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Abstract

Although the given equilibrium conformation of a molecule may be optimized as a function of steric energy, there is no
procedure to generate its three-dimensional shape from a spherically symmetrical molecular Hamiltonian. Orbital angular momen-
tum, or the complex phase of the wave function is shown to be of decisive importance in structure generation. While orbital
angular momentum cannot be described correctly in terms of all real wave functions, complex functions do not allow the
hybridization schemes in general use for the specification of molecular structure. It is shown that the quantum–mechanical
description of molecules, taking angular momentum into account, provides a precise description of molecular shape, barriers to
rotation and optical activity. To cite this article: J.C.A. Boeyens, C. R. Chimie 8 (2005).
© 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Bien qu’une conformation d’équilibre donnée d’une molécule puisse être optimisée comme une fonction de l’énergie stérique,
il n’existe aucun procédé permettant de générer sa forme tridimensionnelle à partir d’un modèle hamiltonien moléculaire de
symétrie sphérique. En démontrant que les règles de Hund dépendent de la forme sphérique des atomes, il apparaît que le
moment angulaire orbital, ou la phase complexe de la fonction d’onde, est d’une importance primordiale pour la génération de la
structure. Tandis que le moment angulaire orbital ne peut être décrit correctement en termes de fonctions d’ondes réelles, les
fonctions complexes ne permettent pas d’utiliser les schémas d’hybridation habituels pour la définition des structures molécu-
laires. Il est démontré que la description de molécules en termes de mécanique quantique conduit, en tenant compte du moment
angulaire, à une description précise de la forme des molécules, des barrières de rotation et de l’activité optique. Pour citer cet
article : J.C.A. Boeyens, C. R. Chimie 8 (2005).
© 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Angular momentum, arguably the second most
important concept in the understanding of chemistry is

often either ignored or treated in such abstract math-
ematical terms that its true meaning remains obscure.
This happens because the angular–momentum relation-
ship, equivalent to the momentum and energy relation-
ships, p = \k and E = \x, that connect particle and waveE-mail address: jan.boeyens@up.ac.za (J.C.A. Boeyens).
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properties of quantum–mechanical entities, is rou-
tinely overlooked [1]. The Planck–Einstein relation-
ship attributes a well-defined energy to any phenom-
enon with harmonic time dependence of periodicity s,
where x = 2p/s. The De Broglie relationship likewise
associates a well-defined momentum to a phenomenon
with harmonic space variation of wavelength k, where
k = 2p/k.

It was suggested by Lévy-Leblond [1] that a well-
defined component of angular momentum should
accompany a phenomenon of periodicity � around a
rotation axis along z, according to a comparable rela-
tionship

(1)Lz = \m

where m = 2p/�. To ensure that the phenomenon repeats
itself after a complete rotation through an angle of 2p it
is required that � be a sub-multiple of 2p and m an
integer. The argument, as summarized in Table 1, is
consistent with the conservation laws of momentum,
energy and angular momentum that arise from the
invariance of space-translation, time-translation and
rotation, respectively.

Mathematically m derives as an integer from the
requirement that the angular wave stays in phase with
itself, i.e.

exp (imU + 2pim) = exp (imU)

exp (2pim) = cos 2pm + i sin 2pm = 1

The angular wave number m may be either a positive
or a negative integer depending on the sense of rotation
of harmonic angular waves.

Now consider the components Lx, Ly and Lz of the
angular momentum L along three orthogonal axes. For
them to simultaneously take on unique and well-
defined integer values mx, my and mz, the system should
be in a state of rotational harmonicity around the three
axes. This condition is impossible when dealing with
traveling waves. Since stationary waves result from the
superposition of two oppositely traveling waves, at least

two quantum numbers ± m are required for each com-
ponent of angular momentum.

Since the possible numerical values of the angular
momentum components are integers it appears reason-
able that the modulus L, which classically is the maxi-
mum possible for any of the components, should obey
a rule of the same form, i.e. L = l\, l integer. This rule
however, does not hold for quantum systems. Since

L2 = Lx
2 + Ly

2 + Lz
2

the maximal value of Lz could reach L only if Lx = Ly

= 0, which means that all of the components have well-
defined values, which can only happen for L = 0 in a
state of spherical symmetry. If the quantities L2 and Lz

are assumed to both have well-defined values the vari-
ables Lx and Ly can therefore not be dispersion free and
for maximum Lz it always follows that

L2 ≤ Lz
2 + (DLx)

2 + (DLy)
2

Denoting by l the integer corresponding to the maxi-
mal value of Lz such that Lz = l\, the inequality is of
the same form as the rigorous quantum mechanical
result

L2 = l (l + 1) \
2

If L2 and Lz have well-defined values there will be
(2 l + 1) states corresponding to the angular momen-
tum vector.

