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Abstract

Formation of monolayers of spherical particles in processes with reversible adsorption from mixtures of large and small
particles was simulated in computer experiments. Computer program was based on an algorithm that took into account random
sequential adsorption, desorption and lateral diffusion of adsorbed particles (RSA–DLD model). Computer experiments were
performed for systems with rate constants of particle adsorption at least 103 times higher than rate constants of desorption. In
processes with very fast adsorption and slow desorption, formation of monolayer can be divided into two stages. During the first
stage, the total surface coverage (the coverage with particles of both types) increases very fast and becomes very close to that at
equilibrium. During the second stage, the total coverage changes very slowly and the system approaches equilibrium mainly by
the replacement of large particles with the small ones. A simple kinetic model for evolution of the monolayer composition during
the second stage has been proposed. Kinetic equations related to this model allow the determination of large particles’desorption
rate constants on the basis of changes in the surface concentrations of adsorbed large and small microspheres. The validity of the
model has been tested comparing large particles’ desorption rate constants values that had been used for simulations with values
of the corresponding rate constants determined using analytical equations, with a view to analysing the simulation results. To cite
this article: S. Slomkowski et al., C. R. Chimie 6 (2003).
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Résumé

Un programme informatique a été développé pour simuler la formation de monocouches de particules sphériques dans des
procédés avec adsorption réversible de mélanges de petites et grosses particules. Le programme est basé sur un algorithme qui
prend en compte l’adsorption séquentielle au hasard, la désorption et la diffusion latérale des particules adsorbées (modèle
RSA–DLD). Les essais ont été effectués avec des constantes de vitesse d’adsorption au moins mille fois plus élevées que celles
de désorption. Dans ces conditions, la formation de monocouches peut être décomposée en deux étapes. Pendant la première, la
couverture totale (avec les deux types de particules) augmente rapidement, jusqu’à devenir proche d’un équilibre. Pendant la
seconde étape, la couverture totale ne change pas beaucoup, et le système approche l’équilibre par remplacement des grosses
particules par des petites. Un modèle cinétique simple pour l’évolution de la composition de la monocouche au cours de la
seconde étape est proposé. Les équations cinétiques correspondantes permettent de déterminer la constante de vitesse de
désorption des grosses particules sur la base des modifications de la concentration superficielle des microsphères adsorbées
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grosses et petites. Le modèle a été validé en comparant les constantes de vitesse de désorption des grosses particules avec les
valeurs analytiques utilisées pour exploiter les résultats de la simulation. Pour citer cet article : S. Slomkowski et al., C. R.
Chimie 6 (2003).
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1. Introduction

Since many years, adsorption of particles onto sur-
faces has been extensively studied, both theoretically
and experimentally. This interest has practical and fun-
damental reasons. Adsorption of proteins onto surfaces
of medical implants, production of biosensor detec-
tors, deposition of colloidal particles onto inner sur-
faces of tubes and containers in industrial installations,
deposition of particulate materials on ship’s hulls,
wings and other elements of airplanes are just a few
examples of systems for which knowledge on adsorp-
tion of particles is very important. Studies of particle
adsorption are interesting also as an element of funda-
mental investigations on packing three-dimensional
objects on surfaces.

Initially the adsorption leading to formation of
monolayers of adsorbed objects was described using
the simple Langmuir model [1]. One of the most im-
portant parameters characterizing absorbing surfaces
is surface coverage (h), defined as a fraction of the
surface covered with adsorbed particles (h = N q/S0,
where N is the number of adsorbed particles, q surface
covered by one particle and S0 total surface area).
According to the Langmuir model the rate at which the
surface coverage increases is proportional to the sur-
face fraction not covered with particles (1 – h(t)) mul-
tiplied by the concentration of particles in the bulk (C).
The rate at which the surface coverage decreases due to
desorption was assumed to be proportional to the sur-
face coverage at a given moment. Combination of
these terms yields equation (1), describing the overall
rate at which h changes with time:

(1)
dh
dt = ka C � 1 − h � − kd h

In equation (1), ka and kd denote the rate constants of
adsorption and desorption, respectively.

