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Surface stress of isotropic solids under irreversible conditions
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Abstract

Surface stress of isotropic solids is discussed when irreversible mechanisms in the interfacial solid/vapour region occur. When
stretching the surface of a sample, even at mechanical equilibrium and in the absence of relaxation, local mobility of atoms and
defects can be induced on a thin layer adjacent to the surface. Our thermodynamic formulation takes into account the variation
of the surface free energy with the chemical composition of this thin underlayer. Such interfacial region is called non-
autonomous phase, as previously designated for fluids by Defay and Prigogine. The theory developed here permits to a new
interpretation of the surface stress. This quantity depends on the variation of the surface free energy with the elastic surface
deformation weighted by the relative deformation of the crystal, the aspect ratio of the underlying sheets and the chemical
composition. To cite this article: A. Sanfeld, A. Steinchen, C. R. Chimie 6 (2003).

© 2003 Published by Éditions scientifiques et médicales Elsevier SAS on behalf of Académie des sciences.

Résumé

Suivant l’intensité de la contrainte imposée à la surface d’un solide, des déformations irréversibles peuvent apparaître, même
en l’absence de toute relaxation et loin du régime plastique. La contribution dissipative liée au réarrangement des espèces est due
à la perte d’autonomie de la surface. Il en découle une expression généralisée de la tension de surface tenant compte de la
variation de l’énergie libre de surface avec la déformation élastique de surface factorisée par la déformation relative du cristal, le
rapport d’aspect et la composition chimique à la fois de la surface et de la sous-couche sollicitée. Pour citer cet article : A.
Sanfeld, A. Steinchen, C. R. Chimie 6 (2003).
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1. Introduction

There have been many discussions on the physical
significance of the difference between surface free

energy, surface tension and surface stress of solids. The
major cause of controversy is the widespread misinter-
pretation and confusion of these quantities. Typical
confusions encountered are: (i) mixing up surface free
energy per unit area and surface stress; (ii) surface
tension (a concept restricted to liquid phases) and sur-
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face stress; (iii) static or dynamic surface stress. In a
previous paper [1], we recall their meaning in the
frame of the Shuttelworth formulation in terms of the
variation of the surface free energy with the surface
elastic deformation, classically defined by the relative
surface variation [2]. This presentation clears up cer-
tain obscure points in Gibbs and Rice presentation [3],
but it is only valid for reversible work of deformation.
Surface stress is generally defined as a reversible work
per area to stretch a solid surface elastically while the
surface tension of a liquid, often mixed up with the
surface free energy, is the reversible work per unit area
to create a surface. Alternatively, it is generally admit-
ted that the surface stress is the energy involved in the
creation of a unit deformed surface at constant sites
and the surface tension is the energy involved to create
a surface in maintaining constant the deformation. Al-
though there have been many discussions about the
physical significance of the difference between these
quantities, important controversies remain still a topi-
cal question. Fundamental macroscopic and micro-
scopic aspects were analysed by many authors on the
role of stress [4–6]. For the reader who is interested in
detailed theoretical and experimental developments, a
brief survey is presented in our previous paper [1]. All
these presentations assume the existence of reversible
states during and after the stretch of the surface. There
is, however, a domain for which, according to its mag-
nitude, the stretch applied on the surface might result in
irreversible mechanisms taking place at the surface and
in the underlying crystal. Although the amplitude of
the constraint imposed remains behind the limit of
relaxation effects as well as behind the limit of plastic-
ity, the removal of such constraint might not preserve
the relative initial position of atoms and defects. In
order to introduce this new concept of surface stress,
we shall first develop a revisited Laplace law taking
into account the variation of the surface free energy
with the elastic deformation and the chemical compo-
sition of the surface and its underlying layer. From this
formulation we derive a general definition of the sur-
face stress.

