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Abstract

In this paper, we give practical instructions for linking explicitly the macroscopic two-photon absorption properties of any
homogeneous and isotropic molecular material with the microscopic quantum structures of the corresponding molecules. This
article is dedicated to a wide public. It is also separated from any consideration around the structural optimization of two-photon
absorbers. The previously mentioned link is clearly established and the limitations of the corresponding mathematical expres-
sions are underlined. These general expressions are then applied to the particular case of the three-level approximation, which is
extensively used at the moment for the intuitive engineering of two-photon absorbers. To cite this article: R. Fortrie,
H. Chermette, C. R. Chimie (8) 2005.
© 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Dans le présent article, nous exposons de manière pratique et concise comment établir explicitement le lien entre les pro-
priétés macroscopiques d’absorption à deux photons d’un matériau moléculaire homogène et isotrope donné et les propriétés
quantiques microscopiques des molécules composant ce matériau. Cet article de vulgarisation est destiné aux non-spécialistes et
détaché de toute considération relative à l’optimisation structurale des molécules absorbant à deux photons. Le précédent lien est
clairement établi et les limitations des expressions mathématiques correspondantes sont soulignées. Ces expressions générales
sont, ensuite, appliquées au cas particulier du modèle à trois niveaux actuellement très utilisé dans l’ingénierie intuitive des
molécules absorbant à deux photons. Pour citer cet article : R. Fortrie, H. Chermette, C. R. Chimie (8) 2005.
© 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

First predicted in 1931 by Göpper-Mayer [1] and
then observed in 1961 by Kaiser and Garrett [2], two-
photon absorption phenomena are of a great interest
for new technologies [3,4]. They are, for example, appli-
cable to optical memory devices [5], microfabrication
[6], up-conversion lazing [7], photodynamic therapy [8],
two-photon microscopy [9], optical power limiting [10].
However, their designing and understanding remains a
challenge and many current researches in this area are
now focused on molecular materials [11–28].

Building the complete theoretical sequence leading
from the quantum properties of any molecular system
up to the two-photon absorption properties of the result-
ing molecular material remains a difficult task. The
required information has indeed to be collected from
different sources, written with different notations and
scientific languages such as chemical and physical. The
knowledge of this theoretical chain is however greatly
helpful for the intuitive engineering of new molecular
materials and we describe it explicitly and completely
in this paper. The limitations of the physical approxi-
mations are underlined and a special effort is done for
minimizing and simplifying notations. Moreover, the
general relations are subsequently applied to the par-
ticular case of the three-level model, which allows an
intuitive engineering of two-photon absorbers.

This article is dedicated to a first contact with the
subject for a wide public of chemists or physicists. It
is, in particular, separated from any consideration
around the structural optimization of two-photon
absorbers. More information about this subject is avail-
able in the most recent of the previously cited articles.

2. Experimental section

We consider here a material composed with one or
several two-photon absorbent molecular species homo-
geneously and isotropically diluted in a transparent,
homogeneous and isotropic matrix, which can be a sol-
vent, a sol-gel matrix, an amorphous glass, etc... This
materials is assumed one-photon transparent, two-
photon absorbent, not charged and without free cur-
rents. Moreover, no constant electric field or magnetic
field is applied.

The experiment we model in this paper is the fol-
lowing one: a linearly polarized light beam is propagat-

ing through the molecular material of interest along a
privileged direction represented by the (Oz) axis, and
the evolution of its intensity in the course of transiting
the material is studied.

3. Electric field and polarization

In the material, the electric field, EW� t,rW �, time and
space dependent, and the polarization, PW� t,rW �, time
and space dependent too, are considered by their Fou-
rier transform, eW� x,rW � and pW� x,rW �, frequency and
space dependent, as defined by relations (1) and (2) for
the electric field and with an equivalent definition for
the polarization.

