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Abstract

A geometrical approach of the quadrupolar interaction is presented. First- and second-order effects on all transitions are
represented by quadrics and quartics. This approach allows a simple and exhaustive description of the Solomon multiple echoes:
the location of the echoes in the time domain, as well as their nature, is determined without calculation. Experimental evidence
of multiple echoes in the case of a 27Al–O–P cluster is presented. The selection of 2Q coherences by appropriate phase cycling
is presented as well. DAS and MQ MAS experiments are also described in this particular frame. To cite this article:
C. Bonhomme et al., C. R. Chimie 7 (2004).
© 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Une approche géométrique de l’interaction quadripolaire est présentée. Les effets de cette interaction au premier et au
deuxième ordre en perturbation sont représentés par des quadriques et des quartiques. Cette approche permet une interprétation
simple et complète des échos multiples de Solomon : la position des échos dans le domaine temporel ainsi que leur nature sont
déterminées. Nous présentons la mise en évidence expérimentale de ces échos multiples dans le cas d’un cluster de type
27Al–O–P. La sélection des cohérences à 2Q par un cyclage de phase approprié est abordée. Les expériences de réorientation
DAS et MQ MAS sont illustrées. Pour citer cet article : C. Bonhomme et al., C. R. Chimie 7 (2004).
© 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Since their discovery by Hahn [1], echoes play a
crucial role in the development of new experimental

schemes in NMR. Solomon [2] extended the two-pulse
sequence to the study of quadrupolar nuclei and ob-
served multiple echoes for K127I (I = 5/2). More re-
cently, there has been a renewal of interest for quadru-
polar echoes (I = n/2, n ≥ 3) in static experiments,
emphasizing (under precise assumptions) the location
of echoes in the time domain and their nature [3–6].
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Moreover, two experimental schemes designed for the
total averaging of the second-order quadrupolar broad-
ening are based on echoes: the Dynamic Angle Spin-
ning (DAS) experiment [7], and the Multiple Quantum
Magic Angle Spinning (MQ MAS) experiment [8]. In
both cases, the echoes are obtained under macroscopic
reorientation of the sample and are encoded by isotro-
pic components. In that sense, both schemes lead to
highly resolved spectra for quadrupolar nuclei.

In this paper, we present a pictorial representation of
the various transitions (single quantum (SQ), or mul-
tiple quantum (MQ)) involved in the multilevel system
of a given quadrupolar nucleus (I = n/2, n ≥ 3) (section
2). This approach is an extension of the ellipsoid rep-
resentation [9] to higher orders of perturbation [10,11].
In section 4, we present a pictorial approach of the
so-called Solomon echoes [2,5]: the location of the
echoes as well as their nature (SQ and/or MQ – al-
lowed or forbidden) will be derived very easily. The
experimental evidence of Solomon echoes for an alu-
minophosphate cluster (27Al, I = 5/2) [12] will be
presented subsequently. In section 4, the DAS and MQ
MAS experiments will be illustrated by averaged sur-
faces. The equations of these averaged surfaces can be
derived analytically under fast rotation. The main results
concerning DAS and MQ MAS (isotropic shifts...) will
be easily derived. We note that our approach is essen-
tially Cartesian and that explicit reference to the Leg-

endre polynomials is not necessary. Moreover, we be-
lieve that such a representation may unify the notion of
echo in both static and rotating modes.

2. Pictorial representation of transitions for
a quadrupolar nucleus I = n/2 (n ≥ 3)

Following Man [13,14], we define the line shift in
Robs (see below) related to the transition between two
energy levels |m′ � and |m� by:

(1)xm′,m
static = �m ′�� HQ

(1) + HQ
(2) ��m ′ �

− �m�� HQ
(1) + HQ

(2) ��m � = xm′,m
(1)static + xm′,m

(2)static

Robs corresponds to the frame rotating with the an-
gular frequency x0 relative to the laboratory frame
Rlab. In Eq. (1), HQ

(1) and HQ
(2) correspond to the

first-order and the second-order term of the quadrupo-
lar Hamiltonian in standard perturbation theory, re-
spectively [15]. When m′ = m – 1, the SQ transitions
are described. m = 1/2 corresponds to the central tran-
sition (CT), which is not shifted by the first-order
quadrupolar interaction. m ≠ 1/2 corresponds to the (2I
- 1) satellite transitions (ST). When m′ ≠ m – 1, the MQ
transitions are described. Assuming gQ = 0 for simplic-
ity, the terms xm′,m