2. A revisited Laplace formulation in relation
with the lack of autonomy of the interphase

Due to the asymmetry of the interactions and in the
absence of any imposed constraint, the region separat-

ing two immiscible phases is a quasi-continuous inho-
mogeneous thin layer [3,7,8]. In this surface region, the
matter density as well as the lattice distance varies
quasi continuously, but very sharply, along a coordi-
nate normal to the surface. Gibbs introduced a geo-
metrical dividing surface (superscript r), which is al-
ways taken parallel to the surface of tension. This
model in which the thickness of the interface is, in
effect, taken as zero, is used in place of the real system.
The quantity of matter nm

r , attributed to an arbitrary
dividing surface may then be positive or negative, and,
on division by the area of the dividing surface, A, we
may define a quantity called Gibbs adsorption,

Cm =
nm

r

A . Now, the Gibbs’ model is mechanically

equivalent to the real system, only when the position of
the dividing surface is identical to the surface of ten-
sion (surface characterized by zero couple of forces).
As well known, most particle surfaces are rough and
asperities as small as 1–2 nm can significantly lower or
raise the position of the dividing surface. Hence, it is
necessary to choose quantities whose values are invari-
ant whatever the position of the dividing surface, or at
least, are such that small errors in locating the surface
lead to relatively small errors. The relative adsorption
is a quantity with this property. The same reasoning
prevails for all thermodynamic quantities such as the
free energy. For the sake of simplicity, we are model-
ling here the behaviour of a two-component system,
the metal atoms, m, and either vacancies, v, or impuri-
ties. The choice of one of the components as reference
substance of zero adsorption allows to define the Gibbs
relative excesses of matter, Cm �m �, and of surface free

energy, f �m �
r = Fr

A [9]. Now, when a deformation is

imposed to the surface of the solid, according to the
duration and magnitude of the constraint, an irrevers-
ible transfer process of atoms, vacancies and point
defects might occur in a very thin quasi-continuous
region underneath the surface of tension, usually called
sublayer (sb), whose composition at its bottom reaches
that of the bulk of the solid [1,11]. Due to the interac-
tions between the atoms in the surface and in the
sublayer, the global surface free energy Fr varies with
the chemical composition of the sublayer. For this
reason, the surface is a non-autonomous phase. The
irreversible process which occurs in the stretched iso-
tropic crystal lies both in the transfer of the atoms
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between the surface and the sublayer and to a rear-
rangement of the interfacial region. According to the
fluctuations theory, all these processes, even for very
small objects in the size limit ≥ 100 Å, enter the frame
of a macroscopic description of the physicochemical
properties.

We now take into account the conservation law for
the atoms

nm
r + nm

sb + nm
s + nm

v = Const (1)

where the solid (s) is an infinite reservoir and the
vapour phase (v) an infinite sink so that, from Eq. (1),
in the steady non-equilibrium state,

dnm
r = − dnm

sb (2)

Taking into account (2), the sets of independent
extensive are now for a zero adsorption of the vacan-
cies:

(Vsb, A, nm
sb, nv

sb) or (Vsb, A, nm
r , nv

sb) (3)

This choice of independent variables finds its justi-
fication in the fact that, in the open system considered
here, an atom is not always simply exchanged with a
vacancy, but much more complex mechanisms of ex-
change may occur: interstitial diffusion, interactions
between vacancies and dislocations, very different dif-
fusion time scales of atoms and vacancies, fusion and
collective movement of species, interactions with point
defects and impurities. A classical procedure in ther-
modynamics allows us to replace also the set of exten-
sive variables (Vsb, A, nm

r , nv
sb) by the set of intensive

variables (Cm, Cv
sb), where Cv

sb =
nv

sb

Vsb .

The total free energy F = Fsb + Fr + Fs + Fv is a
function of all the independent variables
F(T, Vs, Vsb, Vv, A, nm

sb, nv
sb, nm

v , nm
s , nv

s). As the bulk of
the solid (s) and the vapour (v) phases are respectively
infinite reservoir and sink, on differentiating this func-
tion with the composition of the sublayer, maintaining
constant T, the volumes Vs, Vsb, Vv, the area A, the
number of atoms in the vapour and solid phases,
nm

v , nm
s , the number of vacancies in the solid, nv

s, and in
the sublayer, nv

sb, we obtain

�F
�nm

sb = �Fsb

�nm
sb + �Fr

�nm
sb (4)

The quantity �F
�nm

sb is called the complete chemical

potential, µflm
sb , while �Fsb

�nm
sb = µm

sb is the classical local

chemical potential. The last term �Fr

�nm
sb describes the

lack of autonomy of the surface. This quantity ac-
counts for the functional character of capillary quanti-
ties like does the theory of the second gradient devel-
oped since the pioneering work of van der Waals.