It has been shown [2] that the spherical shape of
atoms is caused by the quenching of orbital angular
momentum that, in turn gives rise to the mysterious
empirical rules of Hund. By the reverse argument,
canonical description of a molecule in terms of a mini-
mum energy function, such as the standard quantum–
mechanical molecular Hamiltonian that neglects angu-
lar momentum, must fail to generate molecular shape
without further assumption. It will be futile to look for
molecular shape as an emergent property at this level,
since energy is a scalar quantity. Three-dimensional
shape can only emerge as a function of some three-
dimensional vector quantity.

Table 1
Quantum–mechanical particle–wave relationships

Invariance Period Pulsation Dynamic Quantum condition
Temporal s x = 2p/s E Energy E = \x Planck–Einstein
Translation k k = 2p/k p Momentum p = \k De Broglie
Rotation a m = 2p/� Lz Angular momentum Lz = \m Lévy-Leblond
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2. Angular momentum

The components of angular momentum of an elec-
tron along a space direction (z say) in a central field,
for instance a hydrogenic atom, are defined by the
spherical harmonics

(2)Yl
ml(h,U) = f l

ml(h) exp (imlU)

(3)Lz Yl
ml(h,U) = ml \ Y l

ml(h,U)

where fl
ml are a set of real functions proportional to as-

sociated Legendre polynomials, Pl
ml�cos h � .

A stationary state at the energy level E is defined by
the wave function:

(4)WE,l
ml (r,h,U) = gE,l

ml (r) f l
ml(h) exp [i(mlU − Et/\)]

where gE,l
ml is real. In the polar expression of a wave

function:

(5)W = R exp�iS

\�
the rotating phase, with allowance for an arbitrary phase
factor, is given by:

(6)S(r,h,U,t) = ml \ U − E t + 2 p n \ , n { Z

In plane wave interpretation of the motion [3] each t
and ml ≠ 0 define a wave front for S = constant, as a
plane that rotates about the z-axis (Fig. 1). If rotation
for positive ml is counterclockwise, it is clockwise for
ml < 0. The number of rotating planes corresponds to
|ml|. For ml = 0 the wave function (2) is real. In a spheri-
cally symmetrical environment there is no special direc-
tion in space and the wave function (4) acquires geo-

metrical meaning only when an external magnetic field
is switched on (Fig. 2). Any of the three degenerate
p-states:

Y1
1 =�3

8p�
1
2 sinh e iU ∝ sinh cosφ + i sinh sinφ

=
x + i y

r
(7)

Y1
0 =�3

4p�
1
2 cosh ∝

z

r

Y1
−1 =�3

8p�
1
2 sinh e−i φ ∝ sinh cosφ − i sinh sinφ

=
x − i y

r

may be designated to specify the z-direction, provided
the corresponding eigenfunction is made real by an
appropriate linear combination of eigenfunctions, such
as:

sinh (eiφ + e−iφ) = sinh cosφ =
x

r

sinh (eiφ − e−iφ) = sinh sinφ =
y

r

This procedure is equivalent to a rotation of the coor-
dinate axes, as shown in Fig. 2. Rotation by 90° around
the y-axis replaces z by x, x by –z and leaves y un-
changed. When these substitutions are made in (6)
eigenfunctions of Lx are obtained:

Y1
1 ∝

x + i y

r
→

− z + i y

r

Y1
0 ∝

z

r
→

x

r

Y1
−1 ∝

x − i y

r
→

− z − i y

r

Fig. 1. Rotating wave front and possible particle orbit for non-zero
orbital angular momentum along z. Fig. 2. 90° rotation of the coordinate axes about y.
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These functions are still eigenfunctions of L2, with
l = 1 and the respective eigenvalues of Lx can be shown
to be the same as the Lz of the originalfunctions [4].

