having a wide
particle-size distribution, after a linear shrinkage of 8%.

Fig. 2 gives experimental evidence of the fact that
the Frenkel and M–S processes may occur simulta-
neously in a sample having a particle-size distribution.
The Clusters model [6] is based on this experimental
fact: small particles preferentially cluster in the open
spaces left by larger particles and sinter faster. Thus,
for a polydispersed compact with volume fraction vr

of particles of radius r, the following expression holds
true for the densification kinetics at a given tempera-
ture:

q(t) =
�

r
�qF(r, t) nr hF(t0.8 − t) + qM−S(r, t) hM−S(t − t0.8) � mr

�
r

�mr nr hF(t0.8 − t) + hM−S(t − t0.8) �

(4)

Equation (4) sums up the relative density q� r, t �
for each particle size, r, as a function of time, t.
During the Frenkel stage of sintering, the
q� r, t � = qF� r, t � < 0.8 condition is met and
qF� r, t �,t) is calculated using the Frenkel equation
(equation (1b)). Later, q� r, t � = qM−S� r, t � > 0.8,
qM−S� r, t � is calculated by the Mackenzie–Shuttle-
worth model (equation (2)). For each cluster, the pas-
sage from the Frenkel regime to the M–S regime is
performed using the step functions θF(t0.8 – t) and
θM–S(t – t0.8), whose values alternate between 1 and 0
at t = t0.8 when qF� r, t0.8 � = 0.8 is reached. Thus,
θF(t0.8 – t) = 1 and θM–S(t – t0.8) = 0 for t < t0.8, and
θF(t0.8 – t) = 0 and θM–S(t – t0.8) = 1 for t > t0.8. �r is
the neck-forming ability of each particle, which can
be calculated from the particle-size distribution, and
�r = 1/rc, where c is a constant that depends on the
particle-size distribution, as proposed in reference [6].

The pore radius a0 in equation (2) is adjusted to
ensure a continuous q� r, t � function at t = t0.8. The
adjustment is achieved by first computing t0.8 with
equation (1b), then calculating a0 with the integrated
version of equation (2) at t = t0.8.

Equation (4) can be explicitly written as equation
(5) for �r = 1 (which corresponds to narrow size dis-
tributions):

q� t � = �
r � q0

qg�1 − 3 c t
8 g(T) r�3 h(t0.8 − t)

+�1 −�1 −
q0

qg
� e� − 3 c t

2 a0 � r � g� T ��� h(t − t0.8)� mr (5)

Other microstructural facts that the model should
consider in order to describe actual glasses are
described below.

2.4.1. The number of necks that each particle develops
with its neighbors

We have experimentally found that the actual num-
ber of necks per particle in green compacts of mono-

Fig. 1. Low-density structure (left). Diagram of Scherer’s model
(right) resembling the microstructure on the left-hand side. l is the
cell length and a is equivalent to the particle size. After G.W.
Scherer, Sintering of low-density glasses, part I [3].

Fig. 2. SEM micrographs of a polydispersed compact of an alumino-borosilicate glass after a linear shrinkage of 8%. Magnification of 1200 ×
[6, 7] (a). Width of the micrograph = 20 µm. (b) Diagram of the Custers model.
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dispersed spheres consists of a large distribution, from
3 to 8 necks pert particle, with an average value of
about 5. Note that, in the Scherer scheme of particle
arrangement, each particle may have either two or six
contacts with its neighboring particles (i.e., particles at
an edge or at a corner of the cell, respectively).

Fig. 3 shows that some necks are lacking for two
possible reasons: there is a free gap between two
neighboring particles (frustrated contact) or a neighbor
is lacking (a hole in the random packed structure).
Both types of lacking necks produce an arresting
effect on densification.

For both size distributions in Fig. 4, we found that
the average number of necks is 5, i.e., one neck less
than the six necks needed for a local cubic array of
particles, as is implicitly assumed in equation (1b).

2.4.2. Pre-existing surface crystals or dust

When the glass particles to be sintered show pre-
existing surface crystals or dust, only the glass–glass
contacts contribute to sintering. For example, particles
having only 90% of glassy surface have an effective

fraction 0.9 × 0.9 = 0.81 of contacts that will develop
necks during sintering.