As the interactions between the vacancies with the
metal atoms in the sublayer are larger than with the
atoms in the surface, we may neglect, as a first approxi-
mation, the variation of Fr with nv

sb. Hence,

�F
�nv

sb = �Fsb

�nv
sb (5)

where the quantity in the l.h.s is the complete chemical
potential µflv

sb and the quantity in the r.h.s is the classical
chemical potential µv

sb.
Eqs. (4) and (5) may finally be written respectively:

µflm
sb = µm

sb + �Fr

�nm
sb (6)

µflv
sb = µv

sb (7)

In a non-equilibrium state, µflm
r ≠ µflm

sb , while the equi-
librium is ruled by the equality of the complete chemi-
cal potentials. The equality of chemical potentials is
not realized when the stretch of the surface creates an
irreversible rearrangement of the mobile atoms and
vacancies.

Now, making use of (2) one may rewrite (6) by a
simple change of variables at constant area:

µflm
sb = µm

sb −
�f �m �

r

�Cm �m �

(8)

As the elastic deformation, e = dA/A, depends on the
surface concentration, cm[v], maintaining constant the
total numbers of metal atoms nm = nm

r + nm
sb in the sur-

face and the sublayer, we get:

� �f �v �
s

�Cm �v �
�

T,C v
sb

=��f �v �
r

�e �T,nm,C v
sb� �e

�Cm �v �
�

T,nm,C v
sb

(9)
From Eqs. (8) and (9), the complete chemical poten-

tial is seen to be:

µflm
sb = µm

sb −��f �v �
r

�e �� �e
�Cm �v �

� (10)

where, for the sake of simplicity, we omit the sub-
scripts T, nm, Cv.

Consider, in a first approach, homogeneous trans-
formations in a crystal. The pressure tensor reduces to
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a scalar quantity and the variation of the volume, dV,
includes creation and elastic deformation effects.
Hence, the Gibbs–Duhem law reads for the sublayer
phase at constant T:

dpsb = Cm
sb dµm

sb + Cv
sb dµv

sb (11)

where variations of chemical potential include changes
of internal and elastic energy.

Remark. Let us justify the validity of the Gibbs–
Duhem relation for a class of irreversible processes in
the linear domain (transport, diffusion, adsorption, de-
formations, re-arrangements, etc.). It is well known
that this relation is valid for reversible processes. In
this particular case, the removal of the imposed con-
straint leads to the instantaneous vanishing of the de-
formation. Local equilibrium is instantaneously estab-
lished in comparison with the elastic deformation,
dissipative phenomena arising after the establishment
of the elastic regime. On the other way, by loading or
bending a crystal, dissipative effects may appear due to
atomic rearrangements inside the material. Friction,
reorientation, displacements of defects (vacancies, dis-
locations, microfissures, etc.) occur and may lead to
strong modifications of the internal tensions, as for
example relaxation of deformations (delayed elastic-
ity) or relaxation of constraints (flow regime). More
complex situations arise when reaching a critical
threshold of the constraint. Indeed, in suppressing or in
maintaining constant the constraint, deformation has
not stopped but proceeds in time. This behaviour is
called plastic regime out of the Hookean domain. Al-
ready one century ago, Kelvin showed that a remnant
modification of materials such as gold or copper might
be due to compression. Indeed, voids are always
present in many materials and volumetric plasticity
thus exists, which dissipates the elastic energy by a
relaxation process. All these irreversible processes in-
duce a common global combined movement of the
material, which by definition refers to thermodynamic-
and mechanical-non-equilibrium states. In a number of
other cases, the mechanical equilibrium state is how-
ever established very quickly in comparison with the
thermodynamic processes. Then, virtually at the begin-
ning of the irreversible process studied, such state is
reached. For instance, when chemical or thermal diffu-
sion phenomena occur, one can safely suppose that the
state of mechanical equilibrium (in which the accelera-
tion vanishes) is quickly realized to a sufficient ap-

