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Abstract

This paper describes the phenomenon of Bistable Electron Magnetic Resonance, which manifests itself by a resonance line
with a distorted shark fin-like shape. This effect requires only a fluctuating hyperfine interaction between electron spins and
nuclear spins. It is demonstrated for shallow donors in semiconductors and conduction electrons in light metals. Bistability is an
intrinsic property of electron magnetic resonance when the shift of the resonance by the nuclear polarization is larger than the
EPR linewidth. To cite this article: D. Gourier et al., C. R. Chimie 7 (2004).
© 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Cet article décrit le phénomène de résonance magnétique électronique bistable, qui se traduit par une raie de résonance
distordue en forme d’aileron de requin. L’obtention de cet effet nécessite seulement une interaction hyperfine en régime de
fluctuation rapide. Un tel effet est démontré pour des donneurs diffus dans les semiconducteurs et pour les électrons de
conduction dans les métaux légers. La bistabilité est une propriété intrinsèque de la résonance électronique quand le déplacement
de la raie de résonance par la polarisation nucléaire est plus grand que la largeur de raie. Pour citer cet article : D. Gourier et
al., C. R. Chimie 7 (2004).
© 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Important devices in computing, signal processing
and communication technologies are based on bistable
systems used as switches, memory elements and logic
gates. Generally speaking, a system is bistable if it

exhibits two stable output responses R for a single
perturbation or input signal P, and shows a hysteresis
loop in the curve R = f(P). Thus a bistable system
reveals a different response for upward and downward
sweeps of the input signal.

Two ingredients are required to generate a bistable
phenomenon: (i) a feedback loop and (ii) a non-linear
effect. In the particular case of optical bistability, – i.e.
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the bistability of the interaction of light with matter –
the first experimental example of bistable set-up is a
non-linear medium placed in a Fabry–Perot cavity [1].
It is important to note that the bistability is macro-
scopic in this kind of system, whereby the non-
linearity is brought by the optical material and the
feedback is produced by the cavity mirrors.

In the forthcoming decades, advances in nano-
sciences and nanotechnology promise to have major
implications in materials devices and systems. For this
reason, macroscopic properties such as optical bista-
bility have to be scaled down to the nanometre level, in
the domain of individual atoms, molecules or clusters.
Recently, intrinsic (or mirrorless) optical bistability
(IOB) of the emission from Yb3+ ion pairs have been
observed in an ytterbium doped solid matrix [2]. How-
ever, the origin of this bistability remains puzzling, and
different mechanisms are still debated.

For this reason, it is tempting to investigate the
equivalent of IOB in magnetic resonance, reminding
that concepts invented for nuclear magnetic resonance
have often been a source of inspiration in optics com-
munity [3]. In the last decade, we showed that Electron
Magnetic Resonance in solids is an intrinsically
bistable phenomenon when several conditions are sat-
isfied [4]. This effect is hereafter referred to as Bistable
Electron Magnetic Resonance (BEMR). In this case,
the non-linear effect is the saturation of the resonance,
and the intrinsic feedback loop is provided by the
nuclear spins via the Overhauser effect [5]. The de-
tailed understanding of the mechanism of bistability
allowed us to predict and observe BEMR in several
systems, such as InP [6], metallic lithium colloids
[7,8], gallium oxide [4], and to explain the origin of
hysteresis observed in the EPR of GaAs–GaAlAs het-
erostructures [9]. It is important to realize that this
elementary two-component elementary bistable sys-
tem, composed of saturable absorbers (the electron
spins) and intrinsic feedback elements (the nuclear
polarization via the Overhauser effect) can in principle
be extrapolated to UV-visible IOB with other types of
two-component systems, such as atom pairs for ex-
ample. In this case, the saturable absorber is the atom
probed by the electromagnetic field, and the feedback
system is the polarization induced on the second atom
by the saturated absorption [10]. In this paper, we
restrict IOB to BEMR, its magnetic equivalent.

