

Available online at www.sciencedirect.com

C. R. Chimie 7 (2004) 707-712

Communication / Preliminary communication

Décomposition et réduction catalytiques des oxydes d'azote par les oxydes cuivriques

Benguellah Benoît Loura ^{a,*}, Tofik Gazanov Alhasov ^b, Galina-Zaïdovna Gazan-Zade ^b

^a Département de chimie, faculté des sciences, université de Ngaoundéré, BP 454, Ngaoundéré, Cameroun ^b Département de chimie physique, Académie du pétrole et du gaz, 20, av. Lenine, 370601 Bakou, Azerbaïdjan

Reçu le 1 octobre 2003 ; accepté après révision le 28 avril 2004

Disponible sur internet le 08 juin 2004

Résumé

Cette étude porte sur la décomposition et la réduction des oxydes d'azote par les catalyseurs d'oxydes cuivriques. Les réactions des trois oxydes N_2O , NO, NO_2 avec le CO ont été étudiées. L'oxyde N_2O est le seul qui soit décomposé en N_2 et O_2 . Les vitesses des trois réactions d'oxydes N_2O , NO et NO_2 avec le catalyseur CuZSM-5 modifié sont plus élevées que celles avec le catalyseur CuO/ γ -Al₂O₃ non modifié. Les résultats obtenus montrent que le catalyseur CuZSM-5 modifié est le plus actif, et on peut le recommander pour l'épuration des rejets gazeux des oxydes d'azote. *Pour citer cet article : B.B.Loura et al., C. R. Chimie 7 (2004)*.

© 2004 Académie des sciences. Publié par Elsevier SAS. Tous droits réservés.

Abstract

Catalytic degradation and reduction of nitrogen oxides by cupper oxides. The study deals with decomposition and reduction of nitrogen oxides by copper-oxide catalysers. Reactions of the following three oxides, N_2O , NO and NO_2 , with CO have been studied. N_2O oxide is decomposed alone into N_2 and O_2 . The speeds of the reactions with N_2O , NO and NO_2 with the modified CuZSM-5 catalyser are higher than those with the non-modified CuO/ γ -Al₂O₃ catalyser. Results obtained showed that the modified CuZSM-5 catalyser is more active and can be recommended for the treatment (purification) of nitrogen oxide. *To cite this article: B.B.Loura et al., C. R. Chimie* 7 (2004).

© 2004 Académie des sciences. Publié par Elsevier SAS. Tous droits réservés.

Mots clés : Oxydes d'azote ; Catalyseur ; Décomposition ; Réduction

Keywords: Nitrogen oxides; Catalyst; Decomposition; Reduction

* Auteur correspondant.

Adresse e-mail : benloura@yahoo.fr (B.B. Loura).

^{© 2004} Académie des sciences. Publié par Elsevier SAS. Tous droits réservés. doi:10.1016/j.crci.2004.04.004

1. Introduction

L'un des plus importants problèmes contemporains réside dans la protection de l'environnement. Les déchets de fabrication, les rejets des installations énergétiques et les transports entraînent une pollution considérable de celui-ci [1–3]. Les éléments toxiques contenus dans les rejets gazeux qui agissent le plus rapidement sont les oxydes d'azote. La concentration limite et permise du NO dans l'air est de $0,1 \text{ mg m}^{-3}$ [4]. Pour diminuer la concentration du NO dans les rejets gazeux, on utilise plusieurs méthodes. La plus simple parmi elles et très bien mise en valeur industriellement est la décomposition-réduction catalytique de l'oxyde d'azote. Cette réaction est attrayante, car elle donne des éléments non toxiques, qui sont N2 et O2. Parmi les réducteurs, le monoxyde de carbone (CO) occupe une place de choix. Le CO est également un composé toxique. La réduction du NO par le CO permet d'éliminer en même temps deux éléments toxiques, NO_x et CO.