The ‘Clusters model’ was developed to describe the
system shown in Fig. 2: simultaneous Frenkel (F) and
M–S kinetics. The model allows one to include the
afore-mentioned microstructural packing and pre-
crystallization details. The calculations are presented
via summations of particle-size fractions, because it is
not always possible to describe the particle-size distri-
bution as simple analytical functions. Working with
summations rather than integrals allows one to use the
actual particle-size distribution.

To the best of our knowledge, there is no single
model capable of describing all the sintering processes
for every type of particle arrangement, from green den-
sity to full density. Even Scherer’s model assumes
cylindrical arrays (that do apply to compacts having
high initial densities) and only describes sintering up
q ∼ 0.94. In our case (compacts having a green density
of about 0.6 or more), we use the Frenkel model for the
first 10% of linear shrinkage – relative density range
0.6–0.8 – and the M–S model for the high-density range
0.8–1. Our model, however, does not apply to low-
density green compacts. The choice of an appropriate
pore size a0 allows one to obtain a smooth crossover
of the Frenkel and M–S curves for the sintering kinet-
ics at the desired value of relative density = 0.8.

The M–S mechanism should be strictly valid in the
density range of 0.9 to 1, but, in our model, we
extend its validity to 0.8–1.0. We justify this simplifi-
cation by the fact that the sintering kinetics of various
systems (including materials having a wide particle-
size distribution and showing concurrent crystalliza-
tion) can be described by the model. There is a good
reason for choosing 0.8 as the beginning density of
the M–S model. It has been experimentally observed
that, at this density, a qualitative shift in porosity
occurs from interconnected to isolated pores. Hence,
the porosity is no longer interconnected.

The Clusters model uses the approximation sug-
gested in [22] for the M–S process. This approxima-

Fig. 3. Detail of an array of glass spheres sintered for a short time to form necks. White arrows show frustrated necks (although these particles
are close they are not in actual contact) or lacking neighbors. Black arrows show developed necks. The width of each micrograph corresponds
to 1.425 mm.

Fig. 4. Number of neighbors of each particle, measured for two
compacts corresponding to two different size distributions of spheri-
cal particles [9].
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tion gives a slightly slower kinetics for sintering than
the exact solution. But the difference is negligible
compared to all the other simplifications. Moreover, it
drastically simplifies the calculations, allowing one to
include other effects such as concurrent crystallization
in isothermal and non-isothermal sintering, keeping in
mind an additional advantage, i.e., the fact that the
pore size distribution can be calculated as an output.

The particle-size distribution (which is easy to mea-
sure) is used as an input and allows one to calculate
the pore-size distribution. This feature allows one to
predict the evolution of pore size over time and to
compare this calculated distribution with pore-size
measurements from plane sections of the sample
(careful stereological corrections must be made here).
In a recent report [9], we demonstrated that calcula-
tions with the Clusters model provide a good predic-
tion of the measured pore size distribution of sintered
spherical particles.

2.5. The Clusters model with concurrent crystallization

Fig. 5 shows a spherical particle of soda–lime–silica
glass that formed necks during sintering and whose
surface is fully crystallized with cristobalite and devit-
rite. The crystals grow from the surface towards the
particle’s interior. In this case, crystallization arrested
viscous flow sintering.

2.6. Isothermal sintering with concurrent crystallization

Most glass powders have a tendency to crystallize
starting from the external surfaces when heated [26],
and any fraction of the surface that crystallizes hin-
ders sintering by preventing viscous flow. It is, there-
fore, important to understand the effect of surface
crystallization on the sintering kinetics.

For powdered glasses, we assume the most typical
case: heterogeneous nucleation of spherical crystals

growing with a linear growth rate, U(T), from a fixed
number of sites per unit area, Ns. In this case, the
JMAK [12] theory predicts the crystallized surface
fraction, αs:

�s = 1 − e−p Ns U� T �2 t2 (6)

where t is the time of isothermal treatment.

Müller [20] reasonably assumed that, regardless of
the sintering model, the densification rate should
decrease in proportion to the surface fraction of glass
remaining after crystallization. Hence, in this case, the
isothermal densification rate is:

dqc

dt = dq
dt � 1 − �s � (7)

where qc is the relative density of a compact, includ-
ing the effect of sintering hindered by surface crystal-
lization.