(1)

EW� t, rW � = eW� 0,rW �

+
1

2
�0

+∞
[eW(x ,rW)exp� − ixt)

+ eW(− x ,rW)exp(ixt �]dx

(2)eW� −x, rW � = � eW� x, rW � � *

Quantities eW� x,rW � and pW� x,rW �, called further ‘electric
field’ and ‘polarization’, are complex numbers, in con-

trast with EW� t,rW � and PW� t,rW �, which are real numbers.
These quantities are linked via a general propagation
equation [29]. The profile of the intensity of the light
beam in the course of transiting the sample should then
be accessible by solving this equation. Such a resolu-
tion is however most of the time not possible and some
assumptions have to be done.

4. Two-photon absorption

In the general case, the polarization depends on the
electric field via a Taylor development as given in Eq.
(3) [30,31], where i, j, k and l represent the vector coor-
dinates and where v̂� 1 �, v̂� 2 � and v̂� 3 � are the first, sec-
ond and third-order polarizability tensors, also called
respectively polarizability tensor for v̂� 1 � and first and
second hyperpolarizability tensors for v̂� 2 � and v̂� 3 �, all
frequency dependent.

(3)pi = �
j

vij
� 1 �ej + �

j,k
vijk

� 2 �ejek + �
j,k,l

vijkl
� 3 �ejekel + ...
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As explained in Section 2, we are here only concerned
with homogeneous and isotropic materials, which are
one-photon transparent and two-photon absorbent, and
the light beam of interest has been assumed linearly
polarized. This strongly simplifies the expressions of
hyperpolarizabilities and relation (4) is extracted, where
v� 1 � is a real number and v� 3 � a complex one [31].

(4)pW = � v� 1 � + v� 3 ��eW�2 � eW

However, even if the expression of the polarization as a
function of the electric field appears less complex in Eq.
(4), solving the propagation equation for any light beam
remains a difficult task. Moreover, the result strongly
depends on the time and space shapes of the light beam
and no exhaustive study is to be performed here, many
precise examples can be found in Sutherland’s book [31].
But, whatever is the shape of the light beam, the two-
photon absorption coefficient a2 can be defined for the
material via the local relations (5) and (6).

(5)
dI

dz
= −a2 I2

(6)a2 =
2 l0 x

e0 + v
�1 � Im� v

� 3 � �

Experimentally, if the material of interest consists only
of a single species of two-photon absorbent molecule
diluted in a transparent matrix with N as its molecular
concentration, the value of interest is the two-photon
absorption cross-section of this molecular compounds
rTPA at frequency x , which is defined by relation (7)
[31].

(7)rTPA =
\ x

N
a2

In Eq. (7), \ represents the reduced Planck constant,
which is equal to the Planck constant h divided by 2p.
The current engineering of two-photon absorbent
molecular materials is mainly dedicated to designing
and improving this two-photon absorption cross-
section [25,26,32]. Then, at this point, the challenge
consists in the calculation of the macroscopic values
v� 1 � and v� 3 � using the microscopic quantum structures
of the molecular compounds involved in the molecular
material.

5. Local-field approximation

Concerning the electric field and the polarization,
which appear is previous equations, both are mesos-
copic average values. But the electric field felt by each
molecule is different from this mesoscopic field. It con-
sists indeed in a superposition of the mesoscopic elec-
tric field itself with the electric fields produced by the
neighbor molecules, which are themselves induced by
the local electric fields that these molecules feel. One
of the methods for considering this effect has been pro-
posed by Clausius and Mossotti or Lorenz and Lorentz
[30,33]. It consists in digging a spherical cavity in the
material, which is here considered continuous, and in
calculating the electric field in this cavity. This field is
assumed to be the local electric field felt by any mol-
ecule put inside the cavity. Of course, molecules are
not spherical and more complexes surfaces should nor-
mally be chosen, which is hardly undone at the moment.
Another approach would consist in including in this
spherical hole a molecule gathered with several sol-
vent molecules to reach the shape of the cavity. Any-
way, in the framework of this spherical cavity approxi-
mation, called “local field approximation”, it is shown
that, even for a non-linear media, the relations (8) and
(9) are verified.

(8)eWlocal = eWmeso +
pWmeso

3 e0

(9)pWmeso = �
molecules

Nmolecule pWmolecule

6. From the molecule up to the material

Like the polarization of the macroscopic material,
the polarization of an isolated molecular system can be
defined as a tensorial Taylor development, as given in
Eq. (10) [4,30].