proximation. Such a regime can also occur in elastic
isotropic solids when the surface is stretched by exter-
nal forces or by phase transformations, such as solidi-
fication from the melt or evaporation. Also chemical
constraints, such as diffusion of oxygen from the va-
pour phase at high temperature restores the elastic
behaviour of some metals up to the threshold of frac-
ture. This is due to the interstitial positioning of the
oxygen atoms in the metallic lattice.

In all these cases, the response of the system to the
applied mechanical or chemical constraints does not
instantaneously restore the initial thermodynamic
state, even at the mechanical equilibrium. Hence, irre-
versible mechanisms appear at the surface and in a thin
region adjacent to the surface. In these situations, the
sublayer may still be described in terms of the same
variables as at equilibrium, i.e. the Gibbs–Duhem rela-
tion remains valid.

Inserting Eqs. (7) and (10) in (11) and taking, for the
sake of simplicity, a mean value in space of the concen-
tration �Cm

sb� in the quasi-continuous sub-layer, we get:

dpsb − Cm
sb d��f �v �

r

�e �� �e
�Cm �v �

�
= d�psb − �Cm

sb���f �v �
r

�e �� �e
�Cm �v �

��
= Cm

sb dµflm
sb + Cv

sb dµflv
sb (12)

Integrating Eq. (12) on the thickness, e, of the sub-
layer and taking into account the fact that the deforma-
tion vanishes at the lower boundary of the layer, we
may then define an extended capillary pressure that we
call pfl sb. At the bottom of the layer: psb = pflsb, µsb = µfl sb;
on the top: pflsb = pflsb, µfl sb = µfl sb. This extended over-
pressure accounts for the irreversible interaction with
the surface during the stretch (see [10], Appendix II):

pflsb = psb − �Cm
sb���f �v �

r

�e �� �e
�Cm �v �

�
= �

µ m
sb

µflm
sb

Cm
sb dµflm

sb + �
µ v

sb

µflv
sb

Cv
sb dµflv

sb (13)

This extended pressure directly leads to an extended
Laplace formulation. Indeed, on subtracting the pres-
sure in the vapour phase (13), we get:

pflsb − pv = (psb − pv) − �Cm
sb���f �v �

r

�e �� �e
�Cm �v �

�
(14)
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3. Surface stress with dissipative mechanisms

Let us apply Eq. (14) at the surface of tension,
reminding that f �v �

r is invariant whatever the position of
the dividing surface. As shown in our previous paper
[1], for an isotropic sphere of radius R0 in the non-
stretched reference state, the capillary pressure 2 ST

s /R0

obtained from the variation of the standard chemical
potential associated to the change of curvature by an
equilibrium displacement reads:

2 ST
s

R0
=

Dµm
0sb

mm
0 = φ �psb − pv

� (15)

in which the factor φ = �1 −
vsb

�psb + pv
�

2
� includes

the compressibility coefficient v, mm
0 is the standard

molar volume.
An extended capillary pressure, 2S/R, in the

stretched state, is then defined by:
2 S
R = φ �pflsb − pv

� (16)

in which R = R0 + dR with dR << R and e = 2 dR/R0.

Consequently

2 S
R =

2 ST
s

R0
− φ �Cm

sb���f �v �
r

�e �� �e
�Cm �v �

�
=

2 ST
s

R0
− φ

2�Cm
sb�

R0
��f �v �

r

�e �� � dR
�Cm �v �

� (17)

This quantity, S, located at R, we have called surface
stress, has thus the same meaning as ST

s , but with an
additional contribution due to the elastic deformation

of the surface��f �v �
r

�e �� �e
�Cm �v �

�. Equilibrium states

belong to autonomous surfaces and in such cases
�Fr

�nm
sb = 0. In contrast with equilibrium, non-equilibrium

states are described in terms of irreversible processes
due to diffusion of species and deformation of the
lattice. Such situations lead to a lack of autonomy of

the surface, characterized by the derivative �Fr

�nm
sb or

finally by��f �v �
r

�e �� �e
�Cm �v �

�.

