

Available online at www.sciencedirect.com

C. R. Chimie 8 (2005) 933-955

http://france.elsevier.com/direct/CRAS2C/

Account / Revue

Salts of a sandwich-type bis 9-tungstoarsenate(III) tris(oxorhenate(V)) polyoxoanion as precursors to tungsten-rhenium bronzes

Alexei Besserguenev, Michael T. Pope *

Department of Chemistry, Box 571227, Georgetown University, Washington, DC 20057-1227, USA

Received 21 July 2004; accepted after revision 7 October 2004

Available online 03 February 2005

Dedicated to Professor Francis Sécheresse on the occasion of his 60th birthday

Abstract

Potassium and ammonium salts of the tungstoarsenate anion $[(\text{Re}^{VO})_3(\text{AsW}_9\text{O}_{33})_2]^{9-}$ (1) have been isolated and characterized by elemental analysis, infrared and ¹⁸³W NMR spectroscopy. The five-line NMR spectrum indicates a sandwich structure of $C_{2\nu}$ symmetry analogous to that found for $[\text{As}_2\text{W}_{21}\text{O}_{69}(\text{H}_2\text{O})]^{6-}$. Thermal treatment of both salts of 1 at temperatures to 900 °C leads to materials in which ~95% of the rhenium is retained, in contrast to the Keggin-derived K₄PW₁₁ReO₄₀ which loses rhenium at ~500 °C. Based upon powder diffraction analysis, following quantitative loss of As₂O₃ at 420–430 °C, the following phases were identified in samples heated to 600 and 725 °C. From the potassium salt, a monoclinic K₂W₃O₁₀-type bronze, and from the ammonium salt a mixture of hexagonal and tetragonal WO₃ bronzes. Reflections corresponding to ReO₂, ReO₃, solid solutions of ReO₃ in WO₃, and Re₂O₇ were absent. The incorporation of rhenium into tungsten bronze phases suggests that technetium might behave similarly, opening a possible route to storage of ⁹⁹Tc waste. *To cite this article: A. Besserguenev, M.T. Pope, C. R. Chimie 8 (2005).*

© 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Les sels d'un sandwich-type bis 9-tungstoarsenate(III) tris(oxorhenate(V)) polyoxoanion en tant que précurseurs des bronzes tungstène–rhénium. Les sels de potassium et ammonium de l'anion tungstoarsenate(III) $[(\text{Re}^{VO})_3(\text{AsW}_9O_{33})_2]^{9-}$ (1) ont été isolés et caractérisés par analyse élémentaire, spectroscopie infrarouge et ¹⁸³W RMN. Le spectre RMN cinq lignes indique une structure sandwich de symétrie $C_{2\nu}$ analogue à la structure connue de $[\text{As}_2\text{W}_{21}\text{O}_{69}(\text{H}_2\text{O})]^{6-}$. Le traitement thermique des sels de 1 aux températures jusqu'à 900 °C conduit à des matériaux qui conservent 95% de leur contenu en rhénium, contrairement à K₄PW₁₁ReO₄₀, de structure Keggin, qui perd son rhénium à ~500 °C. Sur la base de l'analyse par diffraction sur poudre, les phases suivantes ont été identifiées dans les échantillons chauffés à 600 et 725 °C après perte quantitative de As₂O₃ à 420–430 °C. On a obtenu, à partir du sel de potassium, un bronze monoclinique de type K₂W₃O₁₀ et, à partir du sel d'ammonium,

* Corresponding author.

1631-0748/\$ - see front matter © 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved. doi:10.1016/j.crci.2004.10.005

E-mail address: popem@georgetown.edu (M.T. Pope).

un mélange de bronzes WO₃ hexagonaux et tétragonaux. Les réflexions correspondant à ReO₃, à ReO₂, aux solutions solides de ReO₃/WO₃ et à Re₂O₇ étaient absentes. L'incorporation du rhénium dans les phases de bronzes de tungstène suggère que le technétium se comporte de la même façon, qui ouvrant une possible voie au stockage des déchets de ⁹⁹Tc. *Pour citer cet article : A. Besserguenev, M. T. Pope, C. R. Chimie 8 (2005).*

© 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Keywords: Polyoxometalates; Tungsten; Rhenium; Tungsten bronzes

Mots clés : Polyoxometallates ; Tungstène ; Rhénium ; Bronzes de tungstène

1. Introduction

The use of polyoxometalates [1–4] as potential sequestering agents and/or as sources of storage matrices ('waste forms') for radioactive waste has attracted attention for several years. One particularly troubling isotope is technetium-99 with a half-life of $\sim 10^5$ years that is readily transformed to the volatile heptaoxide during the vitrification processes currently envisioned for production of waste forms, or is converted to soluble pertechnetates that have high mobility in ground waters. We have recently been investigating the potentialities of polyoxometalates for the technetium problem, using in the first instance rhenium as a non-radioactive surrogate [5]. In related studies we have shown that tungsten bronzes incorporating lanthanide and actinide ions are efficiently produced by thermal decomposition at relatively low temperatures of the corresponding polyoxotungstate complexes [6]. The inertness of tungsten bronzes make them possible attractive targets for waste forms.

With the exception of hexametalate-supported triscarbonylrheniun(I) complexes prepared under non-aqueous [7] or aqueous [5] conditions, previously-characterized rhenium-containing polyoxometalates incorporate rhenium, usually in oxidation state V, in place of one or two tungsten(VI) atoms in Keggin [8], Wells-Dawson [9] or decatungstate [10] structures. Examples of analogous technetium(V) Keggin derivatives have also been described [11].

We report here the synthesis and characterization of a new type of tungstorhenate derivative with relatively high rhenium content (Re/W = 1:6). Thermal decomposition of potassium and ammonium salts of the new complex does not result in loss of rhenium at temperatures up to 900 °C, and leads to new tungsten–rhenium bronzes.

2. Experimental

2.1. Syntheses

Potassium pentachloro(oxo)rhenate(V) was prepared by reduction of 55% perrhenic acid (Alfa Aesar) with hydriodic acid according to the method of Ivanov-Emin et al. [12]. Isolated yield, 60%; IR, 940 cm⁻¹ (Re=O). Potassium and ammonium salts of $[PW_{11}O_{39}]^{7-}$ were isolated from stoichiometric mixtures of PO_4^{3-} and WO_4^{2-} adjusted to pH 5.2 and their identities confirmed by ³¹P-NMR and IR. Sodium 9-tungstoarsenate(III), Na₉AsW₉O₃₃·*n*H₂O (AsW₉) was prepared according to the literature [13]. IR, 935(vs), 898(vs), 783(vs), 727(vs), 515(w), 472(w), 443(w), 411(w) cm⁻¹.

The potassium salt of $[(\text{ReO})_3(\text{AsW}_9\text{O}_{33})_2]^{9-}$ (K-1) was prepared as follows. Potassium pentachloro(oxo)rhenate(V) (K₂ReOCl₅, 0.67 g, 1.5 mmol) was added to a solution of potassium thiocyanate (KSCN, 1.95 g, 20 mmol) in 20 ml of deoxygenated water. After the rhenium complex had dissolved completely, sodium perchlorate (NaClO₄, 3.04 g) was added and the mixture was cooled to 5 °C in an ice bath. A white precipitate of potassium perchlorate was filtered off. Sodium 9-tungstoarsenate(III) (2.74 g, 1 mmol) was added to the solution of the rhenium(V) complex. The color of the reaction mixture color changed from green to redbrown and the mixture was stirred for 30 min at room temperature. Any undissolved AsW₉ was filtered off. Saturated potassium chloride solution (20 ml) was added to the reaction mixture and it was cooled to 5 °C in an ice bath. A dark brown precipitate (1.15 g, 40%) was filtered off and suction dried. Anal. Found (Calc. for K₉[(ReO)₃(AsW₉O₃₃)₂]·23 H₂O): K 6.1 (6.0), Na 0.3 (0), Re 9.76 (9.49), As 2.57 (2.54), W 56.1 (56.2). An ammonium salt (NH_4-1) was prepared similarly.

934

The product (yield 0.85 g, 30%) was precipitated by addition of 20 ml of 5 M (NH_4)Cl.

The water-soluble potassium salt of $[PW_{11}ReO_{40}]^{4-}$ ('PW₁₁Re'), previously only known as a tetra-nbutylammonium salt [8], was prepared by dissolving K₇PW₁₁O₃₉·15 H₂O, (6.44 g, 2 mmol) in 60 ml of a 0.06 M-acetate buffer (pH 4) that had been deaerated with a stream of nitrogen for 30 min. The solution was heated to 50 °C and the K₂ReOCl₅ (0.92 g, 2 mmol) was added. The reaction mixture was heated at 50 °C under a nitrogen atmosphere for 1.5 h. Saturated potassium chloride solution (80 ml) was added and the resulting purple precipitate (1.45 g) was filtered off. ³¹P-NMR showed an impurity (probably unreacted PW_{11}) at -10.9 ppm, as well as the major product at -15.1 ppm. The product was dissolved in 40 ml of deaerated water; the suspension was heated to ~50 °C until the solid dissolved completely and saturated potassium chloride solution was added and the mixture cooled to 5 °C in an ice bath. The precipitate (1.29 g, 21%) was collected and suction dried. The procedure was repeated two times until only one peak (-15.1 ppm) was observed in the ³¹P-NMR spectrum. Tungsten-183 NMR: δ /ppm (relative intensity): -99 (2), -115 (2), -116 (1), -207 (2), -274(2), -290(2).

2.2. Instrumental

Infrared spectra were measured on a Nicolet 7000 spectrometer from 4000 to 400 cm^{-1} with resolution of 2 cm⁻¹. All samples were prepared as KBr pellets. Thermogravimetric analysis (TGA) curves were obtained on a TGA 2050 analyzer (TA Instruments) from room temperature to 950 °C under a nitrogen atmosphere. Alumina pans were used for all experiments. Differential scanning calorimetry (DSC) was recorded on a DSC 2910 calorimeter (TA Instruments) from room temperature to 725 °C under a nitrogen atmosphere. Platinum pans were used for all measurements. Cyclic voltammetry was performed on a BAS 100A electrochemical analyzer using a glassy carbon working electrode and platinum counter electrode using a sweep rate of 500 mV s⁻¹. Potentials are reported with respect to a Ag/AgCl reference electrode.