2. The ‘shark-fin’ effect

The transition between two quantum states induced
by an electromagnetic field, the basic event in spectros-
copy, exhibits a symmetrical lineshape. Experimen-
tally, the spectrum remains always unchanged upon
upward and downward sweeps of the angular fre-
quency x of the electromagnetic field (or the magnetic
field amplitude B0 at fixed frequency x in the case of
EPR). This usual situation is illustrated by the dotted
line in Fig. 1b. However, it can be easily imagined that
if the theoretical lineshape is bent in such a way that it
describes a ‘shark-fin’ shape, the experimental spec-
trum becomes dependent on the field sweep direction,
with a hysteresis width delimited by abrupt transitions
at critical frequencies x↑ and x↓ (or magnetic field
values B↑ and B↓ in EPR). This bistability window is
characterized by a well-defined field range where the
quantum system does not absorb the radiation for the
increasing field sweep mode (the a-branch), while it
strongly absorbs this radiation for the reverse field
sweep mode (the c-branch). In this case, a portion of
the spectrum (the b-branch) cannot be recorded, and is

Fig. 1. (a) Graphical representation of the response R of the system
described by Eqs. (1) and (2). Case (i) corresponds to a monostable
situation, while case (ii) corresponds to a bistable situation. (b)
Shape of a transition induced in a two-state quantum system in
monostable (case (i)) and bistable (case (ii)) situations. In the latter
case, the transition exhibits a ‘shark-fin’ shape.
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lost experimentally (full line in Fig. 1b). It should be
emphasized that this bistability in a two-state quantum
system implies a memory of the field during the tran-
sition, since the response for given values of the control
parameter (the frequency, or the magnetic field, etc.)
depends on previous values of these parameters.

We have recently shown [10] that this ‘shark fin’
effect in a spectroscopic transition occurs if the quan-
tum system is composed of two subsystems L and K,
linked by a weak interaction V which fluctuates with a
correlation time sc ! \/V, the well-known ‘narrowing
condition’ in magnetic resonance. The two subsystems
retain the memory of their mutual interaction during sc.
The consequence is that correlations between L and K
vanish after a time t @ sc, which means that we may
clearly distinguish the subsystem L probed by the
electromagnetic field and the subsystem K responsible
for the feedback loop. When the narrowing condition
sc! \/V is fulfilled, the steady-state response R (for
example the absorption) of the LK system versus the
angular frequency x can be written with two coupled
equations of the type [10]:

(1)
R =

a

1 + b (c − x)2 + a

(2)
R = (d − x )

1

e

where coefficients a to e are functions of the control
parameters, such as the temperature, the power of the
incident radiation, and of material-dependent
parameters such as the relaxation times of the L and K
subsystems, and the frequency of the probed
subsystem L. All these parameters are discussed in part
3 of this paper, where Eqs. (1) and (2) are represented
by Eqs. (4) and (7), respectively. Equations (1) and (2)
correspond to the non-linear process and the feedback
loop, respectively. Combining (1) and (2) shows that R
is a function of itself, – i.e. R = f(R) –, and bistability
occurs if R exhibits three values (two stable and one
unstable) for one set of control parameters.

A renormalization of the resonance frequency is
necessary to get a bistable ‘shark-fin’ shape. By renor-
malization, it is meant that the resonance frequency has
to change continuously during the interaction with the

electromagnetic field. This renormalization is included
in Eq. (2), which directly comes from the condition
sc!\/V [10]. Fig. 1a shows a graphical representation
of the coupled Equations (1) and (2). The system is
monostable (no memory) when the straight line (Eq.
(2)) and the bell-shaped curve (Eq. (1)) have only one
crossing point (case (i)). In this case, the resulting
monostable lineshape, corresponding to the ensemble
of crossing points versus x, is represented by the
dotted curve in Fig. 1b. The system is bistable when
Eqs. (1) and (2) exhibit three crossing points a, b and c
(case (ii) in Fig. 1a). In this case, the response of the
system, represented by the set of crossing points versus
x, exhibits the expected ‘shark-fin’ shape for bistabil-
ity (full lines in Fig. 1b). Whether the response R is
bistable or not depends only on the set of parameters
a–e in Eqs. (1) and (2).