By inserting appropriate expressions for dρ/dt (from
equations (1b) and (2)) and αs (equation (6)) into
equation (7), upon integration one arrives at equations
(8) and (9)) for the Frenkel and Mackenzie–Shuttle-
worth cases, respectively:

qc,F� t � = q0 +
3 C q0 xf

3

g(T)

�
0

t�1 − C
g(T)

t′�−4
e−p NS U� T �2 t'2 dt′ (8)

qc, M−S� t � = q0 + � 1 − q0 �

�C ′ xf

g(T)��
0

t

e� −C ′ t′
p� T �� e−p Ns U� T �2 t′2 dt′ (9)

where C = 3 c
8 r and C ′ = 3 c

2 a0
.

In equation (8), xf stands for the initial vitreous sur-
face fraction of the particles before sintering starts.

Fig. 5. Crystals growing from the surface towards the volume of a spherical soda–lime–silica glass particle (radius ≈ 200 µm) in a sintering-
crystallization experiment. Necks between particles are clearly shown [7] (a). SEM micrograph of a surface of the glass sphere heat-treated at
700 °C for 5 h (b).
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When the particle surface is pristine, xf = 1. The prob-
ability that a neck between particles is of the type
glass–glass is xf

2. When both effects are considered, a
term xf

3 appears. Only xf appears in equation (9),
since necks do not have to be considered in the M–S
regime. The ease with which this microstructural data
is introduced into the calculations is one of this mod-
el’s advantages. Another application is the possibility
of predicting the pore-size distribution at any stage of
densification.

With these equations and the appropriate physical
parameters of the glass (surface tension, viscosity vs
temperature, crystal growth rate vs temperature, num-
ber of active surface sites, particle-size distribution
and green density), the densification kinetics (q or qc

vs time) can be predicted at any chosen temperature.
With the exception of U(T) – which is fixed by the
chemical composition of the glass – the other param-
eters can be estimated from the glass composition (η,
γ) or can be used as simulation parameters (Ns, r, q0).
Equations (8) and (9) can be extended to the case
where more than one crystalline phase for M–S. Poly-
dispersed distributions undergoing isothermal sintering
and concurrent crystallization can be treated by intro-
ducing equations (8) and (9) into equation (4).

2.7. Non-isothermal densification with concurrent
crystallization

In some situations, however, depending on how fast
the sintering and crystallization rates are, a substantial
part of these processes may occur on the heating path
before the specimens reach the desired treatment tem-
perature. Thus, it is fundamental to simulate which
sintering and crystallization degrees are achieved at a
given heating rate just before the designed annealing
temperature is reached. Here, we follow the procedure
presented in [8].

The time, t, may be treated as a temperature depen-
dent variable, dt = dT/q, where q is a constant heating
rate. Making the appropriate change of variables, the
temperature-dependent crystallization, i.e., the surface
fraction crystallized as a function of heating rate, can
be written as follows:

�s� T � = 1 − e−p
Ns

q2 (�
Tg

T

U� T ′ � dT ′)2

(10)

where Tg is the glass transition temperature and T is
the final temperature reached at the end of a continu-
ous heating sintering experiment.

The densification rates for both F and M–S stages
may be similarly written.

From equations (1a), (7), and (10), one arrives to
equations (11) and (12), respectively:

DL
L0

� T � = C
q �

Tg

T 1 − �s� T ′ �
g� T ′ �

dT ′ (11a)

which, together with equation (1b), gives the Frenkel
sintering kinetics with concurrent surface crystalliza-
tion for an isotropic non-isothermal process (11b)

q� T � =
q0

�1 − C
q �

Tg

T 1 − �s� T ′ �
g� T ′ �

dT ′�3 (11b)

The corresponding M–S expression obtained from
equations (2), (7), and (10) is:

qc, M−S� T � = q0 + (1 − q0)

� C ′
q � �

Tg

T
e( − C ′

q �
Tg

T

dT
g� T)) (1 − �S� T ′ �)

g� T ′ �
dT ′ (12)

With these equations and the appropriate physical
parameters of the glass (particle-size distribution,
green density, surface tension, viscosity vs tempera-
ture, number of active nucleation sites per unit surface
and crystal growth rate vs temperature), it is possible
to predict the densification kinetics, q or qc vs time or
temperature. Except for U(T), which must be mea-
sured, the other parameters can be estimated from the
glass composition (η, γ) or they can be used as simu-
lation parameters (Ns, vr, q0).

Polydispersed distributions undergoing non-
isothermal sintering and concurrent crystallization can
be treated by introducing equations (11) and (12) into
equation (4).

