Synthesis and characterization of $\mathrm{Cu}(\mathrm{bpe})(\mathrm{ddc})[\mathrm{bpe}=$ 1,2-bis(4-pyridyl)ethane, $\mathrm{H}_{2} \mathrm{ddc}=1,10$-decanedicarboxylic acid]

Bruce Finkel, Long Pan, Xiaoying Huang, Jing Li *
Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, USA

Received 11 May 2004; accepted 18 April 2005
Available online 01 July 2005

Abstract

A new 2D structure, $\mathrm{Cu}(\mathrm{bpe})$ (ddc) was synthesized by a reaction of hydrated cupric nitrate, 1,2-bis(4-pyridyl)ethane (bpe), 1,10 -decanedicarboxylic acid $\left(\mathrm{H}_{2} \mathrm{ddc}\right)$ and triethylamine (tea) via a room temperature diffusion method. The compound with chemical formula $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{CuO}_{4}$ crystallizes in triclinic space group $P \overline{1}, a=7.944(3) \AA, b=8.714$ (3) $\AA, c=9.366(3) \AA$, $\alpha=64.55(3)^{\circ}, \beta=86.72(2)^{\circ}, \gamma=73.74(3)^{\circ}, V=560.5(3) \AA^{3}$ and $Z=1$. Within the structure, each copper forms four equatorial bonds with two ddc and two axial bonds with two bpe to give rise to a distorted octahedron. The $\mathrm{Cu}-\mathrm{ddc}$ connections generate a 1D zigzag chain. The chains are further connected via bpe nitrogen at Cu axial positions to result in a 2D layered structure. To cite this article: B. Finkel et al., C. R. Chimie 8 (2005).

© 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Une nouvelle structure 2D $\mathrm{Cu}(\mathrm{bpe})(\mathrm{ddc})$ a été synthétisée par réaction d'hydratation du nitrate de cuivre, du 1,2-bis(4pyridyl)éthane (bpe), de l'acide 1,10-décanedicarboxylique (H2ddc) et de la triéthylamine (tea) par une méthode de diffusion à température ambiante. Le composé, de formule $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{CuO}_{4}$, cristallise dans le groupe d'espace triclinique $P \overline{1}$, avec $a=7,944(3) \AA, b=8,714(3) \AA, c=9,366(3) \AA, \alpha=64,55(3)^{\circ}, \beta=86,72(2)^{\circ}, \gamma=73,74(3)^{\circ}, V=560,5(3) \AA^{3}$ et $Z=1$. Dans la structure, chaque cuivre forme quatre liaisons équatoriales avec deux ddc et deux liaisons axiales avec deux bpe pour donner un octaèdre déformé. Les enchaînements Cu -ddc produisent une chaîne en zigzag à une dimension. Les chaînes sont ensuite liées par l'intermédiaire de l'azote du bpe aux positions axiales du cuivre pour donner une structure en couches bidimensionnelle. Pour citer cet article : B. Finkel et al., C. R. Chimie 8 (2005)
© 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Keywords: Copper; 2D coordination polymer; Flexible ligand
Mots-clés : Cuivre ; Polymère en coordination bidimensionnelle ; Ligand flexible

[^0]1631-0748/\$ - see front matter © 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved. doi:10.1016/j.crci.2005.04.006

1. Introduction

Exploration and investigation of new metal-organic frameworks has increased extensively since 1990s because of their potential for applications, such as porous metal-organic frameworks as promising hydrogen storage materials [1,2], gas/liquid separation [3,4] and catalysis ability [5]. Many specific functions of these compounds could not be substituted by traditional inorganic or organic materials. In general, the strategy to design and construct metal-organic networks of a variety of structures is to elaborately select different metals with preferred coordination geometries and ligands with different shape, size and rigidity. In this paper, we report on a new compound synthesized using two flexible ligands 1,2-bis(4pyridyl)ethane (bpe) and 1,10-decanedicarboxylic acid ($\mathrm{H}_{2} \mathrm{dcc}$).

Several chain-like alkyl dicarboxylate ligands, such as $\mathrm{HOOC}\left(\mathrm{CH}_{2}\right) \mathrm{nCOOH}(N=3-8)$ have been previously employed to build new metal-organic frameworks [6-9]. However, dicarboxylate ligands with $N>8$ used to synthesize new structures are quite limited [10]. Herein, we report synthesis and structure analysis of a new copper coordination compound containing an unusually long alkyl dicarboxylate (ddc) and a flexible ligand (bpe).

