Synthesis, crystal and electronic structures of the novel $\mathrm{Nd}_{12.4} \mathrm{Mg}_{0.6} \mathrm{Mo}_{13} \mathrm{O}_{36}$ compound containing Mo_{13} clusters

Nicolas Barrier ${ }^{\text {a, } 1}$, Régis Gautier ${ }^{\mathrm{b}}$, Patrick Gougeon ${ }^{\mathrm{a}, *}$
${ }^{\text {a }}$ Laboratoire de chimie du solide et inorganique moléculaire, UMR CNRS 6511, université Rennes-1, Institut de chimie de Rennes, avenue du Général Leclerc, 35042 Rennes cedex, France
${ }^{\mathrm{b}}$ Laboratoire de chimie du solide et inorganique moléculaire, UMR CNRS 6511, École nationale supérieure de chimie de Rennes, Institut de chimie de Rennes, campus de Beaulieu, 35700 Rennes, France

Received 31 August 2004; accepted 13 December 2004
Available online 21 July 2005

Abstract

The synthesis, crystal and electronic structures of the novel neodymium reduced molybdenum oxide $\mathrm{Nd}_{12.4} \mathrm{Mg}_{0.6} \mathrm{Mo}_{13} \mathrm{O}_{36}$ are presented. This compound crystallizes in the trigonal space group $R 3 m: a=11.3103(1) \AA, c=21.7465(3) \AA, V=2409.17(4) \AA^{3}$, $Z=3$. Refinements yield $R\left(F^{2}\right)=0.0311$ and $w R\left(F^{2}\right)=0.0782$ for 3184 unique reflections. The structure is built up from alternating slabs made up of molybdenum forming Mo_{13} clusters, neodymium and oxygen atoms, and slabs only containing neodymium and oxygen atoms. Theoretical calculations were carried out to understand the electronic structure of this compound. Although some Mo-Mo antibonding levels of the molecular orbital diagram of the Mo_{13} cluster are occupied, the high connectivity of architecture prevents some distortions of the cluster. To cite this article: N. Barrier et al., C. R. Chimie 8 (2005). © 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

La synthèse, les structures cristalline et électronique du nouvel oxyde de molybdène réduit et de néodyme, $\mathrm{Nd}_{12.4} \mathrm{Mg}_{0.6} \mathrm{Mo}_{13} \mathrm{O}_{36}$, sont présentées. Ce composé cristallise dans le groupe spatial trigonal $R 3 m: a=11.3103(1) \AA$, $c=21.7465(3) \AA, V=2409.17(4) \AA^{3}, Z=3$. Les affinements conduisent aux facteurs de confiance $R\left(F^{2}\right)=0.0311$ et $\mathrm{w} R\left(F^{2}\right)=0.0782$ pour 3184 réflexions uniques. La structure est construite à partir d'une alternance de couches constituées d'atomes de néodyme, d'oxygène et de molybdène formant des clusters Mo_{13} et de couches ne contenant que des atomes de néodyme et d'oxygène. Des calculs théoriques ont été mis en œuvre afin de comprendre la structure électronique de ce composé. Bien que des niveaux antiliants Mo-Mo du diagramme d'orbitales moléculaires du cluster Mo_{13} soient occupés, la grande connectivité de l'architecture l'empêche de se déformer. Pour citer cet article : N. Barrier et al., C. R. Chimie 8 (2005). © 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Keywords: Molybdenum cluster; Oxide; Electronic structure; X-ray crystal structure
Mots clés : Cluster de molybdène ; Oxyde ; Structure électronique ; Structure cristalline par rayon X

[^0]1631-0748/\$ - see front matter © 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved. doi:10.1016/j.crci.2005.02.031