It has been noticed, however, that equation (1) is
oversimplified and cannot be used for characterization
of real systems [2]. Namely, the fraction of the surface
excluded from adsorption of new particles is larger
than the surface coverage and in effect the surface
available for adsorption is smaller than (1 − h) [2–4].
Indeed, any isolated spherical particle with radius R
(surface coverage p R2) excludes from adsorption of
similar particle the surface p(2R)2. This is because any
new particle cannot be deposited at a distance closer
than 2 R from the adsorbed one (overlapping of par-
ticles not allowed). Thus, it is necessary to include in
the kinetic equation (1) a function W(h,t) correcting
size of the excluded area:

(2)
dh
dt = ka C � 1 − W� h � � − kd h

In principle, W(h) depends not only on the coverage
but also on time and should be written as W(h,t). One
could expect that, for systems with desorption and
lateral diffusion of adsorbed particles, the distribution
of particles on surface, and thus fraction of surface
excluded from adsorption, may change with time even
without any changes of h. The average time (sDr) after
which W(h,t) (for h = constant) approaches its equilib-
rium value on the surface area Dr2 equals sDr = Dr2/4 D
(D denotes surface diffusion coefficient).

In the case of adsorption from a mixture of n types
of particles differing in size, equation (2) should be
replaced with a set of differential equations (3) and (4).

(3)

dhi

dt = kai Ci � 1 − W� h1, h2,... hn, t � � − kdi hi;

n = 1, 2, ..., n

(4)�W� h1, h2, ...hn, t �
�t = f� ri,jW, Di �
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The analytical form of the function f (cf. equation
(4)) is not known, however, for hi = constant, the rate
with which W(h1, h2 ,...hn, t) changes with time should
depend on positions of particles (ri,jW denotes a vector
determining position of j particle of i type) and on
coefficients of their diffusion on the surface (Di de-
notes a diffusion coefficient of particles of i type).

Due to the mentioned above difficulties solutions of
equations (3)–(4) were found only for simplified sys-
tems. For example, there were analysed systems with
irreversible adsorption of particles (kdi = 0) that cannot
diffuse on the surface (Di = 0). The assumptions men-
tioned above are valid when the attractive short-range
particle–surface interactions are strong. For such sys-
tems, �W� h1, h2, ... hn, t � ⁄�t = 0. This means that if
values of the coverage (hi) are constant the values of
the function W also do not change with time. Adsorp-
tion processes conforming to the above limitations
have been simulated according to the random sequen-
tial adsorption (RSA) algorithm (sequential deposition
of particles at randomly chosen places available for
adsorption). For deposition of identical spherical par-
ticles obeying the RSA model the kinetic equation has
a simple form:

(5)
dh
dt = kaC � 1 − W� h � �

Equation (5) was solved by many authors who used
analytical and/or Monte Carlo based computer meth-
ods [2,4–7]. It has been found that for long time
ht→∞= 0.547 (jamming limit).

Kinetic equations were analysed also for an extreme
case when diffusion of particles on the surface is so fast
that at any moment, for a given number of adsorbed
particles, particle distribution on the surface is at equi-
librium [2]. Recently, there were published papers
dealing with irreversible and/or reversible adsorption
of particles with polydisperse diameter distribution
[9–12]. There were analysed also systems allowing the
adsorbing particles, which are falling onto the ad-
sorbed one, to diffuse around in a search for a free area
[6,10] and systems with changes of the area occupied
by one particle (due to changes of its shape) [11,13].
However, systems taking into account together such
events as: adsorption, desorption and lateral diffusion
on surface (random sequential adsorption, desorption
lateral diffusion–RSA–DLD systems) till now were
not analysed.

In this paper we present some results of the studies
based on the RSA-DLD model. In these studies the
adsorption from binary mixtures of hard spheres with
different radii was investigated. For analysed systems
we assumed high rates of particle adsorption and very
low rates of particle desorption. Such behaviour is
characteristic for the adsorption of proteins from pro-
tein mixtures. Typically, the above process comprises
an initial period during which the composition of the
surface layer is controlled by the kinetics of adsorption
and a much longer period during which an equilibrium
composition is being established [14]. It has to be
stressed that in the case of proteins, not their size, but
other factors, such as enthalpies of protein-surface
interactions and changes related to entropies of dena-
turation accompanying adsorption, determine the com-
position of the adsorbed layer.

Adsorption of polymer microspheres is usually irre-
versible. However, recently we noticed that adsorption
of microspheres with hydrophilic surfaces (polysty-
rene core/polyglycidol shell particles) on mica is
reversible and allows for an exchange of adsorbed
microspheres and microspheres in suspension
(S. Slomkowski, S. Sosnowski, E. Przerwa, M. Gadzi-
nowski, A. Dworak, M.M. Chehimi, Europolymer
Congress, Stockholm, Sweden, June 2003).