2. Preparation

All chemicals were used as purchased. A 0.05 M acetonitrile solution of cupric nitrate, 0.1 M DMF solution of $\mathrm{H}_{2} \mathrm{ddc}, 0.025 \mathrm{M}$ ethanol solution of bpe and 0.1 M DMF solution of triethylamine (tea) were preprepared. First, a buffer solution of 4 ml ethylene glycol was added into the bottom of U-type tube, then, solution was carefully added via disposable pipettes into both arms concurrently. The left arm the U-type was added 6 ml of acetonitrile cupric nitrate; the right arm was added 2 ml of $\mathrm{H}_{2} \mathrm{ddc} / \mathrm{DMF}$, then 2 ml tea/DMF followed by 2 ml bpe/ethanol solution. After several weeks without disturbance, blue block-like crystals suitable for X-ray diffraction analysis were collected.

3. Structural characterization

Data collection on a selected single crystal was carried out at 298 K on an automated Enraf-Nonius

CAD4 diffractometer equipped with graphite monochromatic Mo K α radiation ($\lambda, 0.71073 \AA$). The cell parameters were obtained from least-squares analyses of 25 computer-centered reflections within a range of $4.86^{\circ}=\theta=11.21^{\circ}$. The data collections were monitored by three standard reflections every four hours. No decay was observed except the statistic fluctuation. Data collections and reduction were controlled by the CAD4/PC [11], and XCAD4-PC [12], respectively. At the end of the systematic data collection the raw intensities were corrected for Lorentz and polarization effects. Direct phase determination and subsequent difference Fourier map synthesis yielded the positions of all non-hydrogen atoms, which were subjected to anisotropic refinement. Hydrogen atoms were added geometrically with their thermal parameters set to $1.2 \times U_{\text {eq }}$ of the parent non-hydrogen atoms. The final fullmatrix, least-squares refinement on F^{2} was applied for all observed reflections [$I>2 \sigma(I)]$. All calculations were performed by using the SHELX97 software package [13]. Analytic expressions of atomic scattering factors were employed, and anomalous dispersion corrections were incorporated [14]. Crystal data and details of relevant parameters adopted in the data collection as well as crystal structure refinement are listed in Table 1. Additional materials have been deposited at the Cambridge Crystallographic Data Center, 12 Union Road, Cambridge CB21EZ, UK, as a supplementary publication No. 236288 available on request from the CCDC.

4. Results

The crystals of the title compound $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{CuO}_{4}$ were grown in a slowly diffusing solution of bpe, $\mathrm{H}_{2} \mathrm{ddc}$ and tea into a methanol solution of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ through a ethylene glycol medium. $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{CuO}_{4}$ crystallizes in a triclinic space group $P \uparrow$. The atomic coordination, selected bond lengths and bond angles are listed in Tables 1 and 2, respectively. Fig. 1 shows the coordination environment of $\mathrm{Cu}(\mathrm{II})$. It has a distorted octahedral geometry and is situated at the inversion center, where two carboxylates groups of dcc ligands in the equatorial plane bond to $\mathrm{Cu}(\mathrm{II})$ in a bidentate mode, the bpe ligands bind to $\mathrm{Cu}(\mathrm{II})$ at two axial positions through their pyridine nitrogen atoms. The oxygens of

Table 1
Crystallographic data of $\mathrm{Cu}(\mathrm{bpe})$ (ddc)