1. Introduction

The structural chemistry of compounds containing reduced molybdenum has grown tremendously over the last two decades so that 22 different types of discrete molybdenum clusters, of which the nuclearities goes from 3 to 36 , are known to date. Clusters with nuclearities higher than 8 result generally from the onedimensional condensation of Mo_{6} clusters via opposite face- or edge-sharing depending on the ligand environment. The former process is observed when the Mo_{6} clusters are face-bridged by the ligands (S, Se and Te) and is exemplified, in particular, by the series of compounds $\mathrm{M}_{n-2} \mathrm{Mo}_{3 n} \mathrm{X}_{3 n+2}(\mathrm{M}=\mathrm{Rb}, \mathrm{Cs} ; \mathrm{X}=\mathrm{S}$, Se or Te ; $n=3,4,5,6,7,8,10$ and 12) containing $\mathrm{Mo}_{3 n}$ clusters [1-8]. The final stage of this face-sharing condensation is the infinite $\left|\mathrm{Mo}_{6 / 2}\right|_{\infty}^{1}$ chain found in the quasi-onedimensional compounds $\mathrm{M}_{2} \mathrm{Mo}_{6} \mathrm{X}_{6}(\mathrm{M}=\mathrm{Na}, \mathrm{K}, \mathrm{Rb}$, $\mathrm{Cs} ; \mathrm{X}=\mathrm{S}, \mathrm{Se}$ or Te) [9] and $\mathrm{Ag} \mathrm{Mo}_{6} \mathrm{Te}_{6}$ [44]. The edgesharing condensation of Mo_{6} octahedra is observed in reduced molybdenum oxides where the Mo_{6} clusters are edge-bridged by the oxygen atoms. This process leads to $\mathrm{Mo}_{4 n+2}$ oligomers that are observed for example in the series $\mathrm{M}_{n-x} \mathrm{Mo}_{4 n+2} \mathrm{O}_{6 n+4}(n=2,3,4$ and 5) [10-21]. The ultimate step of the edge-sharingcondensation process corresponds to the infinite $\left|\mathrm{Mo}_{2} \mathrm{Mo}_{4 / 2}\right|_{\infty}^{1}$ chain of trans-edge-sharing Mo_{6} octahedra that was first observed in $\mathrm{NaMo}_{4} \mathrm{O}_{6}$ [22]. More recently, two original high-nuclearity molybdenum clusters, i.e. Mo_{13} and Mo_{19}, were observed in coexistence with the common triangular Mo_{3} and the planar Mo_{7} clusters in the atypical compound $\mathrm{Pr}_{4} \mathrm{Mo}_{9} \mathrm{O}_{18}$ [23]. Contrary to the previous high nuclearity molybdenum clusters, the Mo_{13} and Mo_{19} result, for the first time in solid-state chemistry, from the bi- or tri-dimensional condensation of octahedral Mo_{6} clusters, respectively. We present here the synthesis, and the crystal and electronic structures of the first compound containing only Mo_{13} clusters: $\mathrm{Nd}_{12.4} \mathrm{Mg}_{0.6} \mathrm{Mo}_{13} \mathrm{O}_{36}$.

2. Experimental section

2.1. Synthesis

Single crystals of $\mathrm{Nd}_{12.4} \mathrm{Mg}_{0.6} \mathrm{Mo}_{13} \mathrm{O}_{36}$ were obtained in an attempt to synthesize a phase $\mathrm{MgNd}_{16} \mathrm{Mo}_{20} \mathrm{O}_{56}$ isostructural with $\mathrm{Nd}_{16} \mathrm{Mo}_{21} \mathrm{O}_{56}$ [24]. Starting reagents
were $\mathrm{La}_{2} \mathrm{O}_{3}$ (Rhône-Poulenc, 99.999%), MoO_{3} (Strem Chemicals, 99.9%) and Mo (Cimebocuze, 99.9%), all in powder form. The rare-earth oxide was prefired at $1000{ }^{\circ} \mathrm{C}$ before use and the Mo powder was heated under a hydrogen flow at $1000^{\circ} \mathrm{C}$ for 6 h . The stoichiometric mixture was pressed into a ca. 5 g pellet and loaded into a molybdenum crucible (depth: 2.5 cm ; diam: 1.5 cm) which was previously cleaned by heating at $1500^{\circ} \mathrm{C}$ for 15 min under a dynamic vacuum of about 10^{-5} Torr and then sealed under a low argon pressure using an arc welding system. The crucible was heated at a rate of $300^{\circ} \mathrm{C} \mathrm{h}^{-1}$ to $1600^{\circ} \mathrm{C}$ and held there for 3 days, then cooled at $100^{\circ} \mathrm{C} \mathrm{h}{ }^{-1}$ to $1100^{\circ} \mathrm{C}$ and finally furnace cooled to room temperature