3. The mechanism of bistability in Electron
Magnetic Resonance

We pointed out that a bistable shark-fin-like reso-
nance might exist if two conditions are fulfilled: a
non-linearity in the radiation-matter interaction, and a
feedback mechanism. A collection of electrons in a
magnetic field B0, characterized by a spin S = 1/2 inter-
acting with neighbouring nuclear spins I via an hyper-
fine interaction A is the most elementary pair system
that can exhibit a bistable interaction with a microwave
electromagnetic field [4]. In this case, the non-linearity
is the saturation of the resonance. It is well known that
an electron spin resonance transition at energy
\ x = g b B0 is saturable at moderate value of the
microwave field B1 if spin–orbit coupling effects are
small, – i.e. if the g-factor is close to the free spin value
ge = 2.0023. We thus consider the saturation factor s,
defined as follows [11]:

(3)
s =

�Sz
0 � − �Sz �
�Sz

0 �
where �Sz

0� = –g b B0/4 k T and �Sz� are the electron
spin polarizations at thermal equilibrium (in the high
temperature limit) and under microwave irradiation,
respectively. Thus Eq. (3) gives s = 0 at thermal
equilibrium and s = 1 for complete saturation. The
equivalent of Eq. (1) in magnetic resonance is written
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as follows for an electron spin system [4] (step 1 in
Fig. 2) :

(4)s =
c2 T1 T2 B1

2

1 + c2 T1 T2 B1
2 + c2 T2

2
�Beff − \x ⁄ g b�

2

where T1 and T2 are the usual longitudinal and
transverse relaxation times for electron spins, Beff is
the effective magnetic field seen by the electrons, and
c = g b/\ is the electron gyromagnetic ratio. The main
effect of saturation is the transfer of electron
polarization to nuclear spins via the hyperfine
interaction, with the consequence that the nuclear
polarization deviates from the thermal equilibrium
polarization � Iz

0� (step 2 in Fig. 2):

(5)� Iz � = −
4

3
I (I + 1) �Sz

0 � fs

where the leakage factor 0 ≤ f ≤ 1 is defined below.
The feedback loop of BEMR is due to this polariza-

tion transfer, and must operate in such a way that it
produces a renormalization of the resonance [10], – i.e.
a shift of the resonance field (or frequency) during the
interaction with the microwave radiation. This renor-
malization is possible only if the correlation time sc of
the unpaired electron at the nuclear position is much
shorter than \/A [10]. For most paramagnetic defects in
solids (impurities, point defects...), sc is generally
characterized by sc > \/A, so that the hyperfine interac-
tion is resolved in the EPR spectrum, or contributes to
the inhomogeneous broadening of the resonance line.

Renormalization is thus not possible for localized elec-
trons and large hyperfine coupling, and we do not
expect bistability to occur in this case.

If the electron spin density is distributed over many
nuclei, which occurs for shallow donors in semicon-
ductors or for electrons delocalised in conduction band
of solids, the hyperfine interaction A with each nuclear
spin becomes small and \/A is large. If, on the other
hand, the spin density diffuses either by electron mo-
tion or by exchange interaction between electron spins,
the correlation time sc of the unpaired electron at a
nuclear site is considerably shortened (sc < 10−13s for
exchange interaction in the meV range) and the condi-
tion sc!\/A prevails even for large hyperfine coupling
A. The EPR line is exchanged (or motionally) nar-
rowed with no remaining traces of the hyperfine split-
ting. It is important to note that in this case the electron
resonance position is shifted by an effective nuclear
field Bn = N A� Iz

0�/g b, where N is the number of nuclei
interacting with the electron spin, and the thermal
equilibrium nuclear polarization is given by:

(6)� Iz
0 � =

gn bn I (I + 1) B0

3 k T

This nuclear field shifts the EPR resonance line to
low field, and thus play the role of the feedback system
as it modifies the saturation factor (4) via the effective
field Beff = B0 + Bn seen by electron spins.

We have now to determine the equivalent of Eq. (2)
for the feedback, s = f(Beff) and obtain the equation
s = f(s) of bistability by combining this equation with
Eq. (4). In the case of exchange or motional narrowing
regime, the dynamic nuclear polarization occurs via
the Overhauser effect. The decrease of the electron
spin polarization �Sz� induced by saturation is trans-
ferred to � Iz� via the ‘flip-flop’ relaxation mechanism
D(ms + mI) = 0 with a characteristic time Tx. This
enhancement of the nuclear field Bn upon saturation is
at the origin of the following feedback equation of
bistability [4] (step 3 in Fig. 2):