Sample code	BF1-47A		
Molecular formula	$\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{CuN}_{2} \mathrm{O}_{4}$		
Molecular weight	476.06		
Color and habit	Transparent blue, block-like		
Crystal size	$0.16 \times 0.09 \times 0.04 \mathrm{~mm}^{3}$		
Crystal system	Triclinic		
Space group	$P \overline{1}$ (No. 2)		
Unit cell parameters	$a=7.944(3) \AA, \alpha=86.72(2)^{\circ}$		
	$b=8.714(3) \AA, \beta=86.72(2)^{\circ}$		
	$c=9.366(3) \AA, \gamma=86.72(2)^{\circ}$		
	$V=560.5(3) \AA^{3}, Z=1$		
$F(000)$	251		
Density (calc.)	$1.400 \mathrm{~g} \mathrm{~cm}^{-3}$		
Diffractometer	Enraf-Nonius CAD4		
Radiation	Graphite-monochromatized $\mathrm{Mo} \mathrm{K} \alpha \lambda=0.71073 \AA$		
Refs. used for cell measurement	$25,4.86^{\circ}=\theta=11.21^{\circ}$		
Standard reflections	$(-1,1,-2) ;(1,1,-4) ;(0,0,-4)$		
Intensity variation	$\pm 2.8 \%$		
Absorption coefficient	$0.1007 \mathrm{~mm}^{-1}$		
Transmission factor	0.879-1.000		
Scan type and rate	ω scan		
Scan range	$(0.65+0.35 \tan \theta)^{\circ}$		
Data collection range	$0=h=9 ;-10=k=10 ;-11=l=11 ; 2.41^{\circ}=\theta=25.97^{\circ}$		
$R_{\text {int }}$ (from merging of eqiv. refls.)	None		
Reflections measured			
Total	2203		
Unique (n):	2203		
Observed [$I \geq 2 \sigma(I)$:	1522		
Number of variables, p	146		
Extinction coefficient	None		
Weighting scheme	$W=1 / \sigma^{2}\left[F_{\mathrm{o}}{ }^{2}+(0.0482 P)^{2}+0.1537 P\right], P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$		
$R_{1}{ }^{\text {a }}$	0.1109 (all data) 0.0560 (observed data)		
$W R_{2}{ }^{\text {b }}$	0.1275 (all data) 0.1108 (observed data)		
Goof (S) ${ }^{\text {c }}$	1.052		
Largest and mean Δ / σ	0.000, 0.000		
Largest peak and hole	+0.372 to $-0.324 \mathrm{e}^{\text {® }}$ -		
$R_{1}=\frac{\sum\left\\|F_{\mathrm{o}}\|-\| F_{\mathrm{c}}\right\\|}{\sum\left\|F_{\mathrm{o}}\right\|} .$			
$w R_{2}=\sqrt{\frac{\sum\left[w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2}\right]}{\sum w\left(F_{\mathrm{o}}^{2}\right)^{2}}} .$			
$\text { coof }=S=\sqrt{\frac{\sum\left[w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2}\right]}{n-p}}$			

Table 2
Atomic coordinates and thermal parameters for $\mathrm{Cu}(\mathrm{bpe})(\mathrm{ddc})$. Estimated standard deviations are given in parentheses

Atoms	$x(\sigma)$	$y(\sigma)$	$z(\sigma)$	$U_{\text {eq }}(\sigma)$
Cu	0	0	0	0.039(1)
$\mathrm{O}(1)$	-0.662(4)	0.1449(4)	-0.2229(3)	0.044(1)
$\mathrm{O}(2)$	0.1665(4)	-0.0558(5)	-0.2348(4)	0.066(1)
N	-0.1466(5)	-0.1582(5)	0.0083(4)	0.041(1)
C(1)	-0.0983(7)	-0.3322(6)	0.1024(6)	0.058(1)
C(2)	-0.2020(8)	-0.4388(7)	0.1171(6)	0.072(2)
C(3)	-0.3649(8)	-0.3700(7)	0.0366(6)	0.068(2)
C(4)	-0.4118(6)	-0.1926(7)	-0.0632(6)	0.059(1)
C(5)	-0.2999(6)	-0.0923(6)	-0.0751(5)	0.048(1)
${ }^{\text {a }}$ C(6 A)	-0.5017(12)	-0.4727(11)	0.0652(9)	0.066(2)
${ }^{\text {b }} \mathrm{C}(6 \mathrm{~B})$	-0.4130(40)	-0.5210 (30)	0.0160(30)	0.066(2)
C(7)	0.0493(6)	$0.0846(6)$	-0.2987(6)	0.047(1)
C(8)	0.0349(6)	0.1976(6)	-0.4769(5)	0.053(1)
C(9)	0.1979(6)	0.1681(7)	$-0.5614(6)$	0.058(1)
C(10)	0.3569(6)	0.1993(6)	-0.5098(6)	0.061(1)
C(11)	0.3350(6)	0.3819(6)	-0.5225(6)	0.060(1)
C(12)	0.5060(6)	0.4082(6)	-0.4873(6)	0.061(1)
H(1 A)	0.0102	-0.3826	0.1602	0.069
H(2 A)	-0.1619	-0.5596	0.1824	0.086
H(4 A)	-0.5191	-0.1397	-0.1229	0.071
H(5 A)	-0.3338	0.0274	-0.1451	0.057
${ }^{\text {a }} \mathrm{H}$ (6AA)	-0.4736	-0.5763	0.1666	0.079
${ }^{\mathrm{a}} \mathrm{H}(6 \mathrm{AB})$	-0.6177	-0.3982	0.0662	0.079
${ }^{\text {b }} \mathrm{H}(6 \mathrm{BA})$	-0.3511	-0.5399	-0.0703	0.079
${ }^{\text {b }} \mathrm{H}(6 \mathrm{BB})$	-0.3757	-0.6304	0.1120	0.079
H(8 A)	-0.0570	0.1766	-0.5239	0.063
H(8B)	-0.0024	0.3212	-0.4962	0.063
H(9 A)	0.1697	0.2449	-0.6737	0.069
H(9B)	0.2299	0.0468	-0.5489	0.069
H(10 A)	0.3920	0.1148	-0.4003	0.073
H(10B)	0.4525	0.1741	-0.5729	0.073
$\mathrm{H}(11 \mathrm{~A})$	0.2508	0.4027	-0.4489	0.072
H(11B)	0.2875	0.4687	-0.6287	0.072
H(12 A)	0.5475	0.3282	-0.3778	0.074
H(12B)	0.5931	0.3756	-0.5538	0.074