2.2. Single crystal structure determination

A black crystal of dimensions $0.26 \times 0.060 \times$ $0.026 \mathrm{~mm}^{3}$ was selected for data collection. Intensity data were collected on a Nonius Kappa CCD diffractometer using a graphite-monochromatized Mo K α radiation $(\lambda=0.71073 \AA)$ at room temperature. The COLLECT program package [25] was used to establish the angular scan conditions (φ and ω scans) used in the data collection. The data set was processed using EvalCCD [26] for the integration procedure. An absorption correction ($T_{\text {min }}=0.01131, T_{\text {max }}=0.2315$) was applied using the description of the crystal faces and the analytical method described by de Meulenaar and Tompa [27]. The structure was solved by direct methods using Sir97 [28] and subsequent difference Fourier syntheses in the space group R3 m. All structure refinements and Fourier syntheses were carried out using SHELXL-97 [29]. Refinement of the occupancy factors of the Nd sites showed that the $\mathrm{Nd} 2, \mathrm{Nd} 3$ and the Nd5 sites are slightly deficient and occupy at 98.6 (4)\%, 0.972 (4)\% and 0.98 (5) \%, respectively. As qualitative microanalyses using a JEOL JSM-35 CF scanning electron microscope equipped with a Tracor energy-dispersive-type X-ray spectrometer indicated the presence of magnesium in the crystals, we could expect that the deficiencies observed on some of the Nd sites results from the presence of magnesium since in the final difference Fourier map we did not observed peaks compatible with Mg positions. Refinements taking into account an occupation of the deficient Nd sites simultaneously by Nd and Mg atoms were unsuccessful. However, if assume a complete occupation of the Nd 2 ,

Nd 3 and Nd 5 sites by Nd and Mg atoms, we get the composition $\mathrm{Nd}_{12.4(1)} \mathrm{Mg}_{0.6(1)} \mathrm{Mo}_{13} \mathrm{O}_{36}$ which is in good agreement with that found by I.C.P. measurement, $\mathrm{Nd}_{12.5(3)} \mathrm{Mg}_{0.51(5)} \mathrm{Mo}_{13.11(4)} \mathrm{O}_{36}$. The positional and anisotropic displacement parameters for all atoms as well as the occupancy factors for the Nd atoms were refined to the values $R_{1}=0.0311, \mathrm{w} R_{2}=0.0782$ for 126 parameters and 3184 reflections with $I>2 \sigma(\mathrm{I})$ and the residual electron densities were 3.310 and Table 1
Experimental table

Chemical formula	$\mathrm{Nd}_{12.4} \mathrm{Mg}_{0.6} \mathrm{Mo}_{13} \mathrm{O}_{36}$
M_{r}	3671.42
Cell setting, space group	Trigonal, 23 m
$a, c(\AA)$	11.3103 (1), 21.7465 (3)
$V\left(\AA^{3}\right)$	2409.17 (4)
Z	3
$D_{x}\left(\mathrm{Mg} \mathrm{m}^{-3}\right)$	7.592
Radiation type	Mo K α
Number of reflections for cell parameters	16,985
θ Range (${ }^{\circ}$)	1.0-37.8
$\mu\left(\mathrm{mm}^{-1}\right)$	24.62
Temperature (K)	293 (2)
Crystal form, color	Truncated hexagonal block, black
Crystal size (mm)	$0.26 \times 0.06 \times 0.03$
Diffractometer	KappaCCD
Data collection method	φ and ω scans
Absorption correction	Analytical
$T_{\text {min }}$	0.011
$T_{\text {max }}$	0.232
Number of measured, independent and observed parameters	23,571, 3203, 3184
Criterion for observed reflections	$I>2 \sigma(I)$
$R_{\text {int }}$	0.072
$\theta_{\text {max }}\left({ }^{\circ}\right)$	37.8
Range of h, k, l	$\begin{aligned} & -18 \rightarrow h \rightarrow 19 /-19 \rightarrow k \rightarrow \\ & 19 /-37 \rightarrow l \rightarrow 37 \end{aligned}$
Refinement on	F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], \mathrm{w} R\left(F^{2}\right), S$	0.031, 0.078, 1.09
Number of reflections	3203 reflections
Number of parameters	126
Weighting scheme	Calculated $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0354 P)^{2}+\right.$ $109.0437 P$] where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}$	0.095
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	3.31, -3.52
Extinction method	SHELXL
Extinction coefficient	0.000255 (19)

$-3.517 \mathrm{e}^{-3}$. A summary of the X-ray crystallographic and experimental data are presented in Table 1, and selected interatomic distances are reported in Table 2.