2.8. Crystallization towards the volume

Most analyses of the concurrence between sintering
and crystallization only take into account internal
crystallization [10, 15, 16] or surface crystallization
[7, 8, 20]. Moreover, density changes are frequently
neglected due to the volume transformed from the
surface towards the particle’s center. This type of
kinetics was studied by Gutzow et al. [17].

Interior crystallization is typically neglected,
because, in practice, the effect of volume crystalliza-
tion (crystals nucleating in the volume and rising to
the particle’s surface) is generally smaller than surface
crystallization. However, if growing crystals have a
density that differs from that of the glass, the density
variation must be considered in calculating the evolu-
tion of the body’s density.

Crystals nucleated at the particle’s surface not only
cover the surface but also grow towards the particle’s
core. Gutzow et al. [17] described the kinetics of this
type of volume transformation for spherical crystals.
Before the growing crystals begin to interact, the vol-
ume crystallization kinetics is a function of t3, but
when they impinge, they only can grow towards the
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particle’s center and, thus, the kinetics of volume
crystallization is a function of t1. Equations (13a) and
(13b) hold true, in each case, for each crystalline
phase p.

�v, r
p = 1 − e−

Np 2 p U 3 t3

r t < 0.5/(Np U2)1/2 (13a)

�v, r
p = 1 − e−

3 Np p d0
2 U t

4 r t > 0.5/(Np U2)1/2 (13b)

In equations (13a) and (13b), the subscript ‘p’ indi-
cates a given crystalline phase and the subscripts ‘v’
and ‘ r’ indicate volume crystallization and particle
radius, respectively.

3. Results

In this section we summarize our calculations and
experimental data for different systems: an alumino-
borosilicate glass (ABS) powder having a widely dis-
persed distribution of jagged particles, which does not
crystallize during sintering, and soda–lime–silica
(SLS) glass sphere that crystallizes (in up to four
different phases). We also show calculations based on
experimental results of Muller [13] for a narrow sized
cordierite glass powder.

3.1. Isothermal sintering of alumino-borosilicate glass

An alumino-borosilicate glass of composition
71.70 SiO2, 8.33 B2O3, 8.56 Al2O3, 1.00 MgO,
2.67 CaO, 7.44 Na2O (wt.%), which is a candidate for
nuclear waste encapsulation, was used owing to its
stability against devitrification [27, 28]. This system
was convenient for our studies, because the original
surface and number of nucleation sites remained
unchanged throughout the experiments.

The glass-transition temperature, Tg
DSC ≈ 845 K,

was determined by differential scanning calorimetry at
10 K min–1. Fig. 6 shows the particle-size distribution
measured with a Mastersizer µ Ver.2. High tempera-
ture viscosity measurements were taken using a rotat-
ing cylinder viscometer, and low temperature viscosity
was measured by the penetration method. The viscos-
ity showed a Vogel-Fulcher-Tamman behavior with
η∞ = e–4.803 Pa s, Ev = 4983.2 K and T0 = 510.5 K.

The glass-vapor surface energy γ varies only
slightly with temperature, but we lacked available data
for our glass at temperatures near Tg, at which the
sintering experiments were performed. Hence, extrapo-
lated data was used employing Lyon’s method [29].
The values of γ extended from 0.327 J m–2 at 959 K
to 0.325 J m–2 at 1017 K.

Cylindrical powder compacts were prepared by
uniaxial die pressing of around 0.75 g of sample glass
powder at 0.5 MPa for 30 s. The cylinders were
approximately 6.0 mm in height and 10.2 mm in

diameter. The sample’s length, l, and diameter, φ,
were measured after each sequential isothermal sinter-
ing step to determine the sample’s relative density.
When the density stopped increasing with heat treat-
ment, the final compact density was determined by
the Archimedes method, using liquid mercury.

The fact that the samples did not reach thermal
equilibrium instantaneously when brought to the sin-
tering temperature was considered. The corrections
performed are detailed in [6].