Many authors approximated adsorbed spheres with
hard disks. However, such approximation is not valid
for spherical particles with various diameters that are
able to diffuse on the surface. For the hard disk model,
the shortest distance between the centres of the ad-
sorbed particles is equal to the sum of their radii.
However, in the case of lateral diffusion, there are
possible situations (an example is shown in Fig. 1)
when the distance between the centres of the particles
projected onto the surface is shorter than the sum of the
particle radii. We took this factor into account while
writing the program for our studies.

2. Computer program used for simulations

The computer program written in our laboratory for
simulation of particle monolayers formed on a square
cell by particle deposition from binary mixtures is
based on the Monte Carlo-type algorithm. The pro-
gram is able to handle up to 106 particles. However,
only for less than 10 000 deposited particles, the com-
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puter experiments could be performed within the rea-
sonable time (using conventional PC machines up to
100 hours). The role of the ‘wall’ effects was mini-
mized by using the periodic boundary conditions.

Variable parameters affecting formation of particle
monolayers included: concentrations of particles of
each kind in a space adjacent to the surface, rate con-
stants of particle adsorption on selected not occupied
site (relative accuracy of site position in x or y direc-
tions was 10−9 with respect to the edge of the cell),
probability of lateral movement of an adsorbed particle
in a randomly selected direction on the surface (assum-
ing that other particles do not interfere with such
event), and rate constants of desorption. Computer
experiments were carried out assuming that the con-
centration of each type of particles just above the
absorbing plane does not change with time. This means
that the total number of particles in the reservoir above
the plane is much higher than the maximal number of
particles that could be deposited onto the cell surface
and that the characteristic time for particle diffusion in
the bulk is much shorter than the characteristic time for
particle adsorption and/or desorption.

The assumption that particles are spherical has the
following consequence. When the distance h between
projections of particle centres on the surface fulfils the
condition h < 2 �R r, the probability of locating (ei-
ther by adsorption or by lateral movement) any particle
with a radius R in the neighbourhood of other particle
with a radius r equals 0.

For the adsorption of spherical particles, we took
into account the possibility that the falling sphere may

slip on the one that has been already adsorbed (the
ballistic model introduced by Jullien et al. [15]). In
effect, the incoming particle is deposited next to the
first one (cf. Fig. 2), provided there is a sufficient space
for such deposition. When the incoming sphere falls
exactly onto the top of the adsorbed sphere, or in such
a way that the distance between projections of particle
centres is smaller than X percent of the adsorbed par-
ticle radius (X will be called an exclusion parameter),
the incoming particle is scattered back. Otherwise, it
rolls down toward the surface, as indicated in Fig. 2.

Simple reasoning allowed determination also of the
locations of adsorption sites for spheres that rolled on
two adjacent particles deposited earlier on the surface.

It is worth to mention also another model (‘mobile
adsorption model’ introduced by Pefferkorn et al.
[6,10]) taking into account interactions of adsorbing
particles with particles that have been adsorbed earlier.
According to this model, when a randomly selected
area is already occupied, the adsorbing particle is able
to move in the interface and becomes adsorbed in the
immediate vicinity of the first selected position. In
comparison with the standard RSA model, both the
ballistic and the mobile adsorption models induce in-
creased probability of particle adsorption in the nearest
vicinity of the adsorbed particles. However, compari-
son of computer experiments based on these models
has not been performed.

Computer experiments performed during our stud-
ies required input of the following parameters:

• total concentration of particles in the space adja-
cent to the adsorbing plane (C0);

• fraction of small (f1) particles (fraction of large
particles f2 = 1 – f1);

Fig. 1. Large and small particle at their close contact. Distance
between projections of particle centres on the plane of adsorption.

Fig. 2. Interaction of adsorbing particle with adsorbed one according
to the RSA model and the modified RSA model with ballistic
deposition.
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• radii of small (R(1)) and large (R(2)) particles;
• rate constants of adsorption and desorption for

small (k ′a�1� and k ′d�1�) and large (k ′a�2� and
k ′d�2�) particles

• probability of on plane diffusion (PD) and maxi-
mal length (k) of a jump for small and large
spheres (PD(1), PD(2), k(1) and k(2))

Probabilities of particle adsorption during time in-
crement Ds onto the non-occupied surface were
calculated as follows: Pa�1� = k ′a�1� f1 C0 Ds and
Pa�2� = k ′a�2� f2 C0 Ds.