(7)
s =

Beff − B0

�DBov�max

with

(8)�DBov�max =
I (I + 1) N A f B0

3 k T

Fig. 2. Decomposition of the mechanism of BEMR into four elemen-
tary steps, for a system composed of electron spins interacting with
nuclear spins via a hyperfine interaction A.
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being the largest possible value of the nuclear field
enhancement, which is obtained for complete
saturation. The parameter f is the leakage factor, which
reflects the efficiency of the flip-flop relaxation
mechanism upon competition with other relaxation
mechanisms. The leakage factor is given by [12]:

(9)
f =

1 ⁄ Tx

1 ⁄ Tx + 1 ⁄ Tn

where Tn represents all the other nuclear relaxation
times. The optimal situation corresponds to f ≈ 1,
which is favoured when the hyperfine interaction A is
of purely Fermi-type:

(10)A = (8 p ⁄ 3 ) h−1g b gn bn |W0|
2

where |W0|
2 is the electron spin density at each of the N

nuclear spins.
As pointed out in the preceding part, bistability is

expected when the line described by Eq. (7) has three
crossing points with the curve of Eq. (4). This is
equivalent to say that that the following equation
s = f(s), obtained by combining Eqs. (4) and (7), repre-
senting step 4 in Fig. 2:

(11)s =
c2 T1 T2 B1

2

1 + c2 T1 T2 B1
2 + c2 T2

2
� B0 + s(DBov)max − \ x ⁄ g b �

2

exhibits three different values of the saturation factor s
for fixed values of the external field B0 and other
parameters. Under these conditions, the EPR line
exhibits the ‘shark-fin’ shape of Fig. 1b, where x must
be replaced by the external magnetic field B0

(experimental situation for CW EPR). The EPR signal
being detected by modulation of the magnetic field B0,
the intensity IEPR of the BEMR signal is proportional
to the first derivative of the absorption, which gives [4]:

(12)IEPR = −I0

B1(B0 + Bn − \x ⁄ gb)

� 1 + c2 T2
2
� B0 + Bn − \ x ⁄ g b)2 + c2 T1 T2 B1

2
�

2

where the constant I0 depends on temperature,
instrumental parameters, T2, g-factor and unpaired
spin concentration. Fig. 3 shows an example of BEMR
in the case of b-Ga2O3. Part a of this figure shows the
Overhauser shift of the resonance field upon saturation
of the EPR line, the spectra being recorded upon
decreasing the magnetic field B0. Part b of Fig. 3 shows
the theoretical BEMR absorption for an incident
microwave power P = 63 mW, simulated with

T1 = T2 = 1.4 × 10–7 s, and the first derivative of the
BEMR absorption (Eq. (12)). The microwave power is
related to the microwave field B1 of Eq. (12) by
P = K B1

2, with K = 6.1 × 104 mW mT–2 for our EPR
cavity. Comparison with the experimental BEMR
spectrum recorded upon sweeping up and down the
field B0 shows a very good agreement with theory. The
bistable memory effect appears clearly in this figure, as
the electron spins do not absorb the microwave
radiation upon sweeping up B0 in the range
343.25–343.4 mT, while they absorb the radiation
upon sweeping down B0 in the same range.

4. Conditions for bistability

It should be emphasized that, in most cases, the EPR
of shallow donors or conduction electrons in solids
does not exhibit a bistable behaviour, although they

Fig. 3. (a) EPR spectra of a b-Ga2O3 single crystal at 150 K, showing
the renormalization of the resonance by the Overhauser effect, resul-
ting from the narrowing condition sc!\/A. The spectra are recorded
upon decreasing the magnetic field B0. (b) Selected BEMR spectrum
at P = 63 mW. The simulation of the absorption and the first
derivative of the absorption have been obtained with
T1 = T2 = 1.4 × 10–7 s, (DBov)max = 0.47 mT and \ x/g b = 343.51 mT.
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correspond to the optimal condition of BEMR, as dis-
cussed in part 3. The reason is due to the fact that in
most cases, Eqs. (4) and (7) have only one crossing
point in all the magnetic field range. This implies that
the values of the parameters B1, T1, T2 and (DBov)max in
Eqs. (11) and (12) are such that the nuclear field Bn has
only one value for each value of the external field B0.
However, the analysis of BEMR in terms of non-
linearity (saturable absorption, Eq. (4)) and feedback
effect (Eq. (7)) allows us to predict the characteristics
of compounds (chemical composition, electronic
structure...) and the experimental conditions (tempera-
ture, magnetic field, microwave intensity) to obtain the
‘shark fin’ shape of BEMR. Equations (4) and (7)
exhibit three crossing points in a given range of B0, the
condition for bistability, when the slope of Eq. (7) is
smaller than the tangent at the inflection point of the
curve of Eq. (4). This condition gives [13]:

(13)I (I + 1) N A f

3 k T
B0 >

8

3�3

(1 + c2 T1 T2 B1
2)3⁄2

c3 T1 T2
2 B1

2

This inequality is controlled by two kinds of param-
eters: (i) external parameters represented by the tem-
perature T and the microwave field B1, and (ii) material
parameters represented by the electron relaxation
times T1/T2, the nuclear spin I, the number N of nuclear
spins interacting with each electron (the extension of
the electronic wave function), the scalar hyperfine in-
teraction A with each nucleus and the leakage factor f.
In the case of a pure scalar (Fermi-type) hyperfine
interaction, an estimation of N A in (13) is given by A0,
the hyperfine interaction for a single ion or atom in a 2S
spectroscopic state, – i.e. a single electron in a s-atomic
orbital. We thus expect N A f ≤ A0. As B1 is a control
parameter, the right-hand member of Eq. (13) can be
minimized with respect to B1, which gives:

(14)
c T2

I (I + 1) N A f B0

3 k T
> 4

This critical inequality expresses the condition for
the existence of at least one value of the microwave
field B1 for which BEMR can be observed. By using

Eq. (8) and the expression DBpp = 2⁄��3 c T2� of the
peak-to-peak linewidth of the unsaturated line, this
inequality can be simplified into a more general form

for the existence of bistability:

(15)� DBov �max > 2�3 DBpp

which means that bistability will occur if the maximum
Overhauser shift (DBov)max of the resonance line is
larger than 3.5 times the linewidth.

The bistability condition (14) contains all the struc-
tural information concerning potential candidates for
BEMR. The most favourable compounds should be
characterized by long T2, high nuclear spin, strong
hyperfine interaction and a leakage factor close to one.
Transverse relaxation time T2 is related to both the
electronic structure of the conduction band edge and
structural defects (impurities, intrinsic defects...). In
the situation of extreme narrowing regime, imposed by
the condition sc!\/A, the electron relaxation times of
electrons in (or close to) the conduction band edge are
given by [14]:

(16)
T1 = T2 ≈ a� t⁄⁄

t⊥
�2 s

(Dg)2

where a is a constant of the order of unity. Parameters
t// and t⊥ are the transfer integrals parallel and
perpendicular, respectively, to the preferred direction
of the electronic structure. Thus, for conductors with
very anisotropic band structure, with t///t⊥ @1, the
relaxation times are generally enhanced as compared
to isotropic conductors (t///t⊥ =1). The effect of Time T2

on the BEMR spectrum is shown in Fig. 4, which
demonstrates that a moderate decrease of T2 is able to
suppress bistability by transforming the ‘shark-fin’
shape into a distorted Lorentzian shape. The other
parameters in Eq. (16) are the g-shift Dg and the
characteristic time s of conductivity. Long T2 is
favoured for small g-shift, which occurs if the
conduction band edge is made of s atomic orbitals,
preferably of light elements.

The other important factor for bistability in condi-
tion (14) is the term I (I + 1) N A f, which determines
the intensity of the nuclear polarization at a given
temperature and external magnetic field. For a solid
containing one type of nuclear spins, this term is writ-
ten as [15]:

(17)I (I + 1) N A f ≈ I (I + 1 ) A0 |Cs|
2 f

where Cs is the coefficient of s-orbitals in crystal
orbitals of the conduction band edge. The hyperfine
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interactions for 2S atoms or ions are known from
literature data. It thus appears that the most favourable
situation for BEMR is an anisotropic conductor (long
T2) with a conduction band edge made of s-orbitals
(long T2, f ≈ 1, Cs ≈ 1) of elements characterized by
large hyperfine coupling A0. For example, we expect
I (I+1) A0 values larger than 105 MHz for conduction
band edge made of s-orbitals of indium and thalium,
and between 104 and 105 MHz for gallium and caesium
[15]. Lithium should only give a value of about 103

MHz, which is compensated by a long T2 because of
the very small spin orbit coupling [7]. Therefore
BEMR results from a compromise between favourable
material characteristics (long T2, high nuclear spin I,
high A0...) and external conditions (T, B0). For very
favourable material conditions, we expect bistability in
soft experimental conditions – i.e. close to room
temperature and low magnetic field. However,
condition (14) shows that in principle all materials
should exhibit bistability, if the temperature is
sufficiently low and the magnetic field B0 sufficiently
high to satisfy the bistability condition. This critical
inequality indicates that bistability is a general
property of the EPR of conducting materials
possessing non-zero nuclear spins.