NMR spectra were recorded on Bruker AM 300 (³¹P, ¹⁸³W) or Varian Mercury 300 (³¹P) spectrometers. Typical parameters for phosphorus-31 NMR spectra were: offset frequency, 121.497 MHz; bandwidth, 3650 Hz

and repetition rate, 0.6 Hz. Chemical shifts were measured relative to 85% phosphoric acid. Typical parameters for ¹⁸³W NMR spectra were: offset frequency, 12.504 MHz; bandwidth, 5 KHz and repetition rate, 0.4 Hz. Chemical shifts were measured relative to 2 M Na₂WO₄. For collection of ¹⁸³W-NMR spectra potassium salts of PRe^VW₁₁ and **1** were exchanged to lithium salts using lithium perchlorate (LiClO₄). For the exchange, 1–2 g of the polyoxometalate sample, a stoichiometric amount of LiClO₄ and 2 ml of D₂O were mixed together and stirred for 30 min. Insoluble KClO₄ was filtered off and the filtrate was used to collect the NMR spectrum.

Powder diffraction patterns were collected on a RIGAKU R-Axis Rapid XRD automated powder diffractometer equipped with an Image Plate detector. For a typical sample preparation, fine powder was mixed with vaseline and the mixture was smeared onto the surface of a single crystal silicon sample holder. The data were collected in reflection geometry and were integrated using the RIGAKU R-Axis Rapid XRD software package, producing diffraction intensity vs. 2θ diffraction angle dependencies. These were processed using the Materials Data Jade 5.0 XRD software package. Final processing using Jade included background subtraction and peak search. Phase identification was performed by comparing peaks found with powder diffraction patterns of pure compounds stored in the database provided with the Jade software package.

3. Results and discussion

3.1. Synthesis and characterization of 1

Since several examples of sandwich complexes of the type $[M_3(AsW_9O_{33})_2]^{12-}$ (e.g. with M = Mn(H₂O), Co(H₂O), Ni(H₂O), VO²⁺, WO⁴⁺) are known [14,15], reaction of {ReO³⁺} and AsW₉ in a 3:2 molar ratio proceeds straightforwardly. It is necessary, however, to prevent rapid hydrolysis of $[ReOCl_5]^{2-}$ in aqueous solution by complexation with excess thiocyanate, and to exchange sodium for potassium in the resulting solution to allow for ready subsequent dissolution of AsW₉. Although crystals suitable for X-ray structural determination have not yet been obtained, there is little doubt about the composition and structure of **1**. The molecular formula is supported by elemental analysis of the potassium salt and the infrared spectrum in the metaloxygen stretching region is virtually identical to that of Na_oAsW_oO₃₃ indicating the presence of AsW_o building blocks. The ¹⁸³W NMR spectrum of **1** shows five lines of relative intensity 1:2:2:2:2 at -79, -95, -102, -134, and -145 ppm, respectively, instead of the anticipated two lines for a complex of D_{3h} symmetry. This result implies that the three sandwiched ReO³⁺ groups are arranged with one Re-O vector directed towards the interior of the anion and the other two directed outwards, i.e. in similar fashion to the corresponding WO⁴⁺ groups in $[As_2W_{21}O_{69}(H_2O)]^{6-} (\equiv [H_2O(WO)_3)^{6-}$ $(AsW_9O_{33})_2]^{6-}$ to give a structure of $C_{2\nu}$ symmetry, see Fig. 1. The presence of an 'external' water ligand in 1 cannot be confirmed in the absence of a crystal structure, although it seems probable.

In contrast to the Keggin-derived rhenium derivatives which display a rich electrochemical behavior corresponding to Re(V)-Re(VI) and Re(VI)-Re(VII)couples [8], cyclic voltammograms of 1 show only an irreversible anodic feature at +1.1 V vs. Ag/AgCl. We

Fig. 1. Two polyhedral representations of the structure of $[As_2W_{21}O_{69}(H_2O)]^{6-}$ [15] showing the reduction in symmetry from D_{3h} to $C_{2\nu}$ caused by the orientation of the equatorial WO⁴⁺ groups. Small gray spheres, W; open circles, terminal oxygens; gray circle, water ligand. An analogous structure with equatorial ReO³⁺ groups is proposed for **1**.

presume that the proximity of the rhenium centers in 1 allows facile electron transfer and effective disproportionation of any Re(VI), e.g. via

 $\operatorname{Re}(\operatorname{VI}) + \operatorname{Re}(\operatorname{V}) \rightarrow \operatorname{Re}(\operatorname{IV}) + \operatorname{Re}(\operatorname{VII}) \{\operatorname{ReO}_4^-\}$

Attempts to oxidize **1** by addition of bromine water led to immediate decolorization.

3.2. Thermal decomposition of 1

We have previously shown that ammonium salts of polyoxotungstates containing lanthanide and actinide heteroatoms may be thermally decomposed to yield cubic tungsten bronzes that might be suitable as waste forms for lanthanide and actinide radioisotopes [6]. We, therefore, decided to explore the thermal behavior of rhenium-containing polytungstates as models for the corresponding technetium species. Several years ago Sleight and Gillson [16] had investigated solid solutions of WO₃ and ReO₃, which are isoelectronic with the cubic bronzes M_xWO_3 .

Comparative thermogravimetric scans of $K_4[PW_{11}ReO_{40}]$ and $K_3[PW_{12}O_{40}]$ revealed that the former salt lost its rhenium content, presumably as Re₂O₇, at temperatures above 500 °C. In contrast both K-1 and NH₄-1 yielded mixed rhenium-tungsten bronzes. Fig. 2 shows the TGA and DSC results for these two salts. Following loss of crystal water below 200 °C for both salts and volatilization of NH₃ by 400 °C. The exothermic DSC peaks at 417 °C (K) and 433 °C (NH₄) correspond to weight losses of 3.56% and 3.88%, respectively, attributed to the decomposition of the anion via loss of As₂O₃ (ca. 3.33% and 3.46%). No other significant weight loss was observed up to 950 °C. Between 600 and 950 °C the sample lost 0.31% (NH₄) 1.1% (K) of its initial weight, indicating that most of the rhenium was still left in the sample.

Fig. 2. TGA and DSC curves of $(NH_4)_9[(ReO)_3(AsW_9O_{33})_2] \cdot nH_2O$ (A) and $K_9[(ReO)_3(AsW_9O_{33})_2] \cdot nH_2O$.

Elemental analysis of the ammonium salt heated to 950 °C in the TGA apparatus indicated that ~95% of the rhenium was left in the sample after heating. Anal. (Calc. for $1.5(\text{Re}_2\text{O}_5)$:18(WO₃)): Re 10.89 (11.51); W 67.7 (68.2).

Phase identification in the samples of potassium and ammonium salts of **1** was carried out using powder diffraction. Analysis of powder diffraction patterns of the potassium salt samples decomposed at 600 and 725 °C (Fig. 3) indicates the presence of a monoclinic compound similar to potassium tritungstate, $K_2W_3O_{10}$ (Fig. 4) [17]. Most of the observed diffraction peaks correspond to the powder diffraction pattern of $K_2W_3O_{10}$. Observed differences in intensities of two low-angle peaks result from obstruction by the sample holder and absorption of diffracted rays by cavities on the real (not smooth) surface of the sample. Some peaks, which were not found in the diffraction pattern of $K_2W_3O_{10}$ could be still indexed on the basis of the $K_2W_3O_{10}$ monoclinic unit cell (see Section 5, Tables S1 and S2). Four reflections which could not be indexed on the basis of the $K_2W_3O_{10}$ monoclinic cell do not correspond to any of the known rhenium oxides: ReO_2 [18], ReO_3 [19], Re_2O_7 [20] or to the ReO_3 –WO₃ solid solutions [16]. The unit cell constants of the monoclinic cell were refined based on the assigned Miller

Fig. 3. Powder diffractograms of samples of $K_9[(ReO)_3(AsW_9O_{33})_2]$ ·*n* H_2O , heated to 600 °C (A), 725 °C (B), and 900 °C (C). (*) Unidentified reflections. (Si) reflections from silicon sample holder.

Fig. 4. Monoclinic $K_2W_3O_{10}$ structure. Crystallographic *b*-axis perpendicular to the plane of paper. Potassium cations (gray spheres) occupy positions in the large channels formed by tungsten oxide framework.

Table 1 Phase composition of ammonium and potassium salts of $[(\text{ReO})_3(\text{AsW}_9\text{O}_{33})_2]^{9-}$ following thermal degradation

Decomposition temperature (°C)	K-salt	(NH ₄)-salt
600	Potassium bronze ($K_2W_3O_{10}$ -type): a = 10.91(2) Å, $b = 3.881(4)$ Å, $c = 15.97(2)$ Å,	Mixture of two phases: hexagonal bronze: $a = 7.324(7)$ Å, $c = 7.519(7)$ Å;
	$\beta = 109.0(1)^{\circ}$	tetragonal bronze: $a = 5.243(2)$ Å, $c = 3.879(1)$ Å
725	Potassium bronze (K ₂ W ₃ O ₁₀ -type): $a = 10.86(2)$ Å, $b = 3.866(5)$ Å, $c = 15.96(2)$ Å, $\beta = 109.0(1)^{\circ}$	Mixture of two phases: hexagonal bronze: a = 7.2890(5) Å, $c = 7.5644(6)$ Å; tetragonal bronze: $a = 5.2457(9)$ Å, $c = 3.868(1)$ Å
900	Potassium bronze (WO ₃ · $\frac{1}{2}$ H ₂ O pyrochlore-type): a = 10.172(3) Å	Mixture of two phases: hexagonal bronze: a = 7.316(4) Å, $c = 7.545(3)$ Å; orthorhombic bronze: a = 7.372(5) Å, $b = 7.499(5)$ Å, $c = 3.860(3)$ Å

indexes and are given in Table 1 (see Tables S7–S15 in Section 5). The refinement indicated no significant differences between unit cell parameters of samples heated to 600 and 725 $^{\circ}$ C.

Fig. 5. Pyrochlore-type structure viewed perpendicular to the (110) plane, showing locations of potassium cations (gray spheres).

The powder diffraction pattern of the potassium salt heated to 900 °C differs significantly from the patterns collected for samples decomposed at lower temperatures. Since the TGA curve does not show any stepwise weight loss between 725 and 950 °C, the observed change of phase composition suggests an existence of a phase transition in this temperature interval. A search on the powder diffraction database shows that the observed powder diffraction pattern corresponds to those of hydrated tungsten oxide WO₃·0.5H₂O and a number of substituted tungsten bronzes, KCr_{0.33}W_{1.67}O₆ with pyrochlore-type structures (Fig. 5; Section 5, Table S3) [21].