We took into account the possibility that the adsorbed
large spheres at some locations may screen the small
spheres (cf. Fig. 1) and hinder their desorption. Thus,
when the distance h between projection of the centre of
small sphere with radius R(1) onto surface and projec-
tion of the centre of large particle (with radius R(2))
fulfils the condition 2�R�1� R�2� ≤ h < R�1�+ R�2�,
the small particle is screened by the large one and thus,
its probability of desorption Pd(1) = 0. When h ≥ R(1) +
R(2), the probability of desorption of a small particle
during time Ds is determined by the appropriate rate
constant of desorption and equals Pd�1� = k ′d�1� Ds.
Similarly, for large particles, the probability of desorp-
tion is Pd�2� = k ′d�2� Ds.

Each computer experiment included repetition of
the following steps

• (i) Attempted adsorption of small particles. This
process includes generation of a random number q
in the range from 0 to 1. If q > Pa(1), the computer
skips further steps related to adsorption of a small
particle and proceeds to adsorption of the large
one. However, if q < Pa(1), a place on the cell
surface for adsorption of the small particle is se-
lected randomly; provided this place is free, the
incoming particle becomes adsorbed. Otherwise,
when the distance between projections of the cen-
tres of incoming and adsorbed particles differs
more than by X percent of the radius of adsorbing
particle (exclusion parameter), the ‘ballistic’
model has been assumed for particle deposition
(i.e., the adsorbing particle slips on the adsorbed
one towards the surface). When this distance is
equal or less than X, the incoming particle is
scattered back. The exclusion parameter equal
100% corresponds to the model with particles
represented by hard spheres (in all instances, the
adsorbing particle falling onto the adsorbed one is

scattered back). The exclusion parameter equal to
0% corresponds to the completely inelastic scat-
tering. One may assume that for real particles,
values of the exclusion parameter will be between
these extremes. After having attempted the ad-
sorption of a small particle, regardless whether it
was successful or not, the computer proceeds to
the second step, an attempt to adsorb a large par-
ticle.

• (ii) Attempt to adsorb a large particle. An attempt
to adsorb a large particle is performed in the simi-
lar way as the above-described attempt to adsorb a
small one.

• (iii) Diffusion of adsorbed particles on the sur-
face. Subsequently, for each adsorbed particle
(small and large) the computer decides (with
probability PD(1) and PD(2) for diffusion of small
and large particles, respectively) whether the par-
ticle will be moved on the surface or will stay at its
actual position. If, for a given particle, this deci-
sion is positive, the computer randomly selects the
direction of the jump. The length of the jump is
selected randomly in the range from 0 to k(1)
and/or k(2) for small and large particles, respec-
tively. If the way to the new position is free (i.e., if
adsorbed particles do not interfere with the move-
ment), the particle is located in the new place.
Otherwise, it is moved in the selected direction to
the place at which it contacts the first interfering
particle.

• (iv) Desorption. For each adsorbed particle, sub-
sequently, the computer decides (with probability
Pd(1) and Pd(2) for small and large particles, re-
spectively) whether the particle will be desorbed
from the surface.

After completion of the fourth step, the computer
repeats the cycle. After a predetermined number of
cycles, the data with information on positions of all
adsorbed particles are saved. These data are used later
for the calculation of such parameters, as surface cov-
erage and surface concentration of small and large
particles at a given time moment (using one cycle as
the time unit).

3. Results and discussion

In a set of computer experiments that will be dis-
cussed below, the relative fractions of small and large
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particles (denoted as particles of type 1 and 2, respec-
tively) have been varied. All other input parameters
were not altered. The total concentration of particles in
bulk was equal to 10 (in arbitrary concentration units)
and did not change with time. A set of experiments was
carried on with fraction of small particles (f1) varied
from 10 to 90%. The ratio of particle radii was 0.5
(R(1) = 15 and R(2) = 30 arbitrary units). Rate constant
of desorption for small particles (1) was k ′d�1�
= 0 .000 133 and for large particles k ′d�2�
= 0 .000 033. Rate constants for adsorption of both
types of particles were equal k ′a�1� = k ′a�2� = 1.

In real systems, the values of desorption rate con-
stants may vary, depending not only on particle diam-
eters, but also on their chemical structure, determining
particle–surface interactions. In the computer experi-
ments discussed in this paper, the rate constants of
desorption have been chosen arbitrary, assuming only
that the probability of desorption for large micro-
spheres is lower than for the small ones. The probabil-
ity of lateral movement for both kinds of particles was
assumed to be the same and equals 0.5; however, the
maximal length of a jump was two times larger for
small particles than for the large ones (k(1)/k(2) = 2).
The exclusion parameter used for the calculation of the
probability that the adsorbing particle falling onto the
adsorbed one eventually will reach the surface was 1%.
It has to be stressed that, according to our previous
studies for X < 40%, the degree of coverage depends
very weakly on X [8].