Once the special direction has been fixed, the two
remaining eigenfunctions always constitute a complex
pair with rotational symmetry in the xy-plane. A geo-
metrical representation related to such functions is
shown in Fig. 3.

The familiar drawings of a set of three orthogonal
px, py and pz orbitals to be found in many chemistry
textbooks include the linear combinations that redefine
the special z-direction along either x or y. The three
real functions as a set, therefore has no physical mean-
ing. Conventional hybridization schemes, invoked to
rationalize the formation of multiple bonds, are like-
wise mathematical impossibilities. The generally
accepted explanation of the rotational rigidity of double
bonds then also has no physical basis.

Whenever an absolute direction can be defined, for
instance in a molecule, the conservation of angular
momentum as a manifestation of the rotational symme-
try of space no longer holds. In practice this means that
for any atom in an environment of less than spherical
symmetry, an absolute direction exists, fixing the
z-direction. In any degenerate set of states only one can
be specified in real form; the others cannot be located
more closely than to regions of rotational symmetry
around the z-axis.

The wave function of an electron in an s state (ml = 0)
is real, which means that it has zero angular momen-
tum and zero kinetic energy. Non-zero ml implies cir-
culating charge and non-zero kinetic energy. Since mov-
ing charges must by definition be less effective in
chemical binding, it is logical that residual orbital angu-

lar momentum should tend to become quenched dur-
ing the formation of chemical bonds.

It was shown before [2] that the condition to ensure
the quenching of orbital angular momentum along z,
during bond formation, correctly predicts the known
structures of simple molecules, such as methane, eth-
ylene, benzene, ammonia and others, as well as the
occurrence of barriers to rotation and optical activity.
However, adherence [2] to the traditional stipulation of
hybridized electronic configurations introduced an
unnecessary complication. Some of these structures and
effects are now reexamined by consideration of no more
than a special direction that exists in non-spherical
molecular fragments.

3. Barrier to rotation

The simplest molecule to exhibit an electronic (non-
steric) barrier to rotation is ethylene C2H4. If this mol-
ecule is assumed to contain a CC linkage, a special
direction may occur in one of two possible ways

—C − C — →
z

or C−
�

↑ z

C

Of the 12 valence electrons four have non-zero angular

momentum (l = 1) of L = �2\. For two of these, with
ml = 0 the z-component Lz = 0 and to ensure overall
quenching the remaining two electrons should have
ml = +1 and –1, respectively. The charge circulation and
distribution for the two possible conformations are
shown in Fig. 4. According to Fig. 3 the p-electron den-
sity will be concentrated in a lobe along z and two
doughnuts concentrated in the xy-planes through the

Fig. 3. Associated Legendre functions P1
0, P1

±1, P2
±1 plotted as polar diagrams.
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carbon atoms. In the case where z is perpendicular to
the C–C bond the two doughnuts overlap in the same
plane and much more efficient overlap with the hydro-
gen 1s and C2s electrons is possible. A planar struc-
ture, eclipsed along the bond direction is predicted. The
alternative arrangement would produce a staggered con-
figuration. The staggered arrangement only has a steric
barrier to rotation. The angular momentum of the
eclipsed conformation however, would resist any tor-
sion of the bond. An applied torque that twists the cen-
tral bond lowers the symmetry that relates the two vec-
tors ml = ±1 and generates a non-zero component of
angular momentum.

The generation of angular momentum constitutes a
barrier to rotation. In order to torque a centrosymmet-
ric system into a state with non-vanishing angular
momentum it is necessary to provide the kinetic energy
required to initiate charge circulation. It follows that
neither barriers to rotation nor the strengths of double
bonds depend on the overlap of p-orbitals. The more
logical conclusion is that barriers to rotation occur
whenever an applied torque changes the angular mo-
mentum.

Although the electron distribution predicted by the
angular–momentum model is essentially the same as
that obtained in terms of the conventional scheme of

sp2 hybridization, the interpretation is exactly the oppo-
site. The barrier to rotation is here ascribed to the pxy

quenching of angular momentum while the conven-
tional scheme involves the overlap of pz orbitals.