To gain a better understanding of the real sintering
process, we calculated the sintering curves of ideal-
ized monodispersed powders together with the calcu-
lation corresponding to the real particle-size distribu-
tion. Fig. 7 shows the calculated sintering curves for a
monodispersed distribution of the smallest particles,
for the average particle size and for the largest par-
ticles of the measured particle-size distribution. The
curves corresponding to the polydispersed distribution
were calculated using the Clusters model with
c = 1.23 and c = 0. c = 0 means that, in our calcula-
tions, every particle with the same size sintered as a
cluster, while c = 1.23 relaxed this condition (for more
details see [6]). A comparison of the kinetics of these
idealized processes with the real one highlights the
effect of having a polydispersed distribution. The sin-
tering kinetics of the real distribution is quite close to
that of the smallest particles, at least for the particle-
size distribution tested here.

When the compacts reach the M–S stage due to the
pressure of entrapped gases in the closed pores, our
samples never reached full density, q = 1, but only
qf = 0.96 in the final stage of sintering.

3.2. Isothermal sintering of soda–lime–silica glass spheres

Distributions D2 and D3 of the soda–lime–silica
glass spheres (composition in wt%, 72.5 SiO2,

Fig. 6. Particle-size distribution of the alumino-borosilicate glass
powder [6].
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13.7 Na2O, 9.8 CaO, 3.3 MgO, 0.4 Al2O3,
0.2 FeO/Fe2O3) shown in Fig. 8 were used to deter-
mine the number of neighbors of each glass sphere.
The average number of neighbors was found to be 5
for both distributions [9]. In the same study, distribu-
tion D1 was used for the sintering experiment shown
in Fig. 9 (the solid dots are experimental data and the
solid line is the calculated sintering kinetics based on
the Clusters model).

The compacts never reach full density (ρ = 1),
because pre-existent crystalline particles on the
sphere’s surface reduce the area available for sintering
and (probably) due to gases (entrapped or from degas-
sing) that cannot diffuse out from the sample. Surface
crystallization during sintering was negligible, i.e.,
only about 2% when the sample density saturated,
causing no harm in this case.

An analysis was made of the measured and calcu-
lated porosity for a sample with density = 0.88. This

density was chosen because, at this point, all particle
sizes are in the Mackenzie–Shuttleworth regime.

The calculated pore size distribution is plotted in
Fig. 10. The a0(r,0) (pore radius at t = 0) were calcu-
lated first. Equation (5) was then used to estimate the
time at which the compact density reached 0.88. After
that, using equation (2b), each pore radius was com-
puted at that time. It is worth stressing that, although
the overall density of the compact was 0.88, the local
density depended upon the particle sizes existing in
that region of the sample. The pore-size distribution
measured is shown in the same figure. The sizes of
about 800 pores were measured by microscopy on
plane sections of the sample, and the size distribution
thus found was converted to volume size distribution
by standard stereological calculations. The calculated
values were systematically smaller (about 10 µm) than
the measured ones. We discuss this mismatch below.

The effects of the particle’s surface quality and par-
ticle size are shown in Fig. 11. Smaller particle size
and better surface quality (no pre-existing crystals)
favor sintering over crystallization.

3.3. Non-isothermal sintering of jagged polydispersed
particles

The same ABS glass whose size distribution in
shown in Fig. 6 was used for the non-isothermal tests.
We chose this system to limit the number of variables
to a controllable level, because it is stable against
crystallization. Thus, in principle, viscous sintering
proceeds undisturbed by crystallization until maximum
densification is reached.

Fig. 12 shows the calculated and experimental den-
sification curves for two heating rates. Due to the
uncertainty caused by the unknown shape factor of the
jagged particles, we present two types of calculated

Fig. 7. Relative bulk density q versus time at 989 K, showing (a)
smallest particles, (b) average size particles, (c) clustering model
with c = 1.23, (d) clustering model with c = 0, (e) largest particles
of the distribution shown in Fig. 6.

Fig. 8. Three size distributions of soda–lime–silica glass particles
used in [9].

Fig. 9. Sintering kinetics of soda–lime–silica glass spheres, size
distribution D1, at 710 °C. Black dots: measured, solid line: calcu-
lated with the Clusters model, dashed line: calculated crystallized
surface fraction.
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curves. One resulted from the cluster model ((equation
(4)), with ks = 1 and �r 7 1 (calculated from the
particle-size distribution with no adjustable parameter
[6]), while the other curve resulted from ks = 1.8 (fit
to isothermal data of [6] for the same glass powder)
and �r = 1. At both heating rates, there was a small
temperature shift of about 5–10 K between experimen-
tal and calculated curves. The experimental density
saturated at about q ∼ 98%. A negligible degree of
crystallization was observed at the temperature of
maximum density for each heating rate.