Assemblies of deposited particles were character-
ized by surface concentrations of each type of ad-
sorbed particles and by the relevant surface coverage.
Examples of the dependence of surface coverage on
time (expressed as a number of cycles) for systems
with 10% and 90% of small particles in the bulk are
shown in Fig. 3.

Plots in this figure show a very rapid increase of the
surface coverage with large particles. However, after
passing a maximum, the surface coverage with large
particles slowly decreases to equilibrium. The decrease
of the surface coverage with large particles is accom-
panied with an increase of the surface coverage with
small particles. It is worth noting that the total cover-
age (the sum of the coverage with large and small
particles) approaches an equilibrium value much ear-
lier than the partial equilibria are established. Similar

behaviour (replacement of the large particles with the
small ones) has been noticed recently for the system
with reversible adsorption, without diffusion of par-
ticles on the surface and without assumption of ballis-
tic particle deposition [12]. However, in our studies,
we noticed a higher equilibrium surface coverage,
which was reported in the above-mentioned paper.
Such difference is not unexpected, since it has been
shown that ballistic deposition of microspheres and
their lateral diffusion allow for denser packing of par-
ticles and thus for a surface coverage higher than
0.547 (the value corresponding jamming limit for the
RSA model) [8,14].

The whole process of particle deposition could be
divided into two parts (cf. Fig. 3). The first one is the
stage during which the total surface coverage ap-
proaches values differing by less than ca 5% from the
corresponding equilibrium coverage. During the sec-
ond stage, the total coverage almost does not change
and the final, complete equilibrium is established
mainly by replacement of large particles with the small
ones. Because during the second stage the changes of
the total coverage are very slow, it is reasonable to
assume that at any moment the distribution of adsorbed
particles onto the surface is also close to the equilib-
rium distribution and the area excluded form adsorp-
tion (due to interference of adsorbed particles) does not
depend directly on time ()W/)t = 0). Thus, for the
second stage, one can write the equation (derived from
equation (3)):

(6)
dNi

dt = k′ai C0 fi � 1 − W� h1, h2 � � − k ′di Ni, i = 1, 2

where Ni denote surface concentration of adsorbed
particles of i type, k ′ai = kai ⁄p ri

2 and k ′di = kdi ⁄p ri
2, C0

denotes the total concentration of particles in bulk
and fi the corresponding fraction of particles in the
bulk.

High adsorption rate constants and very slow des-
orption ones induce a very high surface coverage dur-
ing the second stage of particle adsorption. A particle
incoming from bulk can be adsorbed only when in the
preceding moment some other have been desorbed,
making sufficiently large free space. Adsorption of a
large particle requires either preceding desorption of a
needed number of small particles from the area with
appropriate size or desorption of a large particle. Thus,
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during the second stage of the deposition process, the
probability of formation of cavities for incoming large
particle would be proportional to:

(7)k ′d2 N2 + �n � k ′d1 N1 �
n

In expression (7), n is a number of small particles that
must be desorbed from a given area to make space for
adsorption of the large one and �n is a coefficient. The

coefficient �n is equal to the ratio of the area liberated
by desorption of n adjacent small particles and the area
liberated by desorption of one large particle.

Computer experiments did show that for the systems
with low desorption rate constants and low concentra-
tion of small particles in the bulk, at the beginning of the
second stage, the surface concentration of small par-
ticles is lower than the surface concentration of the large
particles. Therefore, at this moment the second term in

Fig. 3. Dependence of surface coverage on time: (top) f1 = 0.1; (bottom) f1 = 0.9. Inserts illustrate the short-time behaviour.
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equation (7) is much smaller than the first one. With
time, the first term decreases (N2 decreases) and the
second one approaches a constant (N1 increases and
approaches the equilibrium value). In computer experi-
ments with high fraction of small particles in bulk, we
noticed that at the beginning of the second stage, the
surface concentration of small particles is close to the
corresponding equilibrium value (cf. Fig. 3).