(1)static and xm′,m
(2) static in Eq. (1) are

given by [11]:

(2)xm′,m
(1)static = 2 p

3

4

CQ

2 I (2 I − 1)
(3 cos2b0 − 1)(m′2 − m2)

(3)xm′,m
(2)static =

4 p2

12 x0
� 3 CQ

2 I (2 I − 1)�
2�

cos2b0 (1 − cos2b0)[m (8 m2 − 4 I (I + 1) + 1) − m ′ (8 m′2 − 4 I (I + 1) + 1)]

+
3

8
(1 − cos2b0)

2 [m (−2 m2 + 2 I (I + 1) − 1) − m ′ (−2 m′2 + 2 I (I + 1) − 1)] �
CQ = e2 q Q/h is the quadrupole coupling constant.

b0 corresponds to the polar angle of B0 in the
quadrupolar PAS (principal-axis system). In order to
introduce our pictorial representation of transitions, we
focus first on the first-order term, xm′,m

(1)static.
Consider the quadric (second-degree surface),
whose equation in the quadrupolar PAS is given by
[10]:

(4)(m2 − m′2) � �X2 + Y2� − 2 Z2 � = +1

Assuming m2 > m′2, this surface corresponds to a
hyperboloid of one sheet. The intersection of the
surface with the B0 direction leads to the intersection
radius r given by: r–2 = (m2 – m′2) (1 – 3 cos2b0). It
follows that (+r–2) is directly related to the angular part
of the first-order shift (Eq. (2)). For b0 < nm = 54.74°
(the magic angle), the intersection radius cannot be
defined. We use then the complementary quadric,
given in the PAS by:

(5)�m2 − m′2� ��X2 + Y2� − 2 Z2 � = −1
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It corresponds to a hyperboloid of two sheets. The
intersection of the complementary surface with the B0

direction leads to the intersection radius r given by:
r–2 = (m2 – m′2) (3 cos2b0 – 1). (–r–2) is related to the
angular part of Eq. (2).

It follows that the first-order shift, xm′,m(1)static, cor-
responding to the transition between |m′ � and |m�, can
be safely illustrated by a set of two complementary
hyperboloids. Each surface is ‘signed’ (+ or –), as
(+r–2) or (–r–2) leads alternatively to the angular part of
Eq. (2). This representation can be generalized to gQ ≠
0: two complementary elliptic hyperboloids are then
necessary (when gQ = 0, the corresponding surfaces are
of revolution – see above). Considering the second-
order shift, xm′,m

(2)static, we have shown previously that
quadrics cannot be connected to the angular part of Eq.
(3) [11]. However, a set of signed complementary
homogeneous quartics (fourth-degree surfaces) can
achieve this goal. As an example, we consider the
central transition (m′ = m – 1, m = 1/2), which is
subjected solely to second-order effects. Eq. (3) leads
to:

(6)
x−1⁄2,1⁄2

(2)static = −
4p2

6x0
� 3 CQ

2 I (2 I − 1)�
2

× �I (I + 1) −
3

4��3

8
sin2b0 (9 cos2b0 − 1)�

We define two complementary quartics in the qua-
drupolar PAS by:

(7)�3 ⁄ 8��X2 + Y2� �8 Z2 − �X2 + Y2� � = ± 1

The radius r corresponding to the intersection of the
surfaces with the B0 direction are given by: (±r–4) =
(3/8) sin2b0 (9 cos2b0 – 1). It corresponds exactly to the
angular part of Eq. (6). At this point, several comments
can be made:

• (i) when gQ ≠ 0, generalised quartics can always
be defined; explicit Cartesian equations of these
surfaces are given in [11];

• (ii) considering both terms, xm′,m
(1)static and

xm′,m
(2)static (Eqs. (2) and (3)), the involved angu-

lar part Ang�xm′,m
static 	 can always be illustrated by a

set of complementary quartics; it follows then that
� ±r−4

� = Ang�xm′,m
static 	;

• (iii) for any higher order of perturbation (n), ho-
mogeneous surfaces of degree 2n are able to illus-

trate the shifts, assuming � ±r−2n
� = Ang�xm′,m

static 	;
for instance, sixth-degree surfaces [16] are di-
rectly connected to third-order effects on quadru-
polar transitions [17].

The pictorial representations of all SQ and MQ
transitions for a spin I = 3/2 are presented in Fig. 1.