Les catalyseurs de la réaction de décomposition et de réduction des oxydes d'azote étaient d'abord les oxydes des métaux précieux et les oxydes des systèmes complexes [5,6]. Leur faible stabilité mécanique, leur composition variable et leur coût élevé ont favorisé la mise en place de catalyseurs à base de composés d'oxydes cuivriques. La baisse avec le temps de l'activité des catalyseurs à base d'oxydes cuivriques dans le procédé nous a incités à rechercher d'autres catalyseurs, plus efficaces. Pour la décomposition-réduction catalytique des oxydes d'azote, le système à composés cuivriques modifiés des zéolites à concentration en silice de 1,5% en masse présente un grand intérêt et se distingue par une plus grande stabilité et une bonne activité dans le procédé de décomposition et de réduction des oxydes d'azote. Il possède, en outre, une grande résistance mécanique. Il est enfin de préparation simple.

Il existe sept sortes d'oxydes d'azote : N_2O , NO, NO_2 , N_2O_3 , N_2O_4 , NO_3 et N_2O_6 . À pression atmosphérique et à une température de 100 à 500 °C peuvent exister seulement trois oxydes dans la phase gazeuse : N_2O , NO, NO_2 , qui serviront comme matières premières à cette étude.

L'objectif fixé est triple :

 (1) l'élaboration d'une nouvelle génération de catalyseur d'épuration gazeuse que sont les systèmes à composés cuivriques modifiés de zéolites à concentration en silice de 1,5% en masse;

- (2) l'étude de ses propriétés catalytiques dans les réactions de décomposition et de réduction des oxydes d'azote, l'établissement du mécanisme de ces réactions ;
- (3) la mise en évidence d'une possibilité d'utilisation pratique du système.

2. Matériels et méthodes

Les réactions de décomposition et de réduction catalytiques des oxydes d'azote sont étudiées au laboratoire avec des réacteurs en quartz (20 mm de diamètre et 180 mm de long). L'analyse de la matière première et des produits des réactions est faite avec un chromatographe de marque LXM-8MD, muni d'un détecteur de conductibilité thermique. Deux colonnes chromatographiques ont été utilisées pour l'analyse. La première (de 3 mm de diamètre et 1 m de long) servant à l'analyse de O2, N2, NO et CO est remplie de zéolites de marque CaA (fraction 0,25-0,5 mm). L'activation des adsorbants est faite à une température de 400 à 450 °C pendant 4 h à l'air et ensuite dans un bain d'hélium pendant une heure à 250 °C. La deuxième colonne (3 mm de diamètre et 2 m de long) utilisée pour l'analyse de N₂O, NO₂ et CO₂ est, en revanche, remplie de charbon activé de marque SKT (fraction 0,25-0,5 mm). L'activation des adsorbants est faite à 250 °C pendant 5 h à l'air et ensuite dans un bain d'hélium pendant 3 h à la même température.

Les deux colonnes sont thermostatées à 70 °C. La vitesse du gaz vecteur (He) dans les deux colonnes est de 50 m³ min⁻¹. La sensibilité de l'analyse est de 0,01 mol%. La méthode de synthèse du catalyseur est celle décrite par Chadrin et al. [6]. Pour l'analyse radiographique aux rayons X du catalyseur, la source de lumière est un tube à anode en cuivre (K α = 1,54 Å). L'analyse par spectroscopie infrarouge du catalyseur est réalisée à l'aide d'un spectrophotomètre UR-20 dans le domaine de longueur d'onde 1300–3300 cm⁻¹.

3. Résultats

3.1. Étude physico-chimique du catalyseur

L'étude est réalisée à l'aide d'un catalyseur de type CuZSM-5 à composés d'oxydes cuivriques modifiés des zéolites à concentration en silice de 1,5 % en masse.

Fig. 1. Spectre infrarouge du catalyseur CuZSM-5 (**a**) Après calcination à 500 °C ; (**b**) après son utilisation ; (**c**) après réduction par le CO.