To calculate the energy barrier to rotation it is noted
[3] that the kinetic energy of a rotating charge at a dis-
tance r, is

(8)
T =

ml
2

\
2

2 m r2

The radius of charge circulation in the twisted mol-
ecule is not specified but should be of the order of the
C=C bond length. In fact, using r = 117 pm, the calcu-
lated energy of 270 kJ mol–1 agrees with the accepted
p-bond strength in ethylene and is clearly of the cor-
rect order of magnitude.

All of the information that was used in the argument
to derive the D2h arrangement of nuclei in ethylene is
contained in the molecular wave function and could
have been identified directly had it been possible to
solve the molecular wave equation. It may therefore be
correct to argue [5,6] that the ab initio methods of quan-
tum chemistry can never produce molecular conforma-
tion, but not that the concept of molecular shape lies
outside the realm of quantum theory. The crucial struc-

Fig. 4. Two possible modes of quenching orbital angular momentum in the ethylene molecule. Only the second possibility leads to a planar
molecule with a barrier to rotation and fixed positions for the hydrogen atoms.
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ture generating information carried by orbital angular
momentum must however, be taken into account. Any
quantitative scheme that incorporates, not only the
molecular Hamiltonian, but also the complex phase of
the wave function, must produce a framework for the
definition of three-dimensional molecular shape. The
basis sets of ab initio theory, invariably constructed as
products of radial wave functions and real spherical har-
monics [7], take account of orbital shape, but not of
angular momentum.

4. Optical activity

Optical activity in solution, unlike the same effect
in crystals, is an isotropic effect. This interaction
between a polarized photon and a molecule therefore
implicates a chiral factor that is independent of direc-
tion, such as the molecular wave function, and in par-
ticular, its complex phase. It is a non-classical factor
and hence cannot be attributed directly to a classical
three-dimensional structure. In a crystal where optical
activity arises from three-dimensional periodicity the
vibration ellipsoid has a fixed orientation in the crystal
and optical effects are anisotropic. By contrast the high
symmetry of molecular eigenstates seems to preclude
optical activity. As stated by Woolley [8]:

optical activity has to be understood in a macro-
scopic context as a loss of inversion symmetry of the
whole material medium, and that chirality is not a prop-
erty that can be related to isolated molecules.

Although the molecular Hamiltonian is by defini-
tion spherically symmetrical it however, has chiral solu-
tions (molecular eigenstates) for instance, whenever a
molecular magnetic quantum number Ml ≠ 0. The
implied magnetic moment causes rotation of the mag-
netic vector of a field of polarized radiation and, linked
to an electric displacement, a helical displacement of
charge. The handedness and pitch of the helix are
observed as optical activity [9]. In an oscillating mag-
netic field B associated with electromagnetic radiation
the magnetic interaction energy –µ·B leads to transi-
tion, with matrix element

e B0

2 m
� uk

* Lz unds

To determine the selection rule for the magnetic dipole
transition [4] the orbital angular momentum operator
is written in terms of stepping operators that change
the value of ml without affecting l, giving Dml = ±1,
Dl = 0. In view of this selection rule it is eminently rea-
sonable to conclude that optical activity is generated
by a non-zero component of orbital angular momen-
tum.

The implied relationship between orbital angular
momentum and molecular chirality is conveniently
introduced by reference to the structure of methane. The
C valence shell of methane consists of two p and six s
electrons. To derive a molecular shape it is only neces-
sary to accept that the four hydrogen atoms are equiva-
lent by molecular symmetry. Any of the four HC direc-
tions may then be defined to coincide with the z-axis of
the molecule. The two angular momentum vectors
(l = 1) cannot quench along this axis since that would
violate the equivalence assumption. The only alterna-
tive is circulation in two planes (ml = ±1) perpendicu-
lar to z. This description must be valid from the per-
spective of any of the four hydrogen atoms. Rotation
of the two boldly drawn triangles in Fig. 5 represents
the circulation of charge if the z-axis is selected to lie
perpendicular to the plane of the paper. Charge accu-
mulation is predicted to occur at the points of intersec-
tion of the eight equivalent planes, which together define
a regular octahedron, centered at the position of the car-
bon atom. This condition, as shown in Fig. 5, is satis-
fied only if the p-density is localized on the six equiva-
lent sites between pairs of hydrogen atoms.