A rough estimate of the rhenium contribution to the intensity of diffraction, based on the formula of the decomposed product, shows that rhenium should contribute about $\{3(\text{Re})/[18(\text{W}) + 8 \times 69(\text{O})/74 + 19 \times 9(\text{K})/74]\} \times 100\% \approx 11\%$ of total diffraction intensity. The intensities of the unidentified peaks increase with increase of temperature, for example, the reflection with d = 4.13 Å increases from 5.9% at 600 °C to 18% at

Fig. 6. Powder diffractograms of $(NH_4)_9[(ReO)_3(AsW_9O_{33})_2] \cdot n H_2O$ heated to 600 °C (A), 725 °C (B), and 900 °C. (*) Unidentified reflections. (Δ) Reflections from the hexagonal phase.

Fig. 7. Structure of hexagonal tungsten bronze (oxide) showing the channels parallel to the crystallographic *c*-axis.

725 and 900 °C, which probably indicates decomposition of the monoclinic phase and formation of a cubic phase. At 600 °C, according to this estimate, a considerable part of the rhenium should be in the monoclinic phase, but it is unclear how much rhenium, if any is contained in the monoclinic, or cubic phase at the higher temperature.

A powder diffraction study of decomposition products resulting from heating the ammonium salt of **1** to 725 °C, shows two different crystallographic phases corresponding to hexagonal [22,23] and tetragonal [24] bronzes (Fig. 6, Tables 1, S4 and S5). As for the potassium salt a few low-intensity reflections could not be identified as known rhenium oxides and bronzes [18,20–22,25], or indexed in either tetragonal [24] or hexagonal [22,23] cell settings. A rough estimate of the rhenium contribution to the intensity of diffraction on the basis of decomposition product's formula: $Re_{1.9}W_{12}O_{41}$ suggests that rhenium should contribute about: {2(Re)/[12(W) + 8 × 41(O)/74]} × 100% ≈ 12% of observed diffraction intensity, which is about three times greater than the most intense non-identified peak: 3.9% (Tables S4 and S5). This estimate suggests that considerable part of rhenium is incorporated into the observed tetragonal and hexagonal phases.

The hexagonal bronze structure is formed of WO_6 octahedra connected by vertices (Fig. 7). Cations reside inside the large channels. The hexagonal structural framework is stable even if channels are empty, so that a hexagonal tungsten oxide (WO₃) structure exists [22,23]. The tetragonal bronze structure is similar to the structure of perovskite [24,25]. The perovskite structure consists of a framework of WO₆ octahedra connected by vertices (Fig. 8). This forms a cubic-type 3D structure, with interconnected pores partially occupied by cations. Since the tungsten octahedra are distorted, there is a deviation from ideal cubic symmetry. The a-axis of the smallest tetragonal cell is equal to the face diagonal of the cubic cell ($a = 3.8 \times \sqrt{2} \approx 5.22$ Å). Some tetragonal bronzes have been indexed on the basis of a larger tetragonal cell with $a \sim 7.4$ Å, which approxi-

Fig. 8. Structure of tetragonal tungsten bronze (oxide). A, a perspective along the *c*-axis. B, relationship between different lattice cell types. Perovskite-type cubic cell ($a \sim 3.7$ Å) is shown by dashed line; smallest tetragonal cell ($a \sim 5.2$ Å) is shown by continuous line; larger tetragonal cell ($a \sim 7.4$ Å) is shown by another type of dashed line. Crystallographic *c*-axis is perpendicular to the plane of paper.

mately equals 2*a* for the cubic cell (Fig. 8). For both tetragonal cell types *c* (~3.8 Å) is close to the parameter for the cubic cell. Structures with orthorhombic or monoclinic symmetry with unit cells close to the larger tetragonal cell have also been reported [26,27]. Decomposition products found at 600 and 725 °C could be indexed on the basis of both tetragonal cells with a cell parameter of either ~5.22 Å ('Ca_{0.035}WO₃') or ~7.4 Å ('H_{0.23}WO₃'), which in fact represent the same perovskite-type structure.

Sleight and Gillson [16] studied formation of WO₃– ReO₃ solid solutions. They found cubic (a = 3.7574 Å), perovskite-type phases, similar to the tetragonal (orthorhombic) phase observed for the decomposition of ammonium salt of **1**.

As for the potassium salt, a change in powder diffraction pattern was observed for a sample decomposed at 900 °C. Search of a match in the powder diffraction database shows a mixture of hexagonal (also observed at lower temperatures) and orthorhombic phases.

The lattice parameters of the orthorhombic compound are very similar to those of the tetragonal compound, suggesting a deformation of the tetragonal lattice. Orthorhombic deformation of a tetragonal lattice is easily demonstrated by splitting of the (1 1 0) reflection of the tetragonal phase (3.71, 100%, Tables S4 and S5) into the (0 2 0), (2 0 0) reflections of the orthorhombic phase (3.74, 38%; 3.67, 74%, Table S6).

Thus thermal decomposition of the ammonium salt of $[(\text{ReO})_3(\text{AsW}_9\text{O}_{33})_2]^{9-}$ gives mostly a mixture of hexagonal and tetragonal (perovskite) type bronzes. The intensities of the diffraction peaks that belong to the

hexagonal phase increase with increasing temperature, which suggests higher stability of the hexagonal phase at high temperatures. A structural phase transition is observed for the tetragonal phase between 725 and 900 °C, which results in an orthorhombic deformation of the observed unit cell.

4. Conclusions

Thermolysis of solid samples of ammonium and potassium salts of the new sandwich polyoxometalate anion $[(\text{ReO})_3(\text{AsW}_9\text{O}_{33})_2]^{9-}$ at 600–900 °C yield tungsten–rhenium bronzes based on K₂W₃O₁₀ and hexagonal and tetragonal oxides. About 95% of the rhenium content of the original polyoxoanion is retained at 900 °C. This behavior suggests the possibility of generating analogous thermally stable technetium oxide bronzes for use as radioactive waste forms.

Acknowledgments

We thank the DOE for support of this work through the Office of Energy research and Environmental Management Science Program, Grant DE-FG07-96ER14695.

Supporting information

Tables S1–S15 listing phase identification and unit cell refinement from powder diffractograms of thermally-treated samples of **1-K**, and **1-NH**₄.

$2\theta(\text{obs})$	d(obs) (Å)	<i>I</i> (obs) (%)	Phase ID	d(card) (Å)	<i>I</i> (card) (%)	h k l	2θ (card)	$\Delta(2\theta)$
11.739	7.5323	8.8	K ₂ W ₃ O ₁₀	7.5400	70.0	0 0 2	11.727	-0.012
12.099	7.3089	23.4	$K_2W_3O_{10}$	7.3200	70.0	-1 0 2	12.081	-0.018
16.189	5.4706	1.8	$K_2W_3O_{10}$	5.4500	10.0	-2 0 1	16.250	0.062
16.968	5.2209	6.1	$K_2W_3O_{10}$	5.2200	20.0	-1 0 3	16.971	0.003
17.479	5.0696	17.0	$K_2W_3O_{10}$	5.0600	40.0		17.512	0.034
19.798	4.4806	3.9	$K_2W_3O_{10}$	4.4800	20.0	2 0 1	19.801	0.003
20.579	4.3124	2.7	2 5 10					
21.428	4.1433	5.2						
21.858	4.0628	36.3	K ₂ W ₃ O ₁₀	4.0600	70.0	103	21.873	0.015
22.268	3.9889	14.8	$K_2W_3O_{10}$	3.9900	40.0	-1 0 4	22.262	-0.006
22.988	3.8656	99.3	$K_2W_3O_{10}$	3.8600	80.0	0 1 0	23.022	0.034
23.638	3.7608	9.7	$K_2W_3O_{10}$	3.7600	20.0	004	23.643	0.005
24.578	3.6190	25.8	$K_2W_3O_{10}$	3.6100	60.0	-1 1 1	24.640	0.063
26.018	3.4219	44.1	$K_2W_3O_{10}$	3.4100	60.0	-1 1 2	26.110	0.093
27.227	3.2726	6.0	$K_2W_3O_{10}$	3.2700	40.0	104	27.249	0.022
28.187	3.1633	95.4	$K_2W_3O_{10}$	3.1600	100.0	-2 1 1	28.217	0.030
28.907	3.0861	100.0	$K_2W_3O_{10}$	3.0800	100.0	-3 0 4	28.966	0.059
29.417	3.0338	73.1	$K_2W_3O_{10}$	3.0300	80.0	005	29.454	0.037
30.047	2.9716	11.2	$K_2W_3O_{10}$	2.9700	20.0		30.063	0.016
31.897	2.8033	38.8	$K_2W_3O_{10}$	2.8000	70.0	302	31.936	0.039
33.137	2.7012	20.4	$K_2W_2O_{10}$	2.7000	60.0	014	33.152	0.015
33.807	2.6492	25.2	K ₂ W ₂ O ₁₀	2.6300	60.0	-3 1 2	34.061	0.254
35.087 ^a	2.5555	2.0	$K_2W_3O_{10}$	2.548	_	-3 1 3	35.199	0.112
36.056	2.4889	1.0	2					
36.676	2.4483	29.6	K ₂ W ₃ O ₁₀	2.4400	60.0	-306	36.805	0.129
37.216 ^a	2.4140	23.0	$K_2W_3O_{10}$	2.409	_	-3 1 4	37.289	0.073
37.656	2.3868	21.3	$K_2W_3O_{10}$	2.4000	60.0	-2 1 5	37.441	-0.215
38.786	2.3198	4.6	$K_2W_3O_{10}$	2.3200	20.0	2 0 5	38.783	-0.003
39.716 ^a	2.2676	1.1	$K_2W_3O_{10}$	2.264	_	3 1 2	39.783	0.067
40.376 ^a	2.2320	8.9	$K_2W_3O_{10}$	2.240	_	-3 1 5	40.218	-0.158
41.176	2.1905	12.0	$K_2W_3O_{10}$	2.1860	60.0	2 1 4	41.265	0.089
42.845	2.1089	2.5	$K_2W_3O_{10}$	2.1200	10.0	-504	42.611	-0.234
43.865	2.0622	5.5	$K_2W_3O_{10}$	2.0500	40.0	500	44.141	0.275
44.666 ^a	2.0271	2.6	$K_2W_3O_{10}$	2.022	_	-4 1 5	44.775	0.109
45.525	1.9908	6.5	$K_2W_3O_{10}$	1.9860	20.0	107	45.642	0.117
46.275 ^a	1.9603	3.0	$K_2W_3O_{10}$	1.9609	_	116	46.260	-0.015
46.935	1.9343	23.9	$K_2W_3O_{10}$	1.9280	20.0	-506	47.097	0.162
47.725	1.9041	8.2	$K_2W_3O_{10}$	1.9070	20.0	-4 1 6	47.647	-0.078
48.295 ^a	1.8829	6.3	$K_2W_3O_{10}$	1.8851	_	008	48.235	-0.060
50.045	1.8211	17.9	$K_2W_3O_{10}$	1.8300	20.0	-4 0 8	49.785	-0.259

^a Reflections were indexed manually by calculating *d*-spacings and 2θ -angles for monoclinic cell of $K_2W_3O_{10}$.