2.3. Theoretical calculations

Extended Hückel [30] molecular calculations were carried out using the program CACAO [31]. The exponents (ζ) and the valence shell ionization potentials $\left(H_{i i}\right.$ in eV) used were, respectively: $2.275,-32.3$ for O 2 s ; $2.275,-14.8$ for $\mathrm{O} 2 \mathrm{p} ; 1.956,-8.34$ for Mo 5s; 1.921, -5.24 for Mo 5p; 2.14. The $H_{i i}$ value for Mo 4d was set equal to -10.50 . A linear combination of two Slater-type orbitals of exponents $\zeta_{1}=4.542$ and $\zeta_{2}=1.901$ with equal weighting coefficients was used to represent the Mo 4d atomic orbitals.

Self-consistent ab initio band structure calculations were performed on the model compound $\mathrm{Nd}_{13} \mathrm{Mo}_{13} \mathrm{O}_{36}$ with the scalar relativistic tight-binding linear muffin-tin orbital (LMTO) method in the atomic spheres approximation including the combined correction [32-36].
Table 2

Nd1-O2 ($\times 6$)	2.832 (5)	Nd4-O3	2.836 (8)
Nd1-O4	2.339 (11)	Nd4-O4	2.373 (4)
Nd1-O5 ($\times 3$)	2.406 (7)	Nd4-O6 ($\times 2$)	2.345 (5)
Nd2/Mg-O1 ($\times 2$)	2.773 (4)	Nd4-07 ($\times 2$)	2.883 (5)
Nd2/Mg-O10	2.345 (9)	Nd4-08 (×2)	2.400 (5)
$\mathrm{Nd} 2 / \mathrm{Mg}-\mathrm{O} 11$	2.148 (2)	$\mathrm{Nd} 5 / \mathrm{Mg}-\mathrm{O} 10$	2.318 (11)
$\mathrm{Nd} 2 / \mathrm{Mg}-\mathrm{O} 2(\times 2)$	2.437 (5)	Nd5/Mg-O5 (×2)	2.330 (4)
Nd2-O6 ($\times 2$)	2.441 (5)	Nd5/Mg-06 (×2)	2.329 (5)
Nd3/Mg-O1	2.903 (6)	Nd5/Mg-09	2.928 (7)
Nd3/Mg-O10 ($\times 2$)	2.316 (6)	Nd5'/Mg-O10	2.834 (19)
Nd3/Mg-O7	2.332 (6)	Nd5 $/$ /Mg-O5 ($\times 2$)	2.214 (9)
Nd3/Mg-08 ($\times 2$)	2.464 (5)	Nd5'/Mg -O6 ($\times 2$)	2.200 (9)
Nd3/Mg-09 ($\times 2$)	2.633 (5)		
Mo1-Mo2 (×6)	2.7324 (5)	Mo4-Mo3	2.7567 (6)
Mo2-Mo2	2.6918 (10)	Mo1-Mo4 ($\times 3$)	2.8478 (12)
Mo2-Mo2	2.7715 (9)	Mo2-Mo4	2.7858 (7)
Mo3-Mo2 ($\times 2$)	2.7137 (7)	Mo3-Mo4	2.7566 (6)
Mo4-Mo2	2.7858 (7)	Mo3-Mo4	2.7566 (6)
Mo2-Mo3	2.7137 (7)	Mo4-Mo4 ($\times 2$)	2.7471 (12)
Mo4-Mo3	2.7566 (6)		
Mo1-09 ($\times 3$)	2.128 (7)	Mo3-O2 ($\times 2$)	1.969 (5)
Mo2-O1	2.135 (5)	Mo3-05	2.101 (6)
Mo2-O2	2.076 (5)	Mo3-08 ($\times 2$)	2.065 (5)
Mo2-O6	2.043 (5)	Mo4-O1	2.119 (6)
Mo2-07	2.079 (5)	Mo4-03	2.079 (8)
Mo2-09	2.122 (5)	Mo4-08 ($\times 2$)	$2.105(5)$

Fig. 1. A perspective view of the crystal structure of $\mathrm{Nd}_{12.4} \mathrm{Mg}_{0.6} \mathrm{Mo}_{13} \mathrm{O}_{36}$ along the b axis.