3. Pictorial approach of Solomon echoes [2,5]

3.1. Description of evolution and refocusing
of coherences by hyperboloids

The main purpose of this section is to illustrate very
easily the time-domain response of a quadrupolar
nucleus, subjected to a two-pulse sequence (see Fig. 2).
Only the first-order quadrupolar interaction is consid-
ered, and dipolar couplings with other nuclei are ne-
glected (these assumptions correspond to the quadru-
polar Solomon echoes, in contrast with the so-called
quadrupolar Hahn echoes [4,5,14]). The location of the
various echoes in the s4 domain (Fig. 2), as well as
their nature (SQ and/or MQ), is obtained by using the
surfaces defined by Eqs. (4) and (5). As the SQ observ-
able transitions are considered in the s4 period, we
focus first on the ST: each ST (m′ = m – 1) is charac-
terised by two signed complementary hyperboloids
(Eqs. (4) and (5)). For a given orientation b0 of B0 in
the quadrupolar PAS (assuming gQ = 0 for the sake of
simplicity), the shift of a particular crystallite is given
by the signed intersection radius (see above). It follows
that a given ST can refocus any transition (either SQ
or MQ) characterised by a set of hyperboloids of
opposite signs! We note that the CT cannot refocus
evolutions occurring during s2, as hyperboloids cannot
be defined for this particular transition (m2 = m′2).

Let us take an example: we consider the (3,5–1Q) SQ
ST (m = 5/2, m′ = m–1 = 3/2, or m2 – m′2 = 4) for an
I = 5/2 nucleus. The corresponding signed hyperboloids
are shown in Fig. 2. Obviously, this SQ transition can
refocus the s2 evolution governed by the (–3,–1

–1Q

) tran-
sition (m1 = –1/2, m′1 = –3/2), as this transition is
represented by a set of hyperboloids of opposite signs.

The echo occurs at s4 = −
m1

2 − m′1
2

m2 − m′2
s2 =

s2

2
. Consider-

ing the (–5,1–3Q) transition (m2 = 1/2, m’2 = –5/2), the
refocusing by the (3,5–1Q) ST leads to an echo located

at s4 = −
m2

2 − m′2
2

m2 − m′2
s2 = 3⁄2 s2. Our approach leads
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therefore to the exhaustive description of the contribu-
tions refocused by the (3,5–1Q) ST: (3,11Q), (3,–12Q),
(–3,–1–1Q), (–3,1–2Q): echo at s4 = 1/2 s2; (5,31Q),
(5,–34Q), (–5,–3–1Q), (–5,3–4Q): echo at s4 = s2; (5,12Q),
(5,–13Q), (–5,–1–2Q), (–5,1–3Q): echo at s4 = 3/2 s2.
Several comments can be made:

• (i) using the same procedure, echoes located at
s4 = s2, 2 s2, 3 s2 are predicted for the
contributions refocused by the (1,3–1Q) SQ ST
(m = 3/2, m’ = m – 1 = 1/2) (Fig. 2); the
contributions refocused by the (–3,–1–1Q) and
(–5,–3–1Q) SQ ST lead to echoes located at the
same time in the s4 domain;

• (ii) the nature of each echo (allowed or forbidden)
is easily determined by our approach; the s4 = 3/2
s2 and 3 s2 echoes are called ‘forbidden’ echoes,
as they correspond to the refocusing of MQ

coherences exclusively; the s4 = 1/2 s2, s2 and 2 s2

are called ‘allowed’ echoes; we note in particular
that the s4 = 2s2 allowed echo corresponds to the
refocusing of ±1Q and ±4Q coherences (see
below);

• (iii) antiechoes, as well as transients [3,6] can also
be described by the surfaces presented above; they
are not represented in Fig. 2;

• (iv) the representation of transitions by surfaces is
particularly useful for the location and description
of multiple echoes involved in 3- (or more) pulse
sequences [3];

• (v) when second-order quadrupolar effects
and/or dipolar interactions are present [6], the
location and nature of echoes can be adequately
described by using quartics (see above) and/or
hyperboloids.