Phase identification for a sample of $K_9[(ReO)_3(AsW_9O_{33})_2] \cdot n H_2O$ heated to 725 °C in DSC apparatus under N_2 atmosphere

$2\theta(\text{obs})$	<i>d</i> (obs) (Å)	<i>I</i> (obs) (%)	Phase ID	d(card) (Å)	<i>I</i> (card) (%)	h k l	2θ (card)	$\Delta(2\theta)$
11.809	7.4878	1.6	$K_2W_3O_{10}$	7.5400	70.0	0 0 2	11.727	-0.082
12.199	7.2493	5.2	$K_2W_3O_{10}$	7.3200	70.0	$-1 \ 0 \ 2$	12.081	-0.118
14.019	6.3120	3.9						
16.349	5.4172	1.9	$K_2W_3O_{10}$	5.4500	10.0	-2 0 1	16.250	-0.099
17.009	5.2086	2.3	$K_2W_3O_{10}$	5.2200	20.0	-1 0 3	16.971	-0.037
17.508	5.0612	7.5	$K_2W_3O_{10}$	5.0600	40.0		17.512	0.004
19.829	4.4738	3.0	$K_2W_3O_{10}$	4.4800	20.0	2 0 1	19.801	-0.028
21.538	4.1225	18.1						
21.948	4.0463	26.4	$K_2W_3O_{10}$	4.0600	70.0	103	21.873	-0.075
22.358	3.9730	12.7	$K_2W_3O_{10}$	3.9900	40.0	$-1 \ 0 \ 4$	22.262	-0.096
23.078	3.8508	55.1	$K_2W_3O_{10}$	3.8600	80.0	0 1 0	23.022	-0.056
23.757	3.7421	8.3	$K_2W_3O_{10}$	3.7600	20.0	004	23.643	-0.114
24.668	3.6060	17.9	$K_2W_3O_{10}$	3.6100	60.0	-1 1 1	24.640	-0.027
26.118	3.4091	30.1	$K_2W_3O_{10}$	3.4100	60.0	-1 1 2	26.110	-0.007
27.317	3.2620	7.4	$K_2W_3O_{10}$	3.2700	40.0	104	27.249	-0.068
28.277	3.1534	100.0	$K_2W_3O_{10}$	3.1600	100.0	-2 1 1	28.217	-0.060
29.007	3.0757	76.3	$K_2W_3O_{10}$	3.0800	100.0	-3 0 4	28.966	-0.041
29.557	3.0197	56.1	$K_2W_3O_{10}$	3.0300	80.0	005	29.454	-0.103
30.177	2.9591	13.5	$K_2W_3O_{10}$	2.9700	20.0		30.063	-0.113
30.566 ^a	2.9223	2.2	$K_2W_3O_{10}$	2.914	_	2 1 1	30.657	0.091
32.017	2.7931	32.1	$K_2W_3O_{10}$	2.8000	70.0	302	31.936	-0.081
33.247	2.6925	17.7	$K_2W_3O_{10}$	2.7000	60.0	0 1 4	33.152	-0.094
33.947	2.6386	19.6	$K_2W_3O_{10}$	2.6300	60.0	-3 1 2	34.061	0.115
34.926 ^a	2.5668	1.7	$K_2W_3O_{10}$	2.569	_	4 0 0	34.889	-0.037
35.276 ^a	2.5422	1.8	$K_2W_3O_{10}$	2.543	_	-4 0 4	35.260	-0.016
36.196 ^a	2.4796	1.3	$K_2W_3O_{10}$	2.480	_	303	36.189	-0.007
36.806	2.4399	33.5	$K_2W_3O_{10}$	2.4400	60.0	-3 0 6	36.805	-0.001
37.346	2.4059	22.3	$K_2W_3O_{10}$	2.4000	60.0	-2 1 5	37.441	0.095
37.796	2.3782	18.5	$K_2W_3O_{10}$	2.3700	60.0	-4 0 5	37.933	0.137
38.906	2.3129	4.8	$K_2W_3O_{10}$	2.3200	20.0	205	38.783	-0.124
39.736 ^a	2.2665	1.8	$K_2W_3O_{10}$	2.267	_	-2 0 7	39.718	-0.018
40.756 ^a	2.2121	7.6	$K_2W_3O_{10}$	2.221,	_	4 0 2,	40.575,	-0.177,
				2.203		3 0 4	40.923	0.167
41.316	2.1834	13.9	$K_2 W_3 O_{10}$	2.1860	60.0	2 1 4	41.265	-0.051
42.556	2.1226	2.5	$K_2 W_3 O_{10}$	2.1200	10.0	-5 0 4	42.611	0.055
43.015 ^a	2.1010	3.4	$K_2 W_3 O_{10}$	2.106	-	0 1 6	42.902	-0.113
44.035	2.0547	7.1	$K_2 W_3 O_{10}$	2.0500	40.0	500	44.141	0.105
44.786^{a}	2.0220	4.6	$K_2 W_3 O_{10}$	2.022	-	-4 1 5	44.775	-0.011
45.355	1.9979	3.9	$K_2 W_3 O_{10}$	1.9960	40.0	-2 0 8	45.401	0.045
45.705	1.9834	6.9	$K_2 W_3 O_{10}$	1.9860	20.0	107	45.642	-0.063
46.475^{a}	1.9523	5.8	$K_2 W_3 O_{10}$	1.951	_	-1 1 7	46.500	0.025
47.155	1.9258	53.9	$K_2W_3O_{10}$	1.9280	20.0	-5 0 6	47.097	-0.058
47.855	1.8992	10.5	$K_2W_3O_{10}$	1.9070	20.0	-4 1 6	47.647	-0.208
48.465	1.8767	7.4	$K_2W_3O_{10}$	1.8700	20.0	2 2 2	48.650	0.186
49.565	1.8376	4.7	$K_2W_3O_{10}$	1.8300	20.0	-4 0 8	49.785	0.220

^a Reflections were indexed manually by calculating *d*-spacings and 2θ -angles for monoclinic cell of $K_2W_3O_{10}$.

942

$2\theta(\text{obs})$	d(obs) (Å)	<i>I</i> (obs) (%)	Phase ID	$d(\text{card})(\text{\AA})$	<i>I</i> (card) (%)	h k l	$2\theta(\text{card})$	$\Delta(2\theta)$
14.089	6.2810	3.4						
15.079	5.8707	100.0	KCr _{0.33} W _{1.67} O ₆	5.8800	100.0	111	15.055	-0.024
21.498	4.1300	8.1						
23.858	3.7266	4.9						
27.687	3.2193	2.1						
28.317	3.1490	5.6	Si	3.13549		111	28.4423	0.1253
28.937	3.0830	24.4	KCr _{0.33} W _{1.67} O ₆	3.0700	100.0	311	29.062	0.125
30.307	2.9467	13.2	KCr _{0.33} W _{1.67} O ₆	2.9400	85.0	222	30.378	0.070
34.346	2.6088	1.6						
35.246	2.5442	2.2	KCr _{0.33} W _{1.67} O ₆	2.5460	15.0	400	35.221	-0.025
37.306	2.4083	2.5						
38.486	2.3372	1.6	KCr _{0.33} W _{1.67} O ₆	2.3370	15.0	331	38.489	0.003
46.255	1.9611	1.8	KCr _{0.33} W _{1.67} O ₆	1.9600	35.0	511	46.283	0.027
47.235	1.9227	8.9	Si	1.9201		220	47.3027	0.068
48.035	1.8925	26.3						
50.635	1.8013	3.9	KCr _{0.33} W _{1.67} O ₆	1.8000	50.0	440	50.673	0.038
53.185	1.7208	3.1	KCr _{0.33} W _{1.67} O ₆	1.7220	30.0	531	53.143	-0.041
56.314	1.6323	1.8	Si	1.63745		311	56.1222	-0.192
57.084	1.6121	1.5						
59.513	1.5520	2.3	KCr _{0.33} W _{1.67} O ₆	1.5550	15.0	533	59.387	-0.127
60.332	1.5329	3.8	KCr _{0.33} W _{1.67} O ₆	1.5370	40.0	622	60.153	-0.179
63.174	1.4706	0.7	KCr _{0.33} W _{1.67} O ₆	1.4720	10.0	444	63.106	-0.067
63.523	1.4633	1.4						
65.373	1.4263	2.9	KCr _{0.33} W _{1.67} O ₆	1.4290	20.0	711	65.236	-0.137
71.052	1.3256	2.0	KCr _{0.33} W _{1.67} O ₆	1.3290	25.0	731	70.844	-0.208
71.372	1.3205	1.0						
74.762	1.2688	3.4						
81.611	1.1787	0.9	KCr _{0.33} W _{1.67} O ₆	1.1780	5.0	751	81.671	0.060
82.581	1.1673	2.1	KCr _{0.33} W _{1.67} O ₆	1.1700	20.0	662	82.350	-0.231
84.931	1.1409	0.6	$KCr_{0.33}W_{1.67}O_{6}$	1.1400	15.0	840	85.015	0.084

Tabl	e	S 4	

Phase identification for a sample of $(NH_4)_9[(ReO)_3(AsW_9O_{33})_2] \cdot n H_2O$ heated to 600 °C in TGA apparatus under N₂ atmosphere