(10)pi = �
j

�ijej + �
j,k

bijkejek + �
j,k,l

cijklejekel + ...

It has to be underlined that an alternative definition
given by relation (10′) can also be employed [34] but
will not be used within this article. Both conventions
are widely used, so that it is important to recall the
selected choice when numerical values are reported.
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(10′)pi =
1

2!�j
�ijej +

1

3!�j,k
bijkejek +

1

4!�j,k,l
cijklejekel + ...

The calculation of these polarizabilities can be achieved
via the sum-over-states method [35]. Performing such
a calculation requires the rovibronic eigenstates |m	 (m
from 0 to + ∞) of this molecular system to be known via
their energies, Em, and via the electric dipole moments
between them, 
m|l|n↔ 	.

For the particular case of a frequency x far from
any one-photon absorption and close to the two-
photon absorption from state |0	 to state |n	, the ex-
pressions of the �̂ tensor and of the imaginary part of
the ĉ tensor are approximated with relations (11) and
(12). In these expressions, the natural widths C0m and
C0p of the states other than |n	 are suppressed since x
is assumed far from any one-photon absorption.

(11)�ij�−x;x � =
2

\
�
m=1

+∞ x0m

x0m
2 − x2 
0�li�m 	 
m�lj�0 	

(12)Im � c i jkl�− x ; x , x , − x�� =
C0n

4 \
3 I i jkl� �

m=1

+∞

�
p=1

+∞ 
 0�l i�m 	
 m�l j�n 	
 n�lk�p 	
 p�l l�0 	

�x0m − x�� x0p − x�� �x0n − 2x �2 +
C0n

2

4 � �
where x0m represents � Em − E0 � ⁄ \, Iijkl represents
the average operator over all permutations of
indexes i, j, k and l, and where 
m�li�n	 represents

m�li�n	 − 
0�li�0	 
m�n	. The C0n frequency artificially
introduces the life-time of state |n	, this means that the
energy difference x0n is replaced by x0n − iC0n⁄2.

Modeling the excited states of a molecular system is
difficult and remains a challenge for theoretical chem-
istry. No discussion is then made here on this particular
point. Many computational methods are available and
a lot of literature can be found elsewhere about this
particular subject [20–23,27,36]. It is here assumed that
the excited states of the molecular systems of interest
are known.

Let us now consider a molecular mixture, which con-
sists in Q species, indexed with q from 1 to Q, each one
with Nq as a molecular concentration. If the micro-
scopic polarizability tensors of these molecular com-
pounds are known and if the local field approximation
described above is used, then the macroscopic polariz-
ability tensors can be calculated. The expressions of
v� 1 � and v� 3 � are given by relations (13) and (14), using
the notations (15) and (16).

(13)v
�1 � =

�
q=1

Q
Nq �q

1 − 1
3 e0

�
q=1

Q
Nq �q

(14)v
�3 � =

�
q=1

Q
Nq cq

�1 − 1
3 e0

�
q=1

Q
Nq �q�4

(15)� = 1
3 �

t
�ii

(16)c = 1
15 �

i , j
c ii j j + c i j j i + c i j i j

For the particular case of a single two-photon absor-
bent species diluted in a transparent matrix, these
expressions lead to (17) and (18), where nS represent
the refraction index of the transparent matrix. Note that
appears here the Lorenz–Lorentz correction factor
[30,33].

(17)v
�1 � = e0 � nS

2 − 1 �

(18)v
�3 � =�nS

2 + 2
3 �4

Nc

7. Experiment and modeling

Thanks to expressions (6), (7), (17) and (18), it is
now possible to express the macroscopic two-photon
absorption cross-section of a single molecular species
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diluted in a transparent matrix as a function of the
microscopic third-order hyperpolarizability of this
molecular species, as shown by relation (19).