Exchange and correlation were treated in the local density approximation using the von Barth and Hedin [37] local exchange correlation potential. Within the LMTO formalism interatomic spaces are filled with interstitial spheres. The optimal positions and radii of these additional 'empty spheres' were determined by the proce-

Fig. 2. Condensation process for the Mo_{13} cluster.
dure described in Ref. [38]. Twenty-four non-symmetry-related 'empty spheres' with $0.62 \AA \leq$ $r_{\mathrm{ES}} \leq 1.60 \AA$ were introduced for the calculations. The full LMTO basis set consisted of $6 \mathrm{~s}, 6 \mathrm{p}, 5 \mathrm{~d}$ and 4 f functions for Nd spheres, $5 \mathrm{~s}, 5 \mathrm{p}, 4 \mathrm{~d}$ and 4 f functions for Mo spheres, $2 \mathrm{~s}, 2 \mathrm{p}$ and 3 d functions for O spheres, and s, p and d functions for 'empty spheres'. The eigenvalue problem was solved using the following minimal basis set obtained from the Löwdin downfolding technique: Nd 6s, 5d, 4f, Mo 5s, 5p, 4d, O 2s, 2p and interstitial 1s LMTOs. The k space integration was performed using the tetrahedron method [39]. Charge self-consistency and the average properties were obtained from 46 irreducible k points. A measure of the magnitude of the

Fig. 3. The Mo_{13} cluster with its oxygen environment (97% probability ellipsoids).

Fig. 4. Oxygen environments for the Nd 1 and Nd 2 atoms.
bonding was obtained by computing the crystal orbital Hamiltonian populations (COHP) which are the Hamiltonian population weighted density of states (DOS) [40]. As recommended [41], a reduced basis set (in which all ES LMTO's have been downfolded) was used for the COHP calculations. DOS and COHP curves are shifted so that ϵ_{F} lies at 0 eV .

3. Results and discussion

3.1. Structure description

A perspective view of the crystal structure of $\mathrm{Nd}_{12.4} \mathrm{Mg}_{0.6} \mathrm{Mo}_{13} \mathrm{O}_{36}$ along the b axis is represented in

Fig. 1. It shows that this structure can be viewed as a stacking along the c-axis of two different slabs interconnected through oxygen atoms. The A slab is made up of molybdenum forming Mo_{13} clusters, neodymium and oxygen atoms, and the B slab of neodymium and oxygen atoms.

In the A slab, the Mo_{13} cluster is similar to that encountered in the compound $\mathrm{Pr}_{4} \mathrm{Mo}_{9} \mathrm{O}_{18}$. It has 3 m $\left(C_{3 v}\right)$ symmetry and may be regarded as resulting from the edge-sharing-condensation of three Mo_{6} octahedra having the same apex in common, as depicted in Fig. 2. The Mo-Mo bond distances within the Mo_{13} cluster range from 2.692(1) to 2.848(1) \AA with an average value of $2.74 \AA$ and are thus quite comparable to those found