Pour préparer le catalyseur, on a utilisé la forme sodique de ZSM-5. Le rapport SiO_2/Al_2O_3 est de 66 dans la zéolite. Cette zéolite possède une structure monoclinique [7,8]. La concentration du CuO dans l'échantillon est de 1 % en masse. La Fig. 1 (analyse spectroscopique infrarouge) donne des informations sur la situation de H₂O dans le catalyseur). Il existe une

Fig. 2. Diffractogrammes du catalyseur CuZSM-5 (a) Après calcination à 500 $^{\circ}$ C ; (b) après son utilisation ; (c) après réduction par le CO.

raie engloutie à la fréquence de 1600 cm^{-1} et d'autres séries de raies dans le domaine $3400-3700 \text{ cm}^{-1}$, occasionnées par les différentes déformations des molécules d'eau. Dans le processus de déshydratation et de réduction on constate une élimination totale de H₂O. La surface spécifique du catalyseur est égale à $37 \text{ m}^2 \text{ g}^{-1}$. L'analyse aux rayons X (Fig. 2) et celle par spectroscopie infrarouge (Fig. 1) suggèrent que la structure du catalyseur n'a pas changé durant le séjour de celui-ci dans le réacteur.

3.2. Réaction du N₂O avec le CO

Tous les gaz utilisés pour la présente étude sont obtenus par la méthode décrite par Chadrin et al. [9] et Mehandjiev et al. [10].

N₂O est obtenu à l'aide de la réaction :

$NH_4NO_3 = N_2O + 2H_2O$

Les résultats de la réaction du N₂O avec le CO sont reportés dans le Tableau 1. Cette réaction commence dès la température de 200 °C. La conversion du N₂O à cette température est de 22%. La transformation totale du N₂O est atteinte à 400 °C.

Pour la comparaison, il a été étudié l'activité catalytique du catalyseur d'oxydes cuivriques CuO/γ - Al_2O_3 non modifiés. Les résultats obtenus sont reportés dans le Tableau 2. Comme on peut le constater, la conversion du N₂O est de 5% à 300 °C. La réduction intense du N₂O est observée entre 300 et 500 °C. La réduction complète du N₂O est atteinte à 600 °C.

3.3. Réaction du NO avec le CO

Le mono-oxyde d'azote est obtenu à l'aide de la réaction:

La réaction du NO avec le CO a été étudiée en utilisant les catalyseurs CuZSM-5 et CuO/ γ -Al₂O₃. Les résultats obtenus sont reportés dans les Ta-

Tableau 1

Concentration des réactifs et produits de la réaction de N_2O avec le CO à la sortie du réacteur (mol%) ; 1 g CuZSM-5 ; concentration dans l'impulsion : $N_2O = 2,20$ mol% et CO = 2,25 mol% ; volume de l'impulsion = 0,1 cm³

Température (°C)	100-150	200	250	300	350	400	500	
N ₂ O	2,20	1,70	1,45	0,70	0,30	0	0	
CO	2,25	1,70	1,45	0,65	0,25	0	0	
N ₂	0	0,50	0,75	1,50	1,90	2,20	2,20	
CO ₂	0	0,55	0,80	1,60	2,00	2,25	2,25	

Tableau 2

Concentration des réactifs et produits de la réaction du N₂O avec le CO à la sortie du réacteur (mol%) ; 1 g CuO/ γ -Al₂O₃ ; volume de l'impulsion = 0,1 cm³ ; concentration dans l'impulsion : N₂O = 2,20 mol% et CO = 2,25 mol%

Température (°C)	100-250	300	400	500	600
N ₂ O	2,20	2,10	1,70	1,45	0
СО	2,25	1,75	0,95	0,75	0
N ₂	0	0,10	0,50	0,75	2,20
CO ₂	0	0,50	1,15	1,50	2,25

Tableau 3

Concentration des réactifs et produits de la réaction du NO avec le CO à la sortie du réacteur (mol%) ; 1 g CuZSM-5 ; volume de l'impulsion = 0,1 cm³ ; concentration dans l'impulsion : NO = 2,20 mol% et CO = 2,25 mol%

Température (°C)	100	150	200	250	300-500
NO	1,22	0,82	0,92	1,02	1,02
СО	0	0	0	0	0
N ₂	0,50	0,60	0,65	0,60	0,60
N ₂ O	< 0,1	0,10	0	0	0
CO ₂	2,23	2,00	2,13	2,23	2,23

Tableau 4

Concentration des réactifs et produits de la réaction du NO avec le CO à la sortie du réacteur (mol%) avec le catalyseur d'oxydes cuivriques non modifié. 1 g CuO/ γ -Al₂O₃ ; volume de l'impulsion = 0,1 cm³ ; concentration dans l'impulsion : NO = 2,20 mol%, CO = 2,25 mol% et avec 0,5 à 1,5% en masse du CuO dans le catalyseur