The electron density distribution in the predicted
non-classical structure is radically different from that
of the geometrically equivalent classical structure and
the tetrahedral symmetry occurs for completely differ-
ent reasons. The structure derived here is stabilized by

Fig. 5. Electronic structure of methane showing charge circulation
around the vertical z-axis.
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the anti-parallel alignment of the two angular momen-
tum vectors (along + z and –z) that describe the charges
circulating clockwise and anticlockwise, respectively.
The balance is exactly symmetrical in point group
Td:4

_

3m only if all the ligands around the central atom
are equivalent.

Suppose one of the ligands (along z) is replaced by a
different atom. The molecular geometry reduces to
C3v:3m. The absolute magnitude of the vectors may
change, but they stay in balance by symmetry. Replac-
ing a second H atom (at the top of the diagram, say) by
yet another ligand, further reduces the symmetry to
Cs:m, with a vertical mirror plane that contains the two
unique ligand atoms. This modification may well
change the direction of the vectors, but the mirror sym-
metry (m ≡ 2

_

) between them remains. The vectors be-
come disaligned only when this last element of mirror
symmetry disappears and the molecular symmetry
reduces to C1:1.

At this stage, with four distinct ligands, angular
momentum is no longer quenched (Lz ≠ 0), the molecu-
lar quantum number Ml is non-zero and polarized pho-
tons interact with the resulting magnetic moment. The
plane of polarization is affected differently by enanti-
omers with respective positive and negative values of
Ml. Two enantiomers have identical molecular Hamil-
tonians and energies – they only differ in angular
momentum eigenstates. Decoupling of angular momen-
tum vectors happens whenever a chiral center, here
defined in terms of four dissimilar substituents in tet-
rahedral relationship, occurs in a molecule.

As pointed out before [2] experimental testing of
these ideas could be done by the study of paramagnetic
susceptibilities of chiral material. It is commonly
assumed [10] that orbital angular momentum is com-
pletely quenched and that paramagnetism is entirely due
to spin. It is not uncommon however, to find that incom-
pletely quenched angular momentum is invoked to
explain experimental deviations from spin only values.
It is inferred that standard instrumentation is suffi-
ciently sensitive to register the magnetic moments here
predicted to be associated with chirality.

4.1. Symmetry of optical rotation

A more fundamental look [11] at both angular
momentum and optical activity supports the conclu-
sions drawn here. Angular momentum (L = r × p) is an

axial or pseudo vector. A pseudoscalar is generated by
taking the scalar product of a polar vector and an axial
vector. Optical rotation is characterized by such a prop-
erty viz. the optical rotation angle.

Under space inversion, an isotropic collection of
chiral molecules is re placed by a collection of the enan-
tiomeric molecules. Equal but opposite optical rotation
angles will be measured before and after the inversion.
The observable is said to have odd parity and since it is
invariant with respect to any proper rotation, is a pseu-
doscalar. Under time reversal an isotropic collection of
chiral molecules is unchanged, so the optical rotation
observable is a time-even pseudoscalar. The interac-
tion between a polarized photon (polar vector) and
residual orbital angular momentum (axial vector) is
described by their scalar product, L · m that generates a
pseudoscalar, the optical rotation angle.

There is another type of optical activity known as
the Faraday effect. In this case the optical rotation is
induced in any crystal, fluid or collection of achiral mol-
ecules in the direction of an applied static uniform mag-
netic field parallel to the light beam. The sense of rota-
tion is reversed on reversing the direction of either the
light beam or the magnetic field. It has been realized
all along that Faraday optical rotation does not arise
from chirality and must be of different symmetry. Under
space inversion the molecules and magnetic field direc-
tion are unchanged, so the same magnetic optical rota-
tion will be observed. Under time reversal, although
the collection of molecules remains unchanged, the rela-
tive directions of the magnetic field and the light beam
are reversed and the rotation changes sign. These con-
ditions define the magnetic optical rotation observable
as a time-odd axial vector.

The symmetry difference between natural and mag-
netic optical rotation has been interpreted [12] as being
generated by time-even odd parity and time-odd even
parity tensors, respectively. The former is associated
with spatial chirality and the latter with a lack of time-
reversal invariance, or temporal chirality in the pres-
ence of a magnetic field. The molecular interpretation
is straightforward: both spatial and temporal chirality
(i.e. the magnetic field) produce non-vanishing orbital
angular momentum that interacts with polarized pho-
tons.
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