Fig. 5. A polyhedral representation of the A slab viewed along the c axis.
in one-dimensional condensed Mo clusters. The molybdenum atoms are linked to three (Mo1), four (Mo4) or five (Mo2, Mo3) oxygen atoms. These bridge the Mo-Mo edges (O2, O7, O8), cap the triangular Mo faces ($\mathrm{O} 1, \mathrm{O} 4, \mathrm{O} 9$) or are bonded exo to the Mo apices of the Mo_{13} polyhedron $(\mathrm{O} 5, \mathrm{O})$) leading to the $\mathrm{Mo}_{13} \mathrm{O}_{31}$ unit shown in Fig. 3. The Mo-O bond distances lie between 1.969(5) and 2.135(5) \AA with an average value of $2.08 \AA$. In the A slab, we also find the neodymium atoms Nd 1 and Nd 2 that are surrounded by 10 and 8 oxygen atoms, respectively. The coordination polyhedra around both neodymium atoms are shown in Fig. 4. The ${\mathrm{Nd} 1 \mathrm{O}_{10}}^{\text {polyhedron may be described as the stacking }}$ of a triangle formed by the O 5 on a hexagon of O 2 atoms which is capped by the O 4 atom. The environment of the Nd2 atoms may be viewed as a distorted bicapped trigonal prism. The Nd-O distances range from 2.339(11) to 2.832(5) for the Nd1 site and from 2.148(2) to 2.774 (4) for the Nd 2 site. The arrangement of the $\mathrm{Mo}_{13} \mathrm{O}_{31}$ units and the ${\mathrm{Nd} 1 \mathrm{O}_{10}}$ and $\mathrm{Nd} 2 \mathrm{O}_{8}$ polyhedra in the A slab is shown in Fig. 5.

In the B slab, we find the remaining Nd atoms, i.e. Nd3, Nd4, Nd5 and Nd5' (Fig. 6). The Nd3 and Nd4 atoms are eight-coordinate in oxygen but present different environments. Nd3has a bicapped trigonal prismatic environment and Nd 4 is at the center of a tricapped square-based pyramid. The Nd3-O bond distances lie between 2.331(6) and 2.904(6) \AA and the $\mathrm{Nd} 4-\mathrm{O}$ between $2.345(5)$ and $2.883(5) \AA$. The last Nd atom is delocalized over two the two positions Nd5 and $\mathrm{Nd} 55^{\prime}$ in a monocapped square-based pyramid. The Nd5-O and Nd5'-O distances vary between 2.313(11) and 2.927(7) \AA and between 2.210(17) and 2.750(10) \AA, respectively. The Fig. 7 shows the arrangement of the
 the B slab.

3.2. Bond-length bond-strength formula

The estimation of the oxidation states of molybdenum and, consequently, of the number of electrons per Mo_{13} cluster could be performed on this compound using the empirical bond length-bond strength relationship developed by Brown and Wu [42] for Mo-O bonds:
$s(\mathrm{Mo}-\mathrm{O})=[d(\mathrm{Mo}-\mathrm{O}) / 1.882]^{-6}$
In the above formula, $s(\mathrm{Mo}-\mathrm{O})$ is the bond-strength in valence units, $d(\mathrm{Mo}-\mathrm{O})$ is the observed $\mathrm{Mo}-\mathrm{O}$ bond

Fig. 6. Oxygen environments for the $\mathrm{Nd} 3, \mathrm{Nd} 4$ and Nd 5 atoms.

Fig. 7. A polyhedral representation of the B slab viewed along the c axis.
distance in $\AA, 1.882 \AA$ corresponds to a Mo-O single bond distance, and the exponential parameter-6 is characteristic of the Mo atom. Thus, the sum of the Mo-O bond strengths s (in valence units) about a particular Mo atom is equal to the oxidation state of that Mo atom. For the four crystallographically independent Mo atoms, these calculations lead to the number oxidation states of $+1.44(2), 2.67(4), 3.19(5)$ and $+2.06(3)$ for Mo1, Mo2, Mo3 and Mo4, respectively. From these values, we could estimate the metallic electron (ME) count per Mo_{13} cluster to $44.7(4)$, which is in good agreement with the value of $44.4(3) \mathrm{e}^{-}$based on the stoichiometry.

3.3. Electronic structure

Extended Hückel calculations were performed on the experimental $\mathrm{Mo}_{13} \mathrm{O}_{31}$ cluster of $C_{3 v}$ symmetry. The corresponding molecular orbital (MO) diagram is shown in Fig. 8. Because of the electronegativity difference of molybdenum and oxygen atoms, MOs that lie in the HOMO/LUMO part of MO diagram shows a major metallic d character. The 48e, 49e and $33 \mathrm{a}_{1}$ MOs show an overall Mo-Mo non-bonding character as revealed by the metal-metal overlap populations examination, whereas lower and higher metallic MOs are Mo-Mo bonding and antibonding, respectively. The 48e, 49e and $33 \mathrm{a}_{1}$ MOs become the HOMO for the ME count of 42,46 , and 48 , respectively. No well-defined

Fig. 8. Extended Hückel molecular orbital diagram of $\mathrm{Mo}_{13} \mathrm{O}_{31}$.