Concentration du CuO	Réactifs				
dans le catalyseur (mol%)	et produits	200	300	400	500
0,5	NO	2,10	1,58	1,42	1,22
	CO	2,08	1,53	1,03	0,83
	N_2	0,05	0,25	0,40	0,50
	N_2O	< 0,01	0,07	0	0
	CO_2	0,15	0,70	1,20	1,40
1,0	NO	1,97	0,82	1,32	1,02
	CO	1,93	1,73	1,23	0,73
	N_2	0,10	0,20	0,45	0,60
	N_2O	0,03	0	0	0
	CO_2	0,30	0,50	1,00	1,50
1,5	NO	1,92	1,72	1,22	0,72
	CO	1,93	1,53	0,73	0,23
	N_2	0,10	0,25	0,50	0,75
	N_2O	0,05	0	0	0
	CO_2	0,30	0,70	1,50	2,00

Tableau 5

Concentration des réactifs et produits de la réaction du NO₂ avec le CO à la sortie du réacteur (mol%) ; 1 g CuZSM-5 ; volume de l'impulsion = 0.1 cm^3 ; concentration dans l'impulsion : NO₂ = 2,20 mol%; CO = 2,25 mol%

Température (°C)	100	200	300	350	400–650
NO ₂	0,80	0,50	0,10	0	0
NO	1,10	1,10	1,00	0	0
O_2	0,20	0	0	0	0
CO	1,45	0,85	0	0	0
N_2	1,10	0,25	0,45	0,70	1,05
CO ₂	0,40	1,00	1,85	1,85	1,85

bleaux 3 et 4. On remarque dans le Tableau 3 qu'à 100 °C le CO est entièrement consommé dans la réaction. Le produit de la réaction du NO avec le CO est N_2 . La courbe de formation du N_2O passe par un maximum à 150 °C (0,10 mol%) ; à 200 °C, N_2O ne se forme pas. La réduction du CuO est observée à toutes les températures de l'expérience. Avec l'augmentation de la température de 200 à 250 °C, la vitesse de la réaction du NO diminue. L'augmentation ultérieure de la température à 500 °C n'entraîne pas l'augmentation de la vitesse de la réaction. À cette température, on n'observe, ni la consommation du NO, ni la formation du N_2 . Les valeurs du NO et de N_2 restent pratiquement constantes.

Les résultats de l'étude de la réaction du NO avec le catalyseur CuO/ γ -Al₂O₃ non modifié sont présentés dans le Tableau 4. L'augmentation du CuO dans le catalyseur de 0,5 à 1,5% en masse provoque l'augmentation de l'activité du catalyseur. Cependant, ce n'est qu'avec un intervalle de température de 200 à 500 °C que l'on constate une réduction progressive du CO.

3.4. Réaction du NO₂ avec le CO

NO₂ est obtenu en additionnant les quantités stœchiométriques de NO et O₂. On sait que l'existence du NO₂ est limitée par la réaction thermodynamique : NO₂ ↔ NO + 0,5 O₂, raison pour laquelle en laissant passer le mélange gazeux (NO₂ + CO) à travers le catalyseur ; à la sortie du réacteur, on peut obtenir, à part NO₂ et CO, NO et O₂ (Tableau 5). Les produits (N₂ et CO₂) de la réaction se forment dès la température de 100 °C. On constate également la consommation de NO₂, O₂ et du CO dans la réaction. La quantité du CO₂ formée (0,40 mol%) correspond à la consommation de 0,2 mol% de NO₂ et 0,2 mol% de O₂. Ces résultats témoignent du déroulement en même temps de deux réactions :

$$NO_2 + 2 CO_2 \rightarrow 0, 5 N_2 + 2 CO_2$$

 $0, 5 O_2 + CO \rightarrow CO_2$

Ainsi, on peut remarquer que, NO ayant une concentration de 1,10 mol% dans le mélange gazeux, il ne se réduit pas aux températures inférieures ou égales à 200 °C. Mais à 300 °C, sa consommation reste significative (0,10 mol%). La conversion totale du NO₂ est atteinte à 400 °C. De même, comme pour les réactions de réduction de N₂O et NO par le CO, le catalyseur garde son activité pendant et après la réaction du NO₂ avec le CO, même à 650 °C.