$2\theta(\text{obs})$	d(obs) (Å)	<i>I</i> (obs) (%)	Phase ID	$d(\text{card})(\text{\AA})$	<i>I</i> (card) (%)	h k l	2θ (card)	$\Delta(2\theta)$
14.009	6.3165	5.2	hexagonal ^a	6.3264	53.0	100	13.987	-0.022
21.518	4.1263	2.5						
22.938	3.8739	84.5	tetragonal ^b	3.8600	70.0	001	23.022	0.084
23.938	3.7143	100.0	tetragonal	3.7100	100.0	110	23.966	0.028
26.278	3.3887	2.4						
26.677	3.3388	3.4						
28.077	3.1754	42.6	hexagonal	3.1642	100.0	200	28.179	0.102
28.637	3.1146	24.3	tetragonal	3.1100	30.0	101	28.680	0.043
33.397	2.6808	64.1	tetragonal	2.6730	60.0	111	33.497	0.100
34.107	2.6266	38.7	hexagonal	2.6245	14.0	112	34.135	0.028
35.587	2.5207	1.3						
36.896	2.4342	19.4	hexagonal	2.4244	42.0	202	37.051	0.155
41.486	2.1749	19.6	tetragonal	2.1700	25.0	201	41.583	0.097
45.085	2.0092	9.0	tetragonal	2.0050	12.0	211	45.186	0.100
46.835	1.9382	7.9	tetragonal	1.9290	8.0	0 0 2	47.071	0.236
47.964	1.8951	0.9	hexagonal	1.8859	9.0	004	48.213	0.249
48.975	1.8584	12.2	tetragonal	1.8540	16.0	220	49.098	0.123
49.685	1.8335	8.4	hexagonal	1.8269	33.0	220	49.875	0.190
50.095	1.8194	19.3	tetragonal	1.811	33.0	102	50.344	0.249
51.855	1.7617	1.2	hexagonal	1.7553	6.0	310	52.058	0.203
53.264	1.7184	12.2	tetragonal	1.7130	12.0	112	53.445	0.180
55.094	1.6656	17.7	tetragonal	1.6720	14.0	221	54.864	-0.230
56.474	1.6281	5.4	hexagonal	1.6206	15.0	204	56.760	0.286
57.994	1.5890	3.8	hexagonal	1.5915	8.0	312	57.894	-0.100
59.224	1.5589	3.4	tetragonal	1.5550	8.0	202	59.387	0.163
60.673	1.5251	9.5	tetragonal	1.5240	20.0	311	60.720	0.047
62.083	1.4938	8.5	tetragonal	1.4910	14.0	212	62.212	0.128

^a Hexagonal diffraction pattern is compared with the diffraction pattern of hexagonal KAl_{0.33}W_{2.67}O₉ (a = 7.307 Å, c = 7.546 Å). ^b Tetragonal diffraction pattern is compared with a diffraction pattern of tetragonal Ca_{0.035}WO₃ (a = 5.246 Å, c = 3.858 Å).

$2\theta(\text{obs})$	d(obs) (Å)	<i>I</i> (obs) (%)	Phase ID	$d(\text{card})(\text{\AA})$	<i>I</i> (card) (%)	h k l	$2\theta(\text{card})$	$\Delta(2\theta)$
14.039	6.3031	4.3	hexagonal ^a	6.3264	53.0	100	13.987	-0.052
19.368	4.5791	1.5						
21.498	4.1300	3.9						
22.938	3.8739	60.9	tetragonal ^b	3.8600	70.0	001	23.022	0.084
23.528	3.7781	16.9	hexagonal	3.7730	33.0	002	23.560	0.032
23.978	3.7082	100.0	tetragonal	3.7100	100.0	110	23.966	-0.012
26.818	3.3217	2.7						
28.107	3.1721	33.2	hexagonal	3.1642	100.0	200	28.179	0.072
28.617	3.1167	20.7	tetragonal	3.1100	30.0	101	28.680	0.063
33.407	2.6800	55.1	tetragonal	2.6730	60.0	111	33.497	0.090
34.147	2.6236	31.7	tetragonal	2.6240	45.0	200	34.141	-0.005
35.526	2.5248	1.5						
35.646	2.5166	1.3						
36.926	2.4323	16.5	hexagonal	2.4244	42.0	202	37.051	0.125
41.516	2.1734	18.6	tetragonal	2.1700	25.0	201	41.583	0.067
45.115	2.0080	9.0	tetragonal	2.0050	12.0	211	45.186	0.070
46.855	1.9374	6.5	tetragonal	1.9290	8.0	002	47.071	0.216
47.965	1.8951	1.5	hexagonal	1.8859	9.0	004	48.213	0.248
49.035	1.8562	12.0	tetragonal	1.8540	16.0	220	49.098	0.063
49.655	1.8345	5.1	hexagonal	1.8413	6.0	302	49.460	-0.195
50.085	1.8198	13.7	hexagonal	1.8269	33.0	220	49.875	-0.210
50.314	1.8120	9.7	tetragonal	1.8110	20.0	102	50.344	0.030
51.944	1.7589	1.1	hexagonal	1.7553	6.0	310	52.058	0.114
53.294	1.7175	9.3	tetragonal	1.7130	12.0	112	53.445	0.150
53.504	1.7113	5.9	hexagonal	1.7099	1.0	311	53.550	0.046
54.874	1.6717	13.3	tetragonal	1.6720	14.0	221	54.864	-0.011
55.304	1.6597	15.4	tetragonal	1.6590	20.0	310	55.330	0.026
56.634	1.6239	3.3	hexagonal	1.6206	15.0	204	56.760	0.126
57.944	1.5902	3.0	hexagonal	1.5915	8.0	312	57.894	-0.050
58.164	1.5848	2.8	hexagonal	1.5823	15.0	400	58.264	0.100
59.094	1.5620	3.5	tetragonal	1.5550	8.0	202	59.387	0.293
60.693	1.5246	12.1	tetragonal	1.5240	20.0	311	60.720	0.027

^a Hexagonal diffraction pattern is compared with the diffraction pattern of hexagonal KAl_{0.33}W_{2.67}O₉ (a = 7.307 Å, c = 7.546 Å). ^b Tetragonal diffraction pattern is compared with a diffraction pattern of tetragonal Ca_{0.035}WO₃ (a = 5.246 Å, c = 3.858 Å).

Phase identification for a sample of (NH₄)₉[(ReO)₃(AsW₉O₃₃)₂]·n H₂O heated to 900 °C in TGA apparatus under N₂ atmosphere

$2\theta(\text{obs})$	d(obs) (Å)	<i>I</i> (obs) (%)	Phase ID	d(card) (Å)	<i>I</i> (card) (%)	h k l	2θ (card)	$\Delta(2\theta)$
14.019	6.3122	3.2	hexagonal ^a	6.3264	53.0	100	13.987	-0.032
19.329	4.5884	1.6						
21.508	4.1282	1.1						
23.088	3.8492	37.9	orthorhombic ^b	3.8500	100.0	001	23.082	-0.005
23.568	3.7718	100.0	hexagonal	3.7730	33.0	002	23.560	-0.008
23.747	3.7437	37.9	orthorhombic	3.7500	65.0	020	23.707	-0.040
24.208	3.6735	74.4	orthorhombic	3.6900	95.0	200	24.098	-0.110
26.027	3.4207	0.5	orthorhombic	3.4300	2.0	011	25.955	-0.072
26.687	3.3376	5.4	orthorhombic	3.3500	10.0	120	26.586	-0.101
27.527	3.2376	2.0	hexagonal	3.2408	20.0	102	27.500	-0.027
28.227	3.1589	18.6	hexagonal	3.1642	100.0	200	28.179	-0.048
28.687	3.1093	26.6	orthorhombic	3.1000	25.0	111	28.775	0.088
33.267	2.6909	66.2	orthorhombic	2.6860	35.0	021	33.330	0.063
33.637	2.6622	35.4	orthorhombic	2.6620	35.0	201	33.639	0.003
34.167	2.6221	38.5	hexagonal	2.6245	14.0	112	34.135	-0.032
35.586	2.5207	7.5	orthorhombic	2.5250	6.0	121	35.524	-0.063
36.126	2.4843	1.5						
37.196	2.4152	23.8	hexagonal	2.4244	42.0	202	37.051	-0.145
41.586	2.1699	21.7	orthorhombic	2.1730	16.0	221	41.523	-0.063
42.945	2.1043	1.4	hexagonal	2.1095	5.0	300	42.834	-0.111
44.135	2.0502	2.9	orthorhombic	2.0560	2.0	320	44.005	-0.130
44.355	2.0406	1.4						
44.885	2.0177	4.7	orthorhombic	2.0180	10.0	131	44.879	-0.007
45.465	1.9933	6.8	orthorhombic	1.9980	6.0	3 1 1	45.353	-0.112
45.815	1.9789	2.5						
47.035	1.9304	8.7	orthorhombic	1.9230	20.0	002	47.227	0.191
48.585	1.8724	6.2	orthorhombic	1.8780	10.0	040	48.430	-0.155
48.814	1.8641	1.7	orthorhombic	1.863	-	012	48.847	0.033
49.480	1.8406	4.7	hexagonal	1.8413	6.0	302	49.460	-0.020
49.805	1.8293	10.0	hexagonal	1.8269	33.0	220	49.875	0.070
50.355	1.8106	24.0	hexagonal	1.8079	2.0	104	50.436	0.081
52.134	1.7529	1.3	hexagonal	1.7553	6.0	310	52.058	-0.076
53.554	1.7098	5.6	hexagonal	1.7099	1.0	3 1 1	53.550	-0.004
53.794	1.7027	5.6	orthorhombic	1.7060	10.0	202	53.682	-0.113
54.334	1.6870	7.3	orthorhombic	1.6880	16.0	041	54.301	-0.033
54.555	1.6807	9.8	hexagonal	1.6765	2.0	114	54.704	0.150
54.964	1.6692	4.9	orthorhombic	1.6650	16.0	401	55.114	0.150
55.434	1.6561	9.4	orthorhombic	1.6570	16.0	420	55.403	-0.031
55.774	1.6468	12.4	orthorhombic	1.6450	6.0	141	55.842	0.068
56.664	1.6231	4.6	hexagonal	1.6206	15.0	204	56.760	0.096
56.954	1.6155	3.3						
57.864	1.5922	4.1	hexagonal	1.5915	8.0	312	57.894	0.030
58.184	1.5842	2.1	hexagonal	1.5823	15.0	400	58.264	0.080

^a Hexagonal diffraction pattern is compared with the diffraction pattern of hexagonal KAl_{0.33}W_{2.67}O₉ (a = 7.307 Å, c = 7.546 Å). ^b Orthorhombic diffraction pattern is compared with the diffraction pattern of orthorhombic WO₃ (a = 7.384 Å, b = 7.512 Å, c = 3.846 Å).