(19)rTPA =
2l0 \ x2

e0 nS
2 � nS

2 + 2
3 �4

Im�c �

The expression of c as a function of the quantum struc-
ture of the molecular system is given by relation (12).
However, the existence of the arbitrary value C0n in this
relation makes irrelevant any direct comparison be-

tween experimental and calculated values of rTPA. For
example, if |n 	 is an electronically excited state, in
many cases, the rovibrational parts of rovibronic states,
|m 	 , |p 	 and |n 	 , only contribute to make the elec-
tronic absorption band wide (see for example [37]). As
a consequence, in this particular case, any comparison
between experimental and calculated values requires
the integration of the two-photon absorption cross-
section over the whole electronic absorption band
around the average electronic resonance frequency [14].
This integration leads to the relation (20).

(20)�
x0n

2

rTPA

x dx =
p l0 x0n

60 e0 nS
2

\
2� nS

2 + 2
3 �4

�
m=1

+∞
�

p=1

+∞ � lW0m·lWmn �� lWnp · lW p0 � + � lW0m · lWnp �� lWmn · lW p0 � + � lW0m · lW p0 �� lWmn·lWnp �
� x0m −

x0n

2 �� x0p −
x0n

2 �

where |m	, |p	 and |n	 are rovibronic states and with

lWmn representing lWmn − lW00 dmn, with dmn equal to 1 if
m = n and to 0 otherwise. In many cases, the rovibra-
tional parts of states |m 	 , |p 	 and |n 	 can be simplified
and the relation (20) can be transformed into another
expression, exactly similar, but for electronic states only
[38].

8. Three-level model and molecular engineering

As can be presumed by looking at relation (20), link-
ing the quantum structure of the molecular system of
interest and its two-photon absorption cross-section is
not intuitive. Therefore has been created the three-level
model [13,14,39], which is extensively used within the
optimization of two-photon absorbers. This model deals
only with electronic states and assumes that the descrip-
tion of the molecular system can be restricted to only
three eigenstates with \x01 larger than \x02⁄2. The
two-photon absorption of interest corresponds then to
the transition from the fundamental to the second excited
state. In the framework of this general three-level model,
two particular cases are of a greater interest:
• No one-photon absorption from the fundamental to

the second excited state is allowed, which means that

lW02 is null, this leads to the relation (21). This is

verified, for example, in centro-symmetric com-

pounds, for which, moreover, lW00 is also null
[14,24].

(21)�
x02

2

rTPA

x
dx =

p l0 x02

60 e0 nS
2

\
2� nS

2 + 2

3 �4

·
2 � lW01·l

W
12 �

2
+ lW01

2 · lW12
2

�x01 −
x02

2 �2

even if lW02 is non-null.
• No one-photon absorption from the fundamental to

the first excited state is allowed, which means that

lW01 is null, this leads to the relation (22). This re-
stricts the three-level model to a two-level model and
can represent, for example, a charge-transfer induced
two-photon absorption [13,14].

(22)�
x02

2

rTPA

x
dx =

p l0

15 e0 nS
2

\
2 x02

� nS
2 + 2

3 �4

�2 � lW02 · � lW22 − lW00 ��
2

+ lW02
2 · � lW22 − lW00 �

2 �
These two simple relations (21) and (22) are the one of
interest for performing two-photon absorption molecu-
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lar engineering ‘by hands’, which means without requir-
ing heavy molecular quantum modeling.

It has to be noted that current researches within the
area of molecular structure optimization for two-
photon absorption are now mainly focused on highly
symmetric (C2v, C3, D3h, D3, Td groups, for example)
two- and three-dimensional compounds [26,27,32].
Most of these new compounds, on account of their sym-
metries, can not be treated via the previously described
simple three-level model.

9. Conclusion

In conclusion, the two-photon absorption cross-
section of a single two-photon absorbent molecular spe-
cies homogeneously and isotropically diluted in a
homogeneous, isotropic and transparent matrix, light-
ened with a linearly polarized mono-directional light
beam, in the framework of the local field approxima-
tion, can be related to the quantum structure of the
molecular compound via relation (20).

Moreover, in the framework of the three-level
approximation, and for the two particular cases de-
scribed in the last section, the expression (20) can be
reduced into relations (21) and (22).

In summary, these relations, which are widely used
by chemists for the optimization of two-photon absorb-
ers, but whose validity is limited, allow an intuitive and
qualitative engineering of two-photon absorbent mo-
lecular compounds, whatever is their symmetry.
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