Fig. 1. Pictorial representation of SQ and MQ transitions for a quadrupolar I = 3/2 nucleus. The signed quartics verify: � ±r−4
� = Ang�xm′,m

static 	
(Eqs. (2) and (3)) – the ratio of the constants in Eqs. (2) and (3) is arbitrary fixed. For the CT (m = 1/2, m’ = –1/2) and the –3Q transition (m = 3/2,
m’ = –3/2), only second-order effects are represented (as xm′,m

(1)static vanishes in both cases (Eq. (2)).
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3.2. Experimental evidence of Solomon echoes:
27Al (I = 5/2)

Solomon echoes were observed very rarely. Echoes
in K81Br (I = 3/2) were reported by Bonera et al. [18]
and in 23NaN3 (I = 3/2) by Jeffrey [19]. We note that for
I = 3/2 one single echo at s4 = s2 is observed. Multiple
echoes were observed by: (i) Solomon [2] in the case of
K127I (I = 5/2), (ii) Sanctuary and Halstead [3] using
K127I and two- or three pulse sequences, (iii) Schoep et
al. [20] in a series of 51V3X compounds (I = 7/2). To the
best of our knowledge, multiple echoes in the frame of
27Al solid-state NMR were never reported in the litera-
ture and only mentioned once by the authors [12].

In Fig. 3a, the structure of a cubane-shaped Al–O–P
cluster is presented. The synthesis and characterisation
by solid-state NMR of this cluster is presented in [12]
(diso(27Al) = –8.7 ppm; CQ = 1.70 MHz; gQ = 0.3;
diso(31P) = –25.7 ppm; d11 = –61.0, d22 = –31.9, and
d33 = 15.7 ppm). Using a two-pulse sequence, multiple
echoes located at s4 = s2/2, s2, and 2 s2 are clearly
observed (Fig. 3b). They correspond to ‘allowed’ ech-
oes. The observed echoes are superimposed to a re-
sidual FID component. Using the general concept of
phase cycling [21], it is possible to select only 2Q
coherences through the echo sequence. The time-
domain response for the Al–O–P cubane is presented
in Fig. 3c. Obviously, the FID component is remark-

Fig. 2. Solomon echoes following a two-pulse sequence (P1, P2) (I = 5/2). s4 is given in s2 units. In red: refocusing of coherences by the (3,5–1Q)
SQ ST. In blue: refocusing of coherences by the (1,3–1Q) SQ ST. Vertical solid line: refocusing of two ±1Q coherences. Vertical dashed-line:
refocusing of two ±nQ coherences. Signed hyperboloids in red: corresponding to the (3,5–1Q) SQ ST. Signed hyperboloids in black:
corresponding to the (–3,–1–1Q) SQ transition and to the (–5,1–3Q) MQ transition. The contributions refocused by the (–3,–1–1Q) SQ ST and the
(–5,–3–1Q) SQ ST are omitted for clarity.
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ably suppressed, leading to an improved observation of
the echoes. In this case, the s4 = 3/2 s2 and 3 s2

‘forbidden’ echoes are observed. Moreover, we note
that the s4 = 2 s2 echo is not observed. Indeed, it
corresponds to the refocusing of ±1Q and ±4Q coher-
ences (see above), which are rejected by the 2Q filter.

We believe that the quantitative study of the echo
amplitudes could be an interesting alternative for the
structural characterisation of compounds for which the
CQ quadrupolar constants are fairly small.

4. Pictorial approach of DAS [7,22] and MQ MAS [8]

In this section, the surfaces described above (mainly
quartics) will be used for the pictorial representation of
macroscopic reorientations of samples in the case of
DAS and MQ MAS experiments. Both schemes are 2D

experiments, including a highly resolved dimension.
Moreover, DAS and MQ MAS, are based on echoes
under rotation, encoded with isotropic components.
The ‘static’quartics defined by Eqs. (3), (6), and (7) are
sufficient for a quantitative description of the DAS and
MQ MAS experiments! The key concept is to consider
averaged surfaces, mimicking the fast reorientation of
the sample: the ‘static’ equation is first written in a
rotor frame (XRYRZR), which is oriented by the Euler
angles (
,b,c) from the quadrupolar PAS [11]. Spin-
ning the sample implies that c becomes time-
dependent. Under rapid rotation and after averaging,
the quartics related to the CT (Eq. (7)) are given by
(assuming gQ = 0 for the sake of simplicity):

(8)A(b) �XR
2 + YR

2� + B(b) ZR
4

+ C(b) ZR
2 �XR

2 + YR
2� = ± 1

Fig. 3. (a) Al–O–P cubane-shaped cluster [12]. One Al1 and one P1 crystallographic sites. Al and P atoms are linked by oxo bridges. Cl– are
present as counter-anions. Al atoms are 6-fold coordinated (including three ethanol molecules as ligands). Four solvate ethanol molecules per
cubane entity are present. (b) Solomon-‘allowed’ echoes located at s4 = 1/2, 1 and 2 s2. These echoes are superimposed on a FID. (c) Selection
of 2Q coherences through phase cycling: P1, +X +Y –X –Y; P2, +X +X +X +X; Rec: +X –X +X –X. ‘Allowed’and ‘forbidden’echoes are observed.
The FID is suppressed. The s4 = 2 s2 echo is missing.
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with