946

Unit cell	refinement resu	lts of a sample o	f K ₉ [(ReO) ₃ (AsW	${}_{9}O_{33})_{2}] \cdot n H_{2}O h$	eated to 600 °C	in TGA apparatu	is under N2 atmo	osphere	
h	k	l	$2\theta(\text{cal})$	$2\theta(\text{obs})$	$\Delta(2\theta)$	$d(\text{cal})(\text{\AA})$	d(obs) (Å)	$\Delta(d)$ (Å)	
0	0	2	11.712	11.739	-0.027	7.5496	7.5323	0.0173	
-1	0	2	12.057	12.099	-0.042	7.3344	7.3089	0.0255	
-2	0	1	16.236	16.189	0.048	5.4547	5.4706	-0.0159	
-1	0	3	16.889	16.968	-0.079	5.2452	5.2209	0.0243	
-2	0	2	17.368	17.479	-0.111	5.1018	5.0696	0.0321	
2	0	1	19.897	19.798	0.099	4.4586	4.4806	-0.0220	
1	0	3	22.005	21.858	0.147	4.0360	4.0628	-0.0268	
-1	0	4	22.273	22.268	0.005	3.9880	3.9889	-0.0009	
0	1	0	22.896	22.988	-0.092	3.8809	3.8656	0.0153	
0	0	4	23.549	23.638	-0.089	3.7748	3.7608	0.0140	
-1	1	1	24.520	24.578	-0.057	3.6274	3.6190	0.0083	
-1	1	2	25.953	26.018	-0.064	3.4303	3.4219	0.0083	
-2	1	1	28.197	28.187	0.010	3.1622	3.1633	-0.0011	
-3	0	4	28.855	28.907	-0.052	3.0916	3.0861	0.0055	
0	0	5	29.556	29.417	0.139	3.0198	3.0338	-0.0139	
3	0	2	31.881	31.897	-0.016	2.8047	2.8033	0.0014	
0	1	4	33.078	33.137	-0.059	2.7059	2.7012	0.0047	
-3	1	2	33.922	33.807	0.116	2.6405	2.6492	-0.0088	
-3	0	6	36.730	36.676	0.054	2.4448	2.4483	-0.0035	
-2	1	5	37.247	37.216	0.031	2.4120	2.4140	-0.0019	
-4	0	5	37.758	37.656	0.102	2.3805	2.3868	-0.0062	
2	1	4	41.086	41.176	-0.090	2.1951	2.1905	0.0046	
5	0	0	43.834	43.865	-0.031	2.0636	2.0622	0.0014	
-2	0	8	45.449	45.525	-0.077	1.9940	1.9908	0.0032	
-5	0	6	46.956	46.935	0.021	1.9335	1.9343	-0.0008	
-4	1	6	47.595	47.725	-0.130	1.9090	1.9041	0.0049	
0	2	2	48.392	48.295	0.097	1.8794	1.8829	-0.0036	

Refined cell: a = 10.91(2), b = 3.881(4), c = 15.97(2), $\beta = 109.0(1)$, V = 639.4 Å³. Agreement: $|\Delta(2\theta)| = 0.07^{\circ}$, $|\Delta(d)| = 0.01$ Å, ESD of fit = 0.08° (ESD, estimated standard deviation).

Unit cell refin	ement results for a s	sample of $K_9[(ReO)_3$	$(AsW_9O_{33})_2] \cdot n H_2O$	heated to 725 °C in D	SC apparatus under	N ₂ atmosphere
h k l	$2\theta(cal)$	$2\theta(obs)$	$\Delta(2\theta)$	d(cal) (Å)	d(obs) (Å)	$\Delta(d)$
0 0 2	11.721	11.809	-0.089	7.5441	7.4878	0.0563
$-1 \ 0 \ 2$	12.072	12.199	-0.127	7.3250	7.2493	0.0757
$-2 \ 0 \ 1$	16.310	16.349	-0.040	5.4302	5.4172	0.0131
-1 0 3	16.900	17.009	-0.109	5.2420	5.2086	0.0334
-2 0 2	17.425	17.508	-0.083	5.0851	5.0612	0.0239
2 0 1	19.985	19.829	0.157	4.4391	4.4738	-0.0348
1 0 3	22.051	21.948	0.103	4.0277	4.0463	-0.0187
$-1 \ 0 \ 4$	22.283	22.358	-0.075	3.9863	3.9730	0.0132
0 1 0	22.983	23.078	-0.094	3.8664	3.8508	0.0156
0 0 4	23.566	23.757	-0.191	3.7721	3.7421	0.0299
-1 1 1	24.613	24.668	-0.055	3.6140	3.6060	0.0080
-1 1 2	26.038	26.118	-0.079	3.4193	3.4091	0.0102
-2 1 1	28.312	28.277	0.035	3.1496	3.1534	-0.0038
-3 0 4	28.927	29.007	-0.080	3.0841	3.0757	0.0084
0 0 5	29.578	29.557	0.021	3.0177	3.0197	-0.0021
3 0 2	32.017	32.017	0.000	2.7931	2.7931	0.0000
0 1 4	33.153	33.247	-0.094	2.7000	2.6925	0.0074
-3 1 2	34.061	33.947	0.114	2.6300	2.6386	-0.0086
-3 0 6	36.779	36.806	-0.028	2.4417	2.4399	0.0018
-2 1 5	37.323	37.346	-0.023	2.4073	2.4059	0.0014
-4 0 5	37.861	37.796	0.065	2.3743	2.3782	-0.0039
2 1 4	41.215	41.316	-0.101	2.1885	2.1834	0.0051
-5 0 4	42.683	42.556	0.127	2.1166	2.1226	-0.0060
500	44.058	44.035	0.023	2.0536	2.0547	-0.0010
-2 0 8	45.469	45.355	0.114	1.9931	1.9979	-0.0048
107	45.704	45.705	-0.001	1.9835	1.9834	0.0001
-506	47.093	47.155	-0.062	1.9281	1.9258	0.0024
-4 1 6	47.720	47.855	-0.135	1.9043	1.8992	0.0051
022	48.576	48.465	0.112	1.8727	1.8767	-0.0040
-4 0 8	49.749	49.565	0.184	1.8313	1.8376	-0.0064

Refined cell: a = 10.86(2) Å, b = 3.866(5) Å, c = 15.96(2) Å, $\beta = 109.0(1)$. Agreement: $|\Delta(2\theta)| = 0.08^\circ$, $|\Delta(d)| = 0.014$ Å, ESD of fit = 0.1° (ESD, estimated standard deviation).

Table S8

Table S9						
Unit cell refin	ement results for a sa	ample of $K_9[(ReO)_3($	$\mathrm{AsW}_9\mathrm{O}_{33})_2] \cdot n \mathrm{H}_2\mathrm{O}$	heated to 900 °C in T	GA apparatus under	N ₂ atmosphere
h k l	$2\theta(\text{cal})$	$2\theta(\text{obs})$	$\Delta(2\theta)$	d(cal) (Å)	d(obs) (Å)	$\Delta(d)$ (Å)
111	15.073	15.079	-0.006	5.8730	5.8707	0.0022
311	29.091	28.937	0.154	3.0671	3.0830	-0.0160
222	30.415	30.307	0.108	2.9365	2.9467	-0.0102

2.5431

2.3337

1.9577

1.7982

1.7194

1.5513

1.5335

1.4682

1.4244

1.3243

1.2715

1.1746

1.1668

1.1373

2.5442

2.3372

1.9611

1.8013

1.7208

1.5520

1.5329

1.4706

1.4263

1.3256

1.2688

1.1731

1.1673

1.1364

0.017

0.060

0.086

0.092

0.045

0.031

-0.028

0.113

0.100

0.080

-0.190

-0.123

0.041

-0.085

35.263

38.546

46.341

50.727

53.229

59.544

60.304

63.286

65.473

71.133

74.571

81.959

82.622

85.265

35.246

38.486

46.255

50.635

53.185

59.513

60.332

63.174

65.373

71.052

74.762

82.082

82.581

85.350

400

331

511

440

531

533

622

444

711

731

800

751

662

840

Refined cell: $a = 10.172(3)$ Å (cubic). Agreement: $ \Delta(2\theta) = 0.08^\circ$, $ \Delta(d) = 0.003$ Å, ESD of fit = 0.1° (ESD, estimated standard devi

Table S10 Unit cell refinement results of hexagonal phase found in a sample of $(NH_4)_9[(ReO)_3(AsW_9O_{33})_2] \cdot n H_2O$ heated to 600 °C in TGA apparatus under N₂ atmosphere

h k l	2θ(cal)	2θ(obs)	$\Delta(2\theta)$	d(cal) (Å)	d(obs) (Å)	$\Delta(d)$ (Å)	
100	13.951	14.009	-0.058	6.3428	6.3165	0.0263	
002	23.648	23.938	-0.290	3.7593	3.7143	0.0449	
200	28.114	28.077	0.036	3.1714	3.1754	-0.0040	
112	34.153	34.107	0.046	2.6231	2.6266	-0.0035	
202	37.056	36.896	0.160	2.4240	2.4342	-0.0101	
212	44.801	45.085	-0.284	2.0213	2.0092	0.0121	
220	49.756	49.685	0.071	1.8310	1.8335	-0.0024	
310	51.935	51.855	0.080	1.7592	1.7617	-0.0025	
311	53.447	53.264	0.183	1.7129	1.7184	-0.0055	
114	54.856	55.094	-0.238	1.6722	1.6656	0.0067	
400	58.125	57.994	0.132	1.5857	1.5890	-0.0033	
402	63.635	63.473	0.161	1.4610	1.4644	-0.0033	
411	68.925	69.013	-0.088	1.3612	1.3597	0.0015	
224	71.930	71.882	0.048	1.3116	1.3123	-0.0008	
412	72.746	72.772	-0.027	1.2989	1.2985	0.0004	
006	75.861	75.792	0.069	1.2531	1.2541	-0.0010	
330	78.252	78.491	-0.239	1.2207	1.2175	0.0031	
502	79.710	79.691	0.019	1.2020	1.2022	-0.0002	
206	82.745	82.651	0.094	1.1654	1.1665	-0.0011	
332	83.129	83.166	-0.037	1.1610	1.1606	0.0004	

Refined cell: a = 7.324(7) Å, c = 7.519(7) Å, V = 349.3 Å³. Agreement: $|\Delta(2\theta)| = 0.12^{\circ}$, $|\Delta(d)| = 0.007$ Å, ESD of fit = 0.15° (ESD, estimated standard deviation).