Thus, at the second stage of particle deposition, for
the systems with rate constants of desorption much
lower than the rate constants of adsorption, the prob-
ability of forming cavities for adsorption of large par-
ticles could be approximated as follows:

(8)k ′d,2 N2 + A

where A is a constant.
Therefore, the expression for the surface fraction

available for adsorption of large particles could be
written as:

(9)1 − W� h1, h2 � = b� k ′d,2 N2 + A �

where b is a proportionality coefficient.
Substitution of expression (9) into equation (6)

leads to the following kinetic equation for the surface
concentration of large particles (equation (10)):

(10)
dN2

dt = b C0 f2 k ′a2 k ′d2 N2 + b C0 f2 k ′a2 A − k ′d2 N2

The solution of this equation is given below:

(11)N2 = � N2,s − N2,e � exp �− k ′d2� 1 − b k ′a2 C0 f2 � t � + N2,e

In equation (11), t = 0 is assigned to the beginning
of the second stage, N2,s denotes the surface concentra-
tion of large particles at this moment and N2,e is the
corresponding equilibrium surface concentration.

After rearrangement of equation (11), we could
write:

(12)
ln�N2,s − N2,e

N2 − N2,e
�= k t

where:

(13)k = k ′d2� 1 − b k ′a2 C0 f2 �

Because during the second stage of particle deposi-
tion the total surface coverage is very close to its
equilibrium value, we did assume that the number of
adsorbed small particles replacing the large one that

has been desorbed is constant; the following equation
holds:

(14)−
dN2

dt + e
dN1

dt = 0

where e denotes the average number of small particles
replacing the desorbed large one.

Substitution of N2 from equation (11) into (14) and
resolution of the obtained equation yields:

(15)N1 = � N1,s − N1,e � exp� −k t � + N1,e

where N1,e − N1,s = � N2,s − N2,e �.
Rearrangement of expression (15) gives:

(16)
ln�N1,e − N1,s

N1,e − N1
�= k t

With purpose to verify applicability of the discussed
above approximations we used values of surface con-
centrations of adsorbed particles obtained from com-
puter experiments as input data for the simple analytical
approximate expressions (12), (13) and (16). By using
these expressions it is possible to evaluate the desorption
rate constant for large particles and compare this value
with the ‘true’ value used in computer experiment. Ex-
amples of plots of the left-hand sides of equations (12)
and (16) as a function of time are shown in Fig. 4.

Plots in Fig. 4 reveal that indeed at the second stage
of particle deposition the kinetic equations (12) and
(16) describe quite well the changes in composition of
adsorbed monolayer. At long time plots could be ap-
proximated with straight lines that are nearly parallel
for small and large particles. Slopes of these plots
equal to the rate parameter k (cf. formulae (12) and
(13)) were slightly different for different fractions of
small and large particles in bulk (f1, f2).

Fig. 5 shows the dependence of the rate parameter k
on the fraction of large particles (f2). Straight line fitted
to the points has a negative slope, as required by equa-
tion (13). Intercept of this line on the ordinate was
3.38 × 10−5, whereas value of the desorption rate con-
stant used for computer simulations was 3.33 × 10−5.

Computer experiments described above were per-
formed for k ′a�1� ⁄k ′d�1� = 7.5.103 and k ′a�2� ⁄k ′d�1�
=3.0 .104; however, we found a good agreement be-
tween the desorption rate constants used for simula-
tions and determined using equations (12), (13) and
(16) for all systems with ratios of k ′a�1� ⁄k ′d�1� and
k ′a�2� ⁄k ′d�1� exceeding 1000.
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Computer experiments were used also for the deter-
mination of the value of the e parameter (e = dN2/dN1,
cf. equation (14)). Obtained data indicated that e could
be approximated with the ratio of projected surfaces of
the large and small particles (p r2

2/p r1
2). For the ratio

of the large and small particle diameters equal to 2, we
found e = 3.89 ± 0.06 (for r2

2/r1
2 = 4).

Analyses of computer simulation data indicated that
in the real systems, the derived equations could be useful

for determination of the rate constant of desorption of
large particles on the basis of analysis of changes of
surface concentrations of adsorbed particles.
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Fig. 4. Kinetic plots for the second stage of particle deposition:
(top) f2 = 0.1 (k = 3.05 × 10−5); (middle) f2 = 0.5 (k = 2.52 × 10−5),
(bottom) f2 = 0.9 (k = 2.11 × 10−5). Values of k were determined from
slopes of the straight-line segment of kinetic plots.

Fig. 5. Dependence of k on f2. Intercept on the ordinate equals
3.38 × 10−5.
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