To further test the algorithm under stricter condi-
tions, we also worked with a cordierite glass having a
relatively narrow distribution of jagged particles. This
glass has a tendency to devitrify concurrently with

sintering; thus, we hoped to examine our model under
this arresting condition.

Fig. 13 shows the calculated (this study) and experi-
mental (from [13]) densification curves of cordierite
glass having average particle sizes of r = 1, 6.8, 8 and
11 µm, subjected to a heating rate of 12 K min–1. The
crystallized surface fraction is also shown. Under
these conditions, crystallization begins at ∼ 1150 K and
is completed at ∼ 1250 K. At this point, densification is
completely arrested.

Due to the unknown shape factor of the jagged
particles, it was used as a fitting parameter, resulting
in ks ∼ 3. Only the finest particles densified fully; all
the other curves saturated at q ∼ 0.84, 0.82 and 0.80
(calculated curves) or at ∼ 0.85, 0.80 and 0.75 (experi-
mental data) for increasing particle size, demonstrating
the arresting effect of crystallization.

Fig. 10. Pore-size distribution. Calculated with the Clusters model
(hollow squares). Measured: solid squares. The area under each
curve is equal to 1.

Fig. 11. Effect of the particle’s surface quality and size on the
sintering kinetics. Calculations for size distribution D1 of Fig. 8
(curves 2 and 3), and for a hypothetical distribution with particle
size four times larger (curve 1). Curves 1 and 2 correspond to
particles with glassy surface fraction = 0.9 (the remaining 0.1 frac-
tion is occupied by pre-existing crystals or other inclusions).

Fig. 12. Calculated (lines) and experimental (circles) densification
curves of ABS glass for two heating rates. q1=1.1 K min–1 (dotted
lines and hollow circles) and q2 = 5.3 K min–1 (full lines and solid
circles).

Fig. 13. Simulated (this work) and experimental (from [13]) densifi-
cation curves for non-isothermal sintering of cordierite glass pow-
ders of different sizes. The crystallized surface fraction is also
shown.
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In every case, the experimental density saturated at
slightly different values than predicted. If, for
instance, the passage from the Frenkel to the M–S
regime is forced to occur at 0.75 instead of 0.8, a
better agreement is found for the two larger particle
sizes, but not for the smallest one.

4. Discussion

In the previous section, the Clusters model was
tested from the standpoint of the prediction of the
sintering kinetics of a variety of glass-forming sys-
tems. These powdered systems include large and nar-
row particle-size distributions, spherical and irregular
particles, crystallizing and stable glasses, particles
with ‘clean’ surfaces and particles with embedded
solid particles or pre-existing crystallization. These are
only part of the different situations that may arise in
the sintering of diverse materials. The ability of a
given model to include the special characteristics of
the system of interest in its formulation determines its
applicability. For example, if the compact of interest
has a low density, such as a dry gel, then the Scherer
model is the most appropriate one to describe the
sintering kinetics. However, no quantitative predic-
tions of either sintering or crystallization rates of gels
can be done, because of the retained OR groups
(where R may be an H atom or an organic chain).
During condensation reactions, the removal of the OR
groups are responsible for a time dependence of the
viscosity [10]. For compacts with relative green densi-
ties of about 0.6 or higher, such as those of the
systems discussed herein, and for quantitative predic-
tions of sintering and crystallization rates, the Clusters
model has the ability to include different aspects of
diverse systems (number of neighbors per particle,
particle-size distribution, crystallizing phases, etc.) in
its formulation. Another interesting feature of the
Clusters model is that it serves as a tool to predict the
resulting porosity distribution in the sintered compact.
For a soda–lime–silica sphere sintering test, the calcu-
lated porosity size distribution at q = 0.88 is consis-
tently smaller (about 10 µm) than the measured one.
However, it agrees quantitatively with the measured
distribution [9].

The surface viscosity of glass particles with pristine
surfaces (free of embedded solid particles or pre-
existing surface crystallization) is expected to be some-
what lower than the volume viscosity [30]. In our case,
because our soda–lime–silica glass spheres were pro-
duced by an industrial process, their surfaces were full
of defects and embedded particles, which were difficult
to characterize properly due to their small sizes. That
is why, in this case, had we used the viscosity as a
fitting parameter (considering clean particle surfaces),

the viscosity obtained would have been about 70%
higher than the measured one. It is remarkable that
this high viscosity is found for both the isothermal
and non-isothermal sintering kinetics of these glass
spheres. In reality, this high viscosity value accounts
for the embedded solid particles or pre-existing sur-
face crystallization on the particles’ surfaces.