Fig. 9. Spin-polarized DF calculations for the model compound $\mathrm{Nd}_{13} \mathrm{Mo}_{13} \mathrm{O}_{36}$: (a) spin-up and (a') spin-down total DOS, (b) spin-up and (b') spin-down Nd projected DOS, (c) spin-up and (c^{\prime}) spin-down Mo projected DOS, (d) spin-up and (d') spin-down averaged COHP for Mo-Mo bonds of the cluster

HOMO/LUMO gaps are observed for those ME counts. Such a situation has been frequently encountered for metal clusters with a high metal-metal connectivity [43]. Spin-polarized periodic density functional (DF) calculations were carried out on the model compound $\mathrm{Nd}_{13} \mathrm{Mo}_{13} \mathrm{O}_{36}$ where no Mg atoms are considered and all Nd5 and Nd5' positions are fully occupied and vacant, respectively. Since no close metal-metal contacts are observed between the Mo_{13} clusters in the crys-
tal, no significant perturbation of the Mo_{13} clusters' MO pattern is expected in the three-dimensional solid. Spinpolarized total, Nd and Mo projected DOS and Mo-Mo COHP are sketched in Fig. 9. The Fermi level cuts a spin-up DOS peak mainly centered on Nd 4f. Since three electrons occupy this DOS peak inducing a + 3 oxidation state for the Nd atoms, the ME count of the Mo_{13} cluster is equal to 45 . The Fermi level cuts also a rather large Mo projected spin-up DOS peak and a nar-
row Mo projected spin-down DOS peak that are both weakly Mo-Mo antibonding. Theses bands are separated by an energy of more than half an eV from lower Mo-Mo bonding bands. Assuming a rigid band model, this gap becomes the band gap for the ME count of 42 . Although some Mo-Mo antibonding bands are occupied, the $C_{3 v}$ symmetry architecture is preserved for this cluster because of the high connectivity of the different atoms constituting the cluster. Periodic DF calculations suggest that an open-shell configuration is encountered for the $\mathrm{Mo}_{13} \mathrm{O}_{31}$ unit in this model compound. Because of the absence of significant HOMO/ LUMO gaps, strong Jahn-Teller distortions of the cluster could occur for the low spin state configuration that is less stable than the high spin state. Magnetic properties consistent with the presence of Nd^{3+} and some polarized electrons on Mo atoms are expected.

4. Supplementary material

Further details of the crystal structure investigation may be obtained from the Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen, Germany (Fax: +49 7247808 666; e-mail: crysdata@fizkarlsruhe.de), on quoting the depository number CSD414275.