4. Discussion et conclusion

Parmi les oxydes N_2O , NO et NO_2 , l'oxyde N_2O est le seul à se décomposer en N_2 et O_2 . Toutes les trois réactions ($N_2O + CO$, NO + CO et $NO_2 + CO$) se déroulent dans un intervalle de température de 100 à 450 °C. Le produit de la réaction du NO avec le CO est uniquement N_2 . Au cours du processus catalytique du NO_2 avec le CO, à la sortie du réacteur et à des températures de 100 à 300 °C, il se forme O_2 , NO, N_2 et CO_2 . Il est possible que l'apparition de O_2 et NO dans le mélange gazeux soit due à la dissociation du NO_2 .

L'activité du catalyseur CuZSM-5 par rapport à la réaction de réduction des oxydes d'azote diminue suivant l'ordre : $N_2O + CO > NO + CO \ge NO_2 + CO$.

Les résultats de la réduction catalytique de N₂O, NO et NO₂ par le CO avec les catalyseurs CuZSM-5 et CuO/ γ -Al₂O₃ sont présentés sur la Fig. 3. Il est intéressant de comparer la vitesse de réduction catalytique des oxydes d'azote par les catalyseurs CuZSM-5 et CuO/ γ -Al₂O₃.

On constate que les vitesses des trois réactions avec le catalyseur CuZSM-5 modifié sont plus élevées que celles avec le catalyseur CuO/ γ -Al₂O₃ non modifié. Le catalyseur d'oxydes cuivriques non modifiés n'est pas stable et, au contact du CO, il se réduit intensivement (Tableau 4).

En comparant les activités catalytiques des catalyseurs CuZSM-5 et CuO/ γ -Al₂O₃, on peut dire que CuZSM-5 est le plus actif.

Température (°C)

Fig. 3. Vitesse de réduction catalytique de $N_2O(a)$, NO(b) et NO_2 (c) par CO avec les catalyseurs ; courbes 1 : CuZSM-5 ; courbes 2 : CuO/ γ -Al₂O₃.

En se basant sur les résultats obtenus des trois réactions $N_2O + CO$, NO + CO et $NO_2 + CO$ de décomposition et de réduction catalytiques des oxydes d'azote, nous pouvons dire que le catalyseur CuZSM-5 d'oxydes cuivriques modifiés de zéolites à concentration en silice de 1,5% en masse se distingue par une plus grande stabilité et une bonne activité dans le processus de réduction des oxydes d'azote ; on peut donc le recommander pour l'épuration des rejets gazeux des oxydes d'azote.

Références

 G.Z. Gazan-Zadé, M.Y. Woode, T.G. Alhazov, React. Kinet. Catal. Lett. 34 (1) (1987) 225.

- [2] G.Z. Gazan-Zadé, S.E. Abdoul Madjid, J. Catal. 45 (2000) 452.
- [3] Brevet Nº 1213976 (France), Rhône-Poulenc, 23/02/1986.
- [4] T.G. Alhazov, G.Z. Gazan-Zadé, D.V. Taguiev, in : Proc. 9th Int. Zeolite Conference, Montreal, Canada, 5–10 July 1992.
- [5] B.B. Loura, O. Fiolétova, Journal of Scientific Research at State Universities (Izvestia Vouzov), Chemistry and Chemical Technology Series 45 (2002) 94.
- [6] L.P. Chadrin, R.A. Bouyanov, L.M. Kefeli, J. Catal. 8 (1967) 396.
- [7] S. Sato, Y. Yahiro, M. Iwamoto, Appl. Catal. 70 (1) (1991) 1.
- [8] M. Iwamoto, Chem. Lett. 11 (1990) 1967.
- [9] G.Z. Gazan-Zadé, V.J. Karakhanova, T.G. Alhazov, Soviet-Friench Seminar on catalysis, Novosibirsk, 1990, p. 55.
- [10] D. Mehandjiev, D. Panajotov, M. Khristova, React. Kinet. Catal. Lett. 33 (2) (1987) 273.

712