However, the extended Clusters model, which takes
concurrent crystallization into account, allows one to
include not only the information that contacts between
particles of the crystal–crystal or glass–crystal type
will not develop necks by viscous flow (only glass–
glass contacts develop necks) but also that the rate of
sintering is proportional to the glassy area. With these
microscopic data included in the model, the experi-
mental (not fitted) viscosity explains all isothermal
and non-isothermal measurements.

Due to the crystallization of non-stoichiometric
phases, the chemical composition of the glass matrix
continuously changes with time. An estimate of the
change in surface viscosity of the soda–lime–silica
glass used in this work caused by these compositional
shifts, considering the two main phases (devitrite and
cristobalite) and using the SciGlass database [29],
indicates a slight decrease in surface viscosity.

An exact computation of the surface fraction crys-
tallized is impossible when the geometry of the crys-
tals is as complex as that of devitrite. This phase can
appear as needles or as bundles of needles, with no
obvious symmetry. Moreover, devitrite is by far the
most common crystalline phase in the sintering range.
We approximated its surface morphology as a circle.
The same geometry was used to compute the areas of
other crystalline phases. This approximation slightly
overestimated the crystallization kinetics.

The effect of particle-size distribution and of the
number of contacts between different size particles is
introduced in the Clusters model through the param-
eter �, which has an effect on the sintering kinetics
when the size distribution is large. This parameter
weighs the volume fraction of each particle size with
the number of necks that each particle develops in all
the surrounding particle sizes. As smaller particles
develop more necks to surround other particles, their
fractions are augmented in detriment to larger par-
ticles. But large size distributions are common to
crushed irregular particles. In this case, the effect of
size distribution is mixed with a ‘particle-shape effect’
and also a ‘packing effect’ , since particles with differ-
ent geometries may pack differently. When these three
effects are simultaneously present, it may be impos-
sible to decouple them.

The number of neighbors each particle has or,
equivalently, the number of necks each particle devel-
ops, also depends on the particle-size distribution, par-
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ticle shape, and packing. This information, if available,
can be readily introduced into the Clusters model.

Another subject of interest is non-isothermal sinter-
ing. In this case, thermal gradients that develop within
the compact on the heating path are not (although
they can be) included in the model. Temperature gra-
dients may arise when the sample’s dimensions or the
heating rate are relatively large, for example in glassy
blocks of about 50 cm for nuclear waste immobiliza-
tion or for floor tiles.

In non-isothermal sintering, temperature gradients
produced between the surrounding hot air and the
specimen may arise on the sample’s surface (due to
the small heat transfer coefficient, h) and inside the
compact (due to the small thermal diffusivity, j, of
porous glass). We estimate these gradients, for a
cylindrical geometry, in the following paragraphs.

The temperature profile T(r,t) in an infinitely long
cylinder of finite radius a, 0 < r < a, with zero initial
temperature and with an imposed surface temperature
q t, where q is a constant heating rate and t is time,
can be expressed as [31]:

T� r,t � = q� t − a2 − r2

4 j � + 2 q
a j �

n = 1

∞

e−j� n
2 t J0(r �n)

�n
3 J0(r �n)

(14)

where j = k/cq is the glass diffusivity, k the thermal
conductivity, c the specific heat and q the glass den-
sity. J0 and J1 are Bessel functions, and the αn are the
roots of J0(a α) = 0.

Actually, because the compact’s porosity varies with
time (and temperature), so does its thermal conductiv-
ity and diffusivity. The other parameters, c and q,
have typical values c = 0.3 cal g–1 K–1, and
q = 2.46 g cm− 3 .

When the samples are sintered in air with natural
convection, a heat transfer coefficient h must be con-
sidered [32] (this must be equally valid for both small
and large samples). This actually causes the sample’s
surface temperature, Ts, to be lower than the furnace’s
temperature, which follows the imposed heating rate
curve almost exactly.