References

[1] P. Gougeon, J. Padiou, J.Y. Le Marouille, M. Potel, M. Sergent, Solid-State Chem. 51 (1984) 218.
[2] P. Gougeon, M. Potel, J. Padiou, M. Sergent, Mater. Res. Bull. 22 (1988) 1087.
[3] P. Gougeon, M. Potel, M. Sergent, Acta Crystallogr. C 45 (1989) 182.
[4] P. Gougeon, M. Potel, M. Sergent, Acta Crystallogr. C 45 (1989) 1413.
[5] P. Gougeon, M. Potel, J. Padiou, M. Sergent, Mater. Res. Bull. 23 (1988) 453.
[6] P. Gougeon, M. Potel, M. Sergent, Acta Crystallogr. C 46 (1990) 2284.
[7] S. Picard, P. Gougeon, M. Potel, Acta Crystallogr. C 53 (1997) 1519.
[8] P. Gougeon, PhD thesis, Rennes, 1984.
[9] M. Potel, PhD thesis, Rennes, 1981.
[10] S.J. Hibble, A.K. Cheetham, A.R.L. Bogle, H.R. Wakerley, D.E.J. Cox, Am. Chem. Soc. 110 (1988) 3295.
[11] R. Dronskowski, A. Simon, Angew. Chem. Int. Ed. Engl. 28 (1989) 758.
[12] P. Gougeon, M. Potel, M. Sergent, Acta Crystallogr. C 46 (1990) 1188.
[13] P. Gougeon, P. Gall, M. Sergent, Acta Crystallogr. C 47 (1991) 421.
[14] R. Dronskowski, A. Simon, W.Z. Mertin, Anorg. Allg. Chem. 602 (1991) 49.
[15] P. Gougeon, P. Gall, Acta Crystallogr. C 50 (1994) 7.
[16] P. Gougeon, P. Gall, Acta Crystallogr. C 50 (1994) 1183.
[17] R. Dronskowski, A. Simon, Acta Chem. Scand. A 45 (1991) 850.
[18] G.L. Schimek, S.C. Chen, R.E. Mc Carley, Inorg. Chem. 34 (1995) 6130.
[19] G.L. Schimek, D.A. Nagaki, R.E. Mc Carley, Inorg. Chem. 33 (1994) 1259.
[20] R. Dronskowski, H.J. Mattausch, A. Simon, Zeit. Anorg. Allg. Chem. 619 (1993) 1397.
[21] G.L. Schimek, R.E. Mc Carley, J. Solid-State Chem. 113 (1994) 345.
[22] C.C. Torardi, R.E. Mc Carley, J. Am. Chem. Soc. 101 (1979) 3963.
[23] J. Tortelier, P. Gougeon, Inorg. Chem. 37 (1998) 6229.
[24] P. Gall, P. Gougeon, Z. Krist. 213 (1998) 1.
[25] B.V. Nonius, COLLECT, data collection software, Nonius BV, 1999.
[26] A.J.M. Duisenberg, Reflections on Area Detectors, PhD thesis, Utrecht, 1998.
[27] J. de Meulenaar, H. Tompa, Acta Crystallogr. A 19 (1965) 1014.
[28] A. Altomare, M.C. Burla, M. Camalli, G.L. Cascarano, C. Giacovazzo, A. Guagliardi, A.G.G. Moliterni, G. Polidori, R.J. Spagna, Appl. Crystallogr. 32 (1999) 115.
[29] G.M. Sheldrick, SHELXL 97, Program for the Refinement of Crystal Structures, University of Göttingen, Germany, 1997.
[30] R. Hoffmann, J. Chem. Phys. 39 (1963) 1397.
[31] C. Mealli, D. Proserpio, J. Chem. Educ. 67 (1990) 399.
[32] O.K. Andersen, Phys. Rev. B 12 (1975) 3060.
[33] O.K. Andersen, Europhys. News 12 (1981) 4.
[34] O.K. Andersen, O. Jepsen, Phys. Rev. Lett. 53 (1984) 2571.
[35] O.K. Andersen, O. Jepsen, M. Sob, in: M. Yussouf (Ed.), Electronic Band Structure and its Application, SpringerVerlag, Berlin, 1986.
[36] H.L. Skriver, The LMTO Method, Springer-Verlag, Berlin, 1984.
[37] U. von Barth, L. Hedin, J. Phys. C 5 (1972) 1629.
[38] O. Jepsen, O.K. Andersen, Z. Phys. B 97 (1995) 35.
[39] P.E. Blöchl, O. Jepsen, O.K. Andersen, Phys. Rev. B 49 (1994) 16223.
[40] R. Dronskowski, P.E. Blöchl, J. Phys. Chem. 97 (1993) 8617.
[41] O. Jepsen, O.K. Andersen, personal communication.
[42] I.D. Brown, K.K. Wu, Acta Crystallogr. B 32 (1976) 1957.
[43] R. Gautier, J.-F. Halet, J.-Y. Saillard, in: P. Braustein, L.A. Oro, P.R. Raithby (Eds.), Metal Clusters in Chemistry, VCH, Weinheim, Germany, 1999 , p. 1643.
[44] P. Gougeon, M. Potel, J. Padiou, M. Sergent, J. Solid-State Chem. 68 (1987) 137.

[^0]: * Corresponding author.

 E-mail address: Patrick.Gougeon@univ-rennes1.fr (P. Gougeon).
 ${ }^{1}$ Present address: Laboratoire Crismat-Ensicaen, 6, bd du Maréchal-Juin, 14050 Caen cedex, France.