-0.0012

-0.0035

-0.0034

-0.0031

-0.0013

-0.0007

0.0006

-0.0024

-0.0019

-0.0013

0.0028

0.0014

-0.0005

0.0009

Unit cell refinement results of tetragonal phase found in a sample of $(NH_4)_9[(ReO)_3(AsW_9O_{33})_2] \cdot n H_2O$ heated to 600 °C in TGA apparatus under N_2 atmosphere

h k l	2θ(cal)	2θ(obs)	$\Delta(2\theta)$	d(cal) (Å)	d(obs) (Å)	$\Delta(d)$ (Å)
001	22.908	22.938	-0.030	3.8789	3.8739	0.0050
110	23.982	23.938	0.044	3.7076	3.7143	-0.0067
101	28.602	28.637	-0.035	3.1184	3.1146	0.0038
111	33.404	33.397	0.008	2.6802	2.6808	-0.0006
200	34.172	34.107	0.066	2.6217	2.6266	-0.0049
201	41.541	41.486	0.055	2.1721	2.1749	-0.0028
121	45.145	45.085	0.059	2.0067	2.0092	-0.0025
002	46.802	46.835	-0.033	1.9394	1.9382	0.0013
220	49.103	48.975	0.128	1.8538	1.8584	-0.0045
102	50.107	50.095	0.012	1.8190	1.8194	-0.0004
112	53.259	53.264	-0.005	1.7185	1.7184	0.0002
221	54.842	55.094	-0.252	1.6726	1.6656	0.0071
301	57.814	57.994	-0.180	1.5935	1.5890	0.0045
202	59.211	59.224	-0.012	1.5592	1.5589	0.0003
131	60.692	60.673	0.018	1.5246	1.5251	-0.0004
122	62.049	62.083	-0.034	1.4945	1.4938	0.0007
231	68.898	69.013	-0.114	1.3617	1.3597	0.0020
222	70.170	70.053	0.118	1.3401	1.3421	-0.0020
400	71.976	71.882	0.094	1.3108	1.3123	-0.0015
302	72.779	72.772	0.007	1.2984	1.2985	-0.0001
103	75.700	75.792	-0.092	1.2554	1.2541	0.0013
401	76.671	76.786	-0.115	1.2419	1.2403	0.0016
113	78.238	78.491	-0.253	1.2209	1.2175	0.0033
3 3 1	81.708	81.801	-0.093	1.1776	1.1765	0.0011
420	82.140	82.161	-0.021	1.1725	1.1722	0.0003
232	82.911	82.651	0.260	1.1635	1.1665	-0.0030
203	83.251	83.166	0.085	1.1596	1.1606	-0.0010
213	85.736	85.701	0.035	1.1322	1.1326	-0.0004

Refined cell: a = 5.243(2) Å, c = 3.879(1) Å, V = 106.6 Å³. Agreement: $|\Delta(2\theta)| = 0.05^\circ$, $|\Delta(d)| = 0.002$ Å, ESD of fit = 0.07° (ESD, estimated standard deviation).

Unit cell refinement results of hexagonal phase found in a sample of $(NH_4)_9[(ReO)_3(AsW_9O_{33})_2]$ ·n H₂O heated to 725 °C in DSC apparatus under N₂ atmosphere

h k l	2θ(cal)	2θ(obs)	$\Delta(2\theta)$	d(cal) (Å)	d(obs) (Å)	$\Delta(d)$ (Å)
100	14.018	14.039	-0.021	6.3125	6.3031	0.0094
002	23.502	23.528	-0.026	3.7822	3.7781	0.0041
111	27.137	26.947	0.190	3.2833	3.3060	-0.0227
112	34.136	34.147	-0.010	2.6244	2.6236	0.0008
202	37.068	36.926	0.141	2.4233	2.4323	-0.0089
212	44.880	45.115	-0.235	2.0179	2.0080	0.0100
004	48.073	47.965	0.108	1.8911	1.8951	-0.0040
302	49.532	49.655	-0.123	1.8388	1.8345	0.0043
220	50.011	50.085	-0.074	1.8223	1.8198	0.0025
104	50.327	50.314	0.013	1.8116	1.8120	-0.0004
310	52.203	51.944	0.259	1.7508	1.7589	-0.0081
311	53.692	53.504	0.189	1.7057	1.7113	-0.0056
114	54.631	54.874	-0.243	1.6786	1.6717	0.0069
204	56.697	56.634	0.064	1.6222	1.6239	-0.0017
312	58.001	57.944	0.057	1.5888	1.5902	-0.0014
400	58.431	58.164	0.268	1.5781	1.5848	-0.0066
402	63.860	63.963	-0.103	1.4564	1.4543	0.0021
304	66.412	66.402	0.009	1.4065	1.4067	-0.0002
411	69.275	69.132	0.143	1.3552	1.3577	-0.0024
224	71.891	71.942	-0.051	1.3122	1.3114	0.0008
412	73.042	72.832	0.210	1.2943	1.2975	-0.0032
314	73.677	73.662	0.015	1.2847	1.2850	-0.0002
215	74.153	74.092	0.061	1.2777	1.2786	-0.0009
500	75.197	75.242	-0.046	1.2625	1.2618	0.0007
006	75.321	75.342	-0.021	1.2607	1.2604	0.0003
323	75.668	75.612	0.057	1.2558	1.2566	-0.0008
106	77.078	76.931	0.147	1.2363	1.2383	-0.0020
330	78.700	78.641	0.059	1.2148	1.2156	-0.0008
404	78.948	78.911	0.037	1.2117	1.2121	-0.0005
413	79.165	79.321	-0.156	1.2089	1.2069	0.0020
331	79.909	79.881	0.028	1.1995	1.1998	-0.0004
421	81.638	81.686	-0.048	1.1784	1.1778	0.0006
206	82.282	82.361	-0.078	1.1708	1.1699	0.0009
225	82.867	82.931	-0.064	1.1640	1.1633	0.0007
315	84.583	84.739	-0.156	1.1447	1.1430	0.0017
510	85.594	85.701	-0.107	1.1338	1.1326	0.0011
511	86.785	86.745	0.040	1.1212	1.1216	-0.0004

Refined cell: a = 7.2890(6) Å, c = 7.5644(6) Å, V = 348.1 Å³. Agreement: $|\Delta(2\theta)| = 0.08^{\circ}$, $|\Delta(d)| = 0.003$ Å, ESD of fit = 0.10° (ESD, estimated standard deviation).

Unit cell refinement results of tetragonal phase found in a sample of $(NH_4)_9[(ReO)_3(AsW_9O_{33})_2]$ ·n H₂O heated to 725 °C in DSC apparatus under N₂ atmosphere

h k l	2θ(cal)	2θ(obs)	$\Delta(2\theta)$	d(cal) (Å)	d(obs) (Å)	$\Delta(d)$ (Å)
001	22.973	22.938	0.035	3.8681	3.8739	-0.0059
1 1 0	23.971	23.978	-0.007	3.7093	3.7082	0.0011
111	33.442	33.407	0.036	2.6772	2.6800	-0.0028
200	34.157	34.147	0.010	2.6229	2.6236	-0.0007
201	41.566	41.516	0.050	2.1709	2.1734	-0.0025
121	45.165	45.115	0.049	2.0059	2.0080	-0.0021
002	46.941	46.855	0.086	1.9340	1.9374	-0.0034
220	49.079	49.035	0.044	1.8546	1.8562	-0.0016
102	50.236	50.314	-0.078	1.8146	1.8120	0.0026
112	53.380	53.294	0.086	1.7149	1.7175	-0.0026
221	54.851	54.874	-0.023	1.6723	1.6717	0.0006
1 3 0	55.336	55.304	0.032	1.6588	1.6597	-0.0009
301	57.820	57.944	-0.124	1.5933	1.5902	0.0031
202	59.319	59.094	0.225	1.5566	1.5620	-0.0054
131	60.695	60.693	0.002	1.5246	1.5246	0.0000
122	62.152	62.003	0.148	1.4923	1.4955	-0.0032
230	63.935	63.963	-0.029	1.4549	1.4543	0.0006
231	68.895	68.922	-0.028	1.3618	1.3613	0.0005
222	70.259	70.322	-0.063	1.3386	1.3376	0.0010
400	71.939	71.942	-0.003	1.3114	1.3114	0.0000
302	72.864	72.832	0.032	1.2971	1.2975	-0.0005
132	75.433	75.452	-0.019	1.2591	1.2589	0.0003
103	75.933	75.921	0.012	1.2521	1.2522	-0.0002
401	76.661	76.672	-0.011	1.2420	1.2418	0.0001
330	77.069	76.931	0.138	1.2364	1.2383	-0.0019
113	78.467	78.521	-0.055	1.2179	1.2172	0.0007
411	79.188	79.321	-0.133	1.2086	1.2069	0.0017
331	81.694	81.686	0.008	1.1777	1.1778	-0.0001
420	82.095	82.061	0.034	1.1730	1.1734	-0.0004
232	82.984	82.931	0.053	1.1627	1.1633	-0.0006
213	85.953	85.970	-0.017	1.1299	1.1298	0.0002

Refined cell: a = 5.2457(9) Å, c = 3.868(1) Å, V = 106.4 Å³. Agreement: $|\Delta(2\theta)| = 0.036^{\circ}$, $|\Delta(d)| = 0.0012$ Å, ESD of fit = 0.05° (ESD, estimated standard deviation).