The particularly favourable characteristics of
b-Ga2O3, namely shallow donors in exchange interac-
tion, gallium nuclei with I = 3/2, strongly anisotropic
band structure, conduction band edge made of 4s gal-

lium orbitals, explain why this compound exhibits
BEMR up to room temperature [15]. However, from
known values of T2 and hyperfine coupling for the
semiconductor InP and for metallic lithium particles
embedded in insulating matrices, we expect BEMR at
liquid helium temperature and X-band frequency with
these compounds. For example, Fig. 5 shows the cal-
culated EPR spectrum of submicronic metallic par-
ticles at different microwave power values. Fig. 6
shows the experimental spectrum of lithium particles
produced by UV irradiation of LiH powder [8]. The
spectrum is simulated by summing the contributions of
two types of lithium, one with a long T2 (population A,
T2 = 4.8 × 10–6 s) and the other with a shorter T2

(population B, T2 = 9 × 10–7 s). The BEMR spectrum
of shallow donors in InP single crystal at 3 K is shown
in Fig. 7, where it is compared with the spectrum
predicted by considering only parameters known in the
literature [6].

5. Analogy with other types of bistability:
the dynamic potential

Bistable systems in physics, chemistry and biology
are often described by a potential U = f(Q) where Q is a

Fig. 4. Influence of the electron relaxation time T2 on the BEMR
shape. Parameters of the calculation: I (I + 1) N A f = 13 650 MHz
(corresponding to gallium nuclei), T = 150 K, B1 = 6 × 10–2 mT, and
T1 = T2.

Fig. 5. Theoretical EPR spectrum for submicronic metallic lithium
particles. Parameters of the calculation: T = 4 K ; T1 = T2 = 0.5 × 10–6

s; I (I + 1 ) N A f = 200 MHz.
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configuration (or reaction) coordinate, as shown in
Fig. 8 [16]. The minima Ua and Uc represent the stable
steady states, while the local maximum Ub is the un-
stable steady state. The shape of the potential is deter-
mined by the control parameters, so that the hysteresis
cycle across a bistable resonance (Fig. 1b) can be

described as follows in the potential representation, in
terms of the overdamped motion of a fictitious particle
in the Q space. Starting from the low frequency x (or
low-field B0) and sweeping up to x ≤ x↓ , the potential
is monostable (Fig. 8a). For x↓ < x < x↑ , the branch a
of the spectrum of Fig. 1b is recorded, which corre-
sponds to the bistable potential of Fig. 8b, with the
system trapped in the a-state. For x = x↑ , the spec-
trum exhibits an abrupt increase of intensity (Fig. 1b),
which corresponds to a vanishing potential barrier in
Fig. 8c, with the system making a transition to the
c-state. The system becomes monostable for x > x↑
(c-state only). For a decreasing variation of x, and
starting from x > x↑ , the spectrum of Fig. 1b follows
the c-branch up to x > x↓ , which again corresponds to
the potential of Fig. 8b, but the system is now trapped
in the c-state. The abrupt variation of intensity at
x = x↓ in Fig. 1b corresponds to the potential of
Fig. 8d, with a vanishing potential barrier and a transi-
tion to the stable a-state.

In order to get a more familiar picture of BEMR in
terms of overdamped motion in the potential U = f(Q),
let us consider the rate equation for the dynamic
nuclear polarization [17]:

Fig. 6. Experimental and calculated BEMR spectra for submicronic
lithium particles at 4 K produced by UV irradiation of LiH powder.
Parameters of the calculation : P = 25 mW. Two populations of
particles are considered. Population A: T1 = T2 = 5 × 10–6 s; I (I + 1)
N A f = 110 MHz. Population B: T1 = T2 = 9×10–7 s ; I (I + 1) N A f =
140 MHz.