The following equation of heat conservation on the
sample’s surface can be written considering, for the
sample’s surface:

k A (dT/dr)r=0 = h A DT (15)

i.e., conduction heat flux (from the sample’s surface to
its interior) = convection heat flux (from air to sam-
ple’s surface), where (dT/dr)r = 0 is the temperature
gradient at the sample’s surface, and can be obtained
from equation (14), A is the area of the considered
surface, ∆T = T∞ – TS and T∞ = q t. A correct analysis
of thermal gradients using equations (14) and (15)

requires the knowledge of k and (dT/dr)r = 0 as func-
tions of the porosity.

A temperature difference at a stationary regime of
about 4 K was found by plotting equation (14) with
k = 0.01 cal K–1 cm–1, estimated from [33], for a cylin-
drical porous body, diameter = 1 cm and height = 1 cm
(typical geometry used in the sintering experiments of
this work, isothermal and non-isothermal), with a rela-
tive density = 0.6 and a continuous glassy matrix with
isolated pores.

The estimated values of ∆T ≈ 31 K were found
based on equation (15), where the temperature gradi-
ent at the sample’s surface (dT/dr)r=0 ≈ 15 K cm–1

(from equation (14)), A is the area of the
surface considered, ∆T = T∞ – TS and T∞ = qt,
h ≈ 200 W K–1 m–2 (a maximum heat transfer coeffi-
cient h, from reference [32], was considered for heat-
ing in air with natural convection).

The complete uncertainty about the h value leads to
doubts about the actual magnitude of the surface ∆T
value. In our experiments with 5-mm pieces, we did
not expect high values for ∆T. Residual porosity is
frequently found in many viscous sintering experi-
ments. The relative density of the alumino-borosilicate
glass discussed herein also displayed a saturation den-
sity unlike 1 for both heating rates. It has also been
observed [7–9] that, when sintered under thermal con-
ditions in which crystallization is negligible, crystalliz-
ing systems (e.g., soda–lime–silica glasses) do not
achieve a relative density = 1.

This saturation may be due to at least these factors:
pre-existing surface crystals, partial or total surface
crystallization during sintering, insoluble gases
entrapped in the initial pores, and bubbles formed by
the release of dissolved gas (which can be catalyzed
by crystallization). While surface crystallization is
taken into account in the model’s equations, the pro-
cesses involving gases are not. Therefore, entrapped
gases or degassing cause remnant porosity in SLS
glass. This may also be the cause of the consistent
mismatch between calculated and measured porosity.

5. Conclusions

Except for low-density compacts such as gel-derived
preforms, to which the Cluster model is not expected
to be applicable, we tested the model in a variety of
situations. These comprise: (a) isothermal and non-
isothermal sintering of widely polydispersed alumino-
borosilicate glass having jagged particles, which is
stable against devitrification; (b) isothermal sintering
of soda–lime–silica glass having a narrow distribution
of spherical particles with embedded solid particles or
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pre-existing surface crystallization – this glass readily
crystallizes during sintering –; (c) devitrifying cordier-
ite glass with a narrow size distribution. In each case,
the model provided a good description of the experi-
mental results. An analysis of the data published on
cordierite shows that, for a given heating rate, there is
a maximum particle size that can be sintered to full
density. The model fits these data reasonably well and
can be used to determine the maximum acceptable
particle size for any other thermal treatment.

Based on our experiments with narrowly distributed
glass spheres, we have shown that each glass particle
can have a different number of neighbors, which vary
from 3 to 8. The number of neighbors may vary
according to size distribution and particle shape. This
variable can be readily introduced into the Clusters
model equations.

The effect of pre-existing surface crystals or embed-
ded solid particles, which was also taken into account,
proved to exert a strong effect on the Frenkel stage of
sintering.

The effect on the sintering kinetics of wide-size
distributions was also considered, but further work is
needed to disassociate size distribution, particle shape
and particle packing. The Clusters model assumes a
homogeneous sample temperature. However, in the
case of large samples or high heating rates, tempera-
ture gradients must be considered.

When all the particle sizes are in the Mackenzie–
Shuttleworth regime, the model can readily predict the
pore size distribution. A low percent of residual
porosity at the saturation density, which is frequently
found, may have different origins: gas expelled from
the growing crystals, gases entrapped during sintering
or degassing from the glass particles by diffusion.
This important topic also deserves further research.

Finally, we have shown that different aspects of the
sample’s microstructure, crystallization parameters and
thermal treatment conditions can be included in the
formulation of the Clusters model, providing a formi-
dable tool to simulate the densification kinetics of
powdered glasses in a variety of situations.
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