Unit cell refinement results of hexagonal phase found in a sample of $(NH_4)_9[(ReO)_3(AsW_9O_{33})_2] \cdot n H_2O$ heated to 900 °C in TGA apparatus under N_2 atmosphere

t	2θ(cal)	20(obs)	$\Delta(2\theta)$	d(cal) (Å)	d(obs) (Å)	$\Delta(d)$ (Å)
100	13.966	14.019	-0.053	6.3359	6.3122	0.0237
002	23.560	23.568	-0.007	3.7730	3.7718	0.0011
110	24.312	24.208	0.104	3.6580	3.6735	-0.0155
102	27.491	27.527	-0.036	3.2417	3.2376	0.0041
200	28.145	28.227	-0.083	3.1680	3.1589	0.0091
112	34.110	34.167	-0.056	2.6263	2.6221	0.0042
202	37.023	37.196	-0.174	2.4261	2.4152	0.0109
300	42.781	42.945	-0.165	2.1120	2.1043	0.0077
212	44.788	44.885	-0.097	2.0219	2.0177	0.0042
302	49.413	49.480	-0.067	1.8429	1.8406	0.0023
220	49.814	49.805	0.009	1.8290	1.8293	-0.0003
104	50.432	50.355	0.077	1.8080	1.8106	-0.0026
221	51.359	51.235	0.124	1.7776	1.7816	-0.0040
310	51.996	52.134	-0.138	1.7573	1.7529	0.0043
213	52.734	52.654	0.079	1.7344	1.7368	-0.0024
311	53.496	53.554	-0.058	1.7115	1.7098	0.0017
114	54.699	54.555	0.144	1.6767	1.6807	-0.0041
222	55.812	55.774	0.037	1.6458	1.6468	-0.0010
204	56.748	56.664	0.084	1.6209	1.6231	-0.0022
312	57.835	57.864	-0.029	1.5930	1.5922	0.0007
400	58.195	58.184	0.011	1.5840	1.5842	-0.0003
214	62.636	62.483	0.153	1.4819	1.4852	-0.0033
402	63.661	63.713	-0.052	1.4605	1.4594	0.0011
320	64.001	63.993	0.008	1.4536	1.4537	-0.0002
304	66.389	66.433	-0.043	1.4069	1.4061	0.0008
115	67.026	67.123	-0.097	1.3951	1.3933	0.0018
410	67.714	67.662	0.052	1.3826	1.3835	-0.0009
322	69.207	69.413	-0.206	1.3564	1.3529	0.0035
412	72.790	72.692	0.098	1.2982	1.2997	-0.0015
314	73.604	73.482	0.122	1.2858	1.2877	-0.0018
215	74.212	73.932	0.280	1.2768	1.2809	-0.0041
006	75.537	75.682	-0.145	1.2577	1.2556	0.0020
413	78.949	79.151	-0.202	1.2116	1.2090	0.0026
331	79.570	79.631	-0.061	1.2037	1.2030	0.0008
420	80.078	80.111	-0.033	1.1974	1.1970	0.0004
116	80.731	80.591	0.139	1.1893	1.1910	-0.0017
421	81.288	81.083	0.205	1.1826	1.1851	-0.0025
206	82.443	82.481	-0.038	1.1689	1.1685	0.0004
225	82.861	83.021	-0.160	1.1641	1.1622	0.0018
324	83.978	83.911	0.067	1.1514	1.1522	-0.0007
315	84.565	84.430	0.135	1.1449	1.1464	-0.0015
422	84.897	84.930	-0.034	1.1413	1.1409	0.0004
511	86.400	86.350	0.050	1.1252	1.1258	-0.0005
216	87.545	87.560	-0.015	1.1134	1.1133	0.0002

Refined cell: a = 7.316(4) Å, c = 7.545(3) Å, V = 349.8 Å³. Agreement: $|\Delta(2\theta)| = 0.09^\circ$, $|\Delta(d)| = 0.003$ Å, ESD of fit = 0.11° (ESD, estimated standard deviation).

Unit cell refinement results of orthorhombic phase found in a sample of $(NH_4)_9[(ReO)_3(AsW_9O_{33})_2] \cdot n H_2O$ heated to 900 °C in TGA apparatus under N_2 atmosphere

h k l	2θ(cal)	20(obs)	$\Delta(2\theta)$	d(cal) (Å)	d(obs) (Å)	$\Delta(d)$ (Å)
001	23.024	23.088	-0.063	3.8596	3.8492	0.0104
020	23.710	23.747	-0.037	3.7495	3.7437	0.0057
200	24.124	24.208	-0.084	3.6860	3.6735	0.0125
011	25.942	26.027	-0.085	3.4317	3.4207	0.0110
120	26.651	26.687	-0.036	3.3420	3.3376	0.0045
111	28.670	28.687	-0.018	3.1111	3.1093	0.0019
021	33.287	33.267	0.020	2.6894	2.6909	-0.0016
201	33.592	33.637	-0.045	2.6657	2.6622	0.0034
220	34.080	34.167	-0.086	2.6286	2.6221	0.0064
121	35.502	35.586	-0.084	2.5265	2.5207	0.0058
221	41.532	41.586	-0.054	2.1726	2.1699	0.0027
031	43.079	42.945	0.133	2.0981	2.1043	-0.0062
320	44.021	44.135	-0.114	2.0553	2.0502	0.0050
131	44.880	44.885	-0.005	2.0179	2.0177	0.0002
311	45.354	45.465	-0.111	1.9979	1.9933	0.0046
002	47.051	47.035	0.016	1.9298	1.9304	-0.0006
040	48.520	48.585	-0.065	1.8747	1.8724	0.0024
400	49.410	49.480	-0.070	1.8430	1.8406	0.0025
112	50.326	50.355	-0.028	1.8116	1.8106	0.0010
202	53.558	53.554	0.003	1.7096	1.7098	-0.0001
041	54.359	54.334	0.025	1.6863	1.6870	-0.0007
240	54.899	54.964	-0.065	1.6710	1.6692	0.0018
420	55.512	55.434	0.078	1.6540	1.6561	-0.0021
141	55.884	55.774	0.110	1.6439	1.6468	-0.0030
331	57.730	57.864	-0.134	1.5956	1.5922	0.0034
222	59.363	59.283	0.079	1.5556	1.5575	-0.0019
241	60.306	60.364	-0.057	1.5335	1.5321	0.0013
421	60.884	60.743	0.141	1.5203	1.5235	-0.0032
340	62.235	62.014	0.221	1.4905	1.4953	-0.0048
430	62.566	62.483	0.083	1.4834	1.4852	-0.0018

Refined cell: a = 7.372(5) Å, b = 7.499(5) Å, c = 3.860(3) Å, V = 213.4 Å³. Agreement: $|\Delta(2\theta)| = 0.07^{\circ}$, $|\Delta(d)| = 0.004$ Å, ESD of fit = 0.08° (ESD, estimated standard deviation).

References

- M.T. Pope, Heteropoly and Isopoly Oxometalates, Springer, Berlin, New York, 1983.
- [2] C.L. Hill (Ed.), Polyoxometalates (special issue), Chem. Rev. 98 (1998) 1–389.
- [3] M.T. Pope, in: J. McCleverty, T.J. Meyer (Eds.), Comprehensive Coordination Chemistry II, vol. 4, Pergamon Press, Oxford, 2004, pp. 635.
- [4] C.L. Hill, in: J. McCleverty, T.J. Meyer (Eds.), Comprehensive Coordination Chemistry II, vol. 4, Pergamon Press, Oxford, 2004, pp. 679.
- [5] A. Besserguenev, M.H. Dickman, M.T. Pope, Inorg. Chem. 40 (2001) 2582.
- [6] K. Wassermann, M.T. Pope, M. Salmen, J.N. Dann, H.-J. Lunk, J. Solid-State Chem. 149 (2000) 378.
- [7] C.J. Besecker, V.W. Day, W.G. Klemperer, M.R. Thompson, Inorg. Chem. 24 (1985) 44.
- [8] F. Ortega, M.T. Pope, Inorg. Chem. 23 (1984) 3292; (b) H. Kwen, S. Tomlinson, E.A. Maatta, C. Dablemont, R. Thouvenot, A. Proust, P. Gouzerh, Chem. Commun. (2002) 2970; (c) C. Dablemont, A. Proust, R. Thouvenot, C. Afonso, F. Fournier, J.-C. Tabet, Inorg. Chem. 43 (2004) 3514.
- [9] A. Venturelli, M.J. Nilges, A. Smirnov, R.L. Belford, L.C. Francesconi, J. Chem. Soc. Dalton Trans (1999) 301.
- [10] F. Ortega, M.T. Pope, H.T. Evans Jr., Inorg. Chem. 36 (1997) 2166.
- [11] M.J. Abrams, C.E. Costello, S. Shaikh, J. Zubieta, Inorg. Chim. Acta 180 (1991) 9.

- [12] B.N. Ivanov-Emin, D.K. Chakrabarti, A.E. Ezhov, Russ. J. Inorg. Chem. 11 (1966) 733 (Engl. Trans.).
- [13] C. Tourné, A. Revel, G. Tourné, M. Vendrell, C.R. Acad. Sci. Ser. C 273 (1973) 643.
- [14] J. Mialane, E. Marrot, J. Rivière, G. Nebout, G. Hervé, Inorg. Chem. 40 (2001) 44.
- [15] Y. Jeannin, J. Martin-Frère, J. Am. Chem. Soc. 103 (1981) 16.
- [16] A.W. Sleight, J.L. Gillson, Solid-State Commun. 4 (1966) 601.
- [17] K. Okada, H. Morikawa, F. Marumo, S. Iwai, Acta Crystallogr. Ser. B B32 (1976) 1522.
- [18] A. Magneli, Acta Chem. Scand. A 11 (1957) 28.
- [19] J.E. Schirber, B. Morosin, R.W. Alkire, A.C. Larson, P.J. Vergamini, Phys. Rev. B29 (1984) 4150.
- [20] B. Krebs, A. Muller, H.H. Beyer, Inorg. Chem. 8 (1969) 436.
- [21] R. Nedjar, M.M. Borel, M. Hervieu, B. Raveau, Mater. Res. Bull. 23 (1988) 91.
- [22] B. Gerand, G. Nowogrocki, J. Guenot, M. Figlarz, J. Solid-State Chem. 29 (1979) 429.
- [23] K. Kihlborg, A. Hussain, Mater. Res. Bull. 14 (1979) 667.
- [24] P.G. Dickens, R.J. Hurditch, Nature 215 (1967) 1266.
- [25] P. Hagenmuller, in: J.C. Bailar Jr., H.J. Emeléus, R. Nyholm, A.F. Trotman-Dickenson (Eds.), Comprehensive Inorganic Chemistry, vol. 4, Pergamon Press, Oxford, 1973, pp. 549.
- [26] B.O. Loopstra, H.M. Rietvield, Acta Crystallogr. Ser. B B25 (1969) 1420.
- [27] E. Salje, Acta Crystallogr. Ser. B B33 (1977) 574.