Fig. 7. Experimental and calculated BEMR spectra for InP at 3 K.
Parameters of the calculation: P = 5 mW (B1 = 10–2 mT),
T1 = T2 = 4 × 10–8 s, I (I + 1) N A f = 168 430 MHz. The unsaturated
spectrum (P=0.1 mW, B1 = 1.6 × 10–3 mT) is shown on the top of the
figure.

Fig. 8. Representation of the dynamic potential U versus configura-
tion coordinate Q, for four selected situations of the bistable transi-
tion of Fig. 1b (case ii).
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(18)

�Bn

�t
=

1

Tx
�−Bn + (DBov)max

c2 T1 T2 B1
2

1 + c2 T1 T2 B1
2 + c2 T2

2 (B0 + Bn − \ x ⁄ g b)2�
This equation describes the time evolution of the

nuclear field Bn. The steady-state nuclear field, corre-
sponding to )Bn/)t = 0 in Eq. (18), is reached after a
period in the order of magnitude of the electron-
nuclear (flip-flop) relaxation time Tx, which amounts to
0.1 to 0.5 s in b-Ga2O3 at 150 K [17] and 140 s in InP at
3 K [6]. Equation (18) being autonomous and a con-
tinuous function of a single variable (Bn), it is similar to
the equation of overdamped motion of a fictitious par-
ticle in the magnetic field space, for which we may
associate the potential U, defined as follows:

(19)�Bn

�t
= −

�U

�Bn

where −)U/)Bn represents the damping force acting on
the fictitious particle, and the nuclear field Bn plays the
role of the configuration coordinate Q in Fig. 8. The
steady states a, b, c correspond to )U/)Bn = 0.
Integration of Eq. (19) gives the following expression
for the potential U [17]:

(20)
U(Bn) =

Bn
2

2 Tx

−
(DBov)maxc T1 B1

2

Tx (1 + c2 T1 T2 B1
2)1⁄2 arc tan�c T2 (B0 + Bn − \ x ⁄ g b)

(1 + c2 T1 T2 B1
2)1⁄2 �

This potential exhibits two minima (bistability) if
condition (13) is satisfied. Comparison of Eqs. (20)
and (12) shows that the steady state BEMR intensity is
proportional to the second derivative of the potential at
the minima a and c, �U″�Bn � � a,c = ��

2U⁄�Bn
2
�a,c:

(21)IEPR = I0 − I0 Tx �U ′′ (Bn) � a,c

Fig. 9 shows a 3D plot of the dynamic potential
calculated from Eq. (20) for InP, corresponding to the
spectrum of Fig. 7. Under slow sweeping of the mag-
netic field B0, the shape of the potential is continuously
modified, and exhibits either one or two minima. The
‘trajectory’ of the polarized electron-nuclear spin sys-
tem (the fictitious particle) in the potential is marked
by the full line in Fig. 9. It can be seen that the system
switches from one potential minimum to the other

when the potential barrier vanishes. Fig. 9 also shows
that the shape of the first derivative of the EPR absorp-
tion is proportional to the second derivative of the
dynamic potential.

6. Conclusion

Magnetic resonance in an electron spin system un-
der extreme narrowing condition is an intrinsically
bistable resonance when the solid contains nuclear
spins. BEMR implies a memory effect at the level of
elementary quantum systems interacting with an elec-
tromagnetic field. Despite its originality with respect to
other bistable systems described at the molecular level,
such as bistable spin transitions for example [18], the
similarity of these types of bistability appears more
clearly when BEMR is described in terms of dynamic

Fig. 9. (a) 3D plot of the dynamic potential calculated from Eq. (20)
for InP at 3 K, corresponding to the spectrum of Fig. 7. (b) Variation
of the BEMR intensity (Eq. (21)) deduced from the trajectory of the
fictitious particle (the resonating electron–nuclear-spin system) in
the potential.
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potential in the nuclear field space. BEMR also pro-
vides the simplest case of ‘optical’ bistability in a pair
system AB, where the saturable absorber A is the
electron-spin system and the feedback system B is the
ensemble of nuclear spins polarized by A. The mecha-
nism of BEMR can be extrapolated to IOB in pair
systems AB, including atomic pairs [10].
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