Let us now assume as a reasonable approximation,
that e is a decreasing linear function for small varia-
tions of Cm[v] (an increase of Cm[v] enhances the sur-
face rigidity and thus diminishes its elasticity).

Eq. (17) then reads:

2 S
R =

2 ST
s

R0
+ φ �Cm

sb� e
Cm �v �

��f �v �
r

�e � (18)

and, similarly for a cubic crystal of finite size k:

4 S
! =

4 ST
s

!0
+ φ �Cm

sb� e
Cm �v �

��f �v �
r

�e � (19)

Indeed, as shown by Kern and Müller [11] in the
restricted case of equilibrium, the origin of the over-
pressure lies in the finite size k via the surface stress. In
order to interpret Eqs. (18) and (19) in terms of aspect
ratio and composition of the sublayer, we shall now

transform the factor �Cm
sb� e

Cm �v �

. Suppose a uniform

stretch applied to the whole surface of a sphere. This
corresponds to a homogeneous compression. Such
process creates a slightly deformed spherical sublayer
of mean radius <R> different from R0 and of thickness
e in which the composition is different from that of the
bulk phase. We may then write Vsb = 4 p�R�2e, there-
fore:

�Cm
sb� =

nm
sb

4 p �R�2 e
; e = dA

A0
= 2 dR

R0
; Cm �v � =

nm
r

4 p R0
2

(20)
and for a cubic crystal:

�Cm
sb� =

nm
sb

�!�2 e
; e = dA

A0
= 2 d !

!0
; Cm �v � =

nm
r

!0
2 (21)

Hence, as a first approximation, we may write
R0

2

R0 �R�
. 1

R and
!0

2

!0 �!�2 . 1
!

From Eqs. (18)–(21), we obtain finally the extended
capillary pressure, respectively for the sphere and for
the cubic crystal:

S = ST
s + dR

e
nm

sb

nm
r φ��f �v �

r

�e � (sphere) (22)

S = ST
s + 1

2
d!
e

nm
sb

nm
r φ��f �v �

r

�e � (cube) (23)

The quantities �R
e .

�R�
e

dR
R0

and 1
2

d!
e . 1

2
�!�
e

d!
!0

compare the small deformations � dR
R0

, d!
!0

� of the crys-

tal to the aspect ratios� e
�R�

, e
�!��of the sublayer. The

ratio
nm

sb

nm
r is the compositional weighting factor of the
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variation of surface free energy with the elastic surface
deformation. Since Orowan deduction [12], that the
stress in the surface could be one of compression, the

sign and magnitude of the term��f �v �
r

�e � = A0��f �v �
r

�A �
is still the subject of controversy. By numerical simu-
lation, it has been recently shown [13] that, in the
absence of constraint, the heterogeneous surface layer
of a small crystal of Al is composed of eight atomic
sheets: the two first ones being in compression and the
next six in tension. Under an imposed deformation, the
two first layers are modified differently from the six
next ones.

Finally, let us compare Eqs. (22)–(23), and the Shut-

telworth formulation, SSh = �Fr

�A = fr + A �fr

�A. In (22)–

(23) and according to (15)–(18)), the surface stress is
defined by the jump of pressure across the surface in
full agreement with the Laplace law of capillarity. In
the Shuttelworth formulation, however, the depen-
dence of the pressure appears indirectly through the

deformation term A �fr

�A. Indeed, by a classical change

of variables, this last term is equal to −Cm µm
r , where it

is assumed by the author that µm
r is the equilibrium

chemical potential. On the other hand, fr, which refers
to the creation of the surface, depends on pressure only
by the elastic energy through the compressibility, a
very small contribution. A more detailed description of
the present theory is now in press [10].
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