(9)
A(b) = (3 ⁄ 64)� −27 cos4b + 14 cos2b + 5 �
B(b) = (1 ⁄ 8)� −27 cos4b + 30 cos2b − 3 �
C(b) = (3 ⁄ 8)� 27 cos4b − 22 cos2b + 3 �

(b orients ZR in the quadrupolar PAS). These surfaces
are of revolution, with ZR as axis of revolution.

The shift under fast rotation at h1° (macroscopic
angle) is then simply given by � ±rb

–4
�

h1° (rb corre-
sponds to the intersection radius of the averaged quar-
tics with the B0 direction). It is well known that fast
reorientation around a single axis is not sufficient for
the total removal of quadrupolar second-order effects.
The DAS experiment can be viewed as an evolution at
h1° followed by an evolution at h2° during k. If high
resolution is attained, the following equation must be
fulfilled:

(10)� ±rb
−4 �h1° + k� ±rb �h2° = C1

C1 being a constant independent of b!
Equation (10) is the direct geometrical representa-

tion of the DAS scheme. Using Eq. (9), Eq. (10) can be
analytically solved, leading to the well-known DAS
angle pairs [11,23]:

h1 ° = arc cos�1

3�1 +
2�k

�5 ��
1⁄2

;

h2 ° = arc cos�−2�5 + 5�k

15�k �1⁄2

; 4 ⁄ 5 ≤ k ≤ 5.

The MQ MAS experiment can be illustrated as well.
We consider first the ‘static’ surface corresponding to
x−3/2,3/2

(2)static (–3Q coherence), defined by Eq. (3)
(I = 3/2). The corresponding set of quartics is given by
(assuming gQ = 0 for the sake of simplicity) [11]:

(11)(−3 ⁄ 8)�X2 + Y2� �8 Z2 + �X2 + Y2� � = ± 1

(see Fig. 1). Under fast rotation, the averaged surfaces
are given by:

(12)A−3 �X2 + Y2�2 + B−3 Z4 + C−3 Z2 �X2 + Y2� = ± 1

with

(13)
A−3 = (3 ⁄ 64) � 21 cos4b − 18 cos2b − 11 �

B−3 = �3 ⁄ 8)� 7 cos4b − 6 cos2b − 1 �
C−3 = (3 ⁄ 8) � −21 cos4b + 18 cos2b − 5 �

Spinning around a single axis (at h°), the evolution
under the MQ coherence followed by the evolution
under the CT (during k) can be described geometrically
by:

(14)�±rb
−4�−3⁄2,3⁄2

h° + k�±rb�−1⁄2,1⁄2

h° = C2

Again, high-resolution is attained if C2 is a constant,
independent of b. Eq. (14) is fulfilled if
h° = hm = 54.74° and k = 7/9; this is the MQ MAS
experiment for a I = 3/2 nucleus. This approach can be
extended to every value of I and every order of coher-
ence [11].

We note the complete analogy between the DAS and
the MQ MAS experiments (see Eqs. (10) and (14)). In
the DAS experiment, a single averaged surface (CT) is
involved and two intersection radii at h1° and h2° are
necessary for the pictorial representation of the DAS
echo. In the MQ MAS experiment, two averaged sur-
faces (CT and MQ) are involved and a single intersec-
tion radius at h° = hm is necessary for the pictorial
representation of the MQ MAS echo. These results are
illustrated in Fig. 4.

5. Conclusion

We have shown that the various transitions involved
in the multilevel system of a quadrupolar nucleus
(I = n/2, n ≥ 3) can be safely illustrated by quadrics and
quartics. Using quartics, it is possible to take second-
order effects in account. The only prerequisite is the
knowledge of the energy levels, corrected by standard
second-order perturbation theory. The interpretation of
Solomon multiple echoes becomes then very simple,
by using sets of complementary hyperboloids. This
approach becomes very efficient when more than two
pulses are involved in the pulse sequence. We have also
shown that the quadrupolar echoes under fast rotation
of the sample can be as well illustrated by using aver-
aged quartics. The number and nature of the used
quartics depend mainly on the chosen experimental
scheme (DAS or MQ MAS).
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