[^1]the carboxylate groups are asymmetrically coordinated to the Cu with a short bond distance of $1.928 \AA$ $(\mathrm{Cu}-\mathrm{O} 1)$ and longer bond distance $2.655 \AA(\mathrm{Cu}-\mathrm{O} 2)$. Pyridine groups coming from bpe at the apical positions give an identical C-N distance of $2.015 \AA$. The bond angles of $\mathrm{O}-\mathrm{Cu}-\mathrm{N}$ and $\mathrm{N}-\mathrm{Cu}-\mathrm{N}$ are 91.23° and 180°, respectively, and the bite angles of the carboxylate at the copper metal is 54.52° (Table 3). All bond
distances and angles around the Cu center are consistent with those reported for similar structures [15,16]. Each metal center is connected to four adjacent metal centers by two bpe and dcc ligands to generate a 2D structure. Although there are two conformations (anti and gauche) of bpe existing in various structures [17], only the anti structure has been found in the title compound. It is interesting to note that every chelating carboxylate group of the long alkyl chain is bent to coordinate the metal resulting in carbon backbone in dcc with torsion angles of C7-C8-C9-C10 (59.79 $)$, and C8-C9-C10-C11 (58.72 $)$, whereas the average torsion angle in the rest of alkyl chain is ca. 175°. Due to the bending manner of the flexible ddc ligands, the alternating Cu and dcc zigzag chains are formed along $<111>$ axis. Due to such a bending, the shape of the resultant 2D structure is quite different from those of normal girds [18] or parquet (basket weave) pattern $[19,20]$ (see Fig. 2). Within the 2D net, each rectangle grid is 52-membered ring deformed to two 'fused' rectangles. In this grid, the distances between two adjacent copper centers separated by bpe and ddc are 13.67 and $13.34 \AA$, respectively. The fact that long alkyl chain of ddc is bent significantly to comply with the crystal architecture is quite different from the structure arrangement of the dicarboxylate ligands reported previously [10]. The 2D net is compressed significantly leaving no space for guest molecules to enter. Fig. 3 shows the packing of 2D nets, with a separation of adjacent nets ca. $2.5 \AA$.

5. Conclusion

In this paper, we describe the crystal growth of a new Cu -containing coordination polymer using diffusion method. We show that the crystal structure of $\mathrm{Cu}(\mathrm{b}-$ pe)(ddc) has an unusual shape due to the incorporation of a lengthy and flexible ligand, $1,10-\mathrm{H}_{2} \mathrm{dcc}$. The new structure consists of distorted octahedral of copper metal bound to two bpe as anti mode to form a linear chain propagating approximately along the b axis. The other coordination positions are chelated by ddc. The resultant structure is a 2 D net. It is interesting to note each grid comprises of two fused rectangle-shipped rings as a result of ddc bending.

Table 3
Selected bond distances (\AA) and bond angles $\left({ }^{\circ}\right)$ for $\mathrm{Cu}(\mathrm{bpe})(\mathrm{ddc})$

$\mathrm{Cu}-\mathrm{O}(1) \# 1$	1.928(3)	$\mathrm{C}(3)-\mathrm{C}(4)$	1.371(7)
$\mathrm{Cu}-\mathrm{O}(1)$	1.928(3)	$\mathrm{C}(3)-\mathrm{C}(6 \mathrm{~A})$	1.536 (7)
$\mathrm{Cu}-\mathrm{N} \# 1$	2.015 (3)	$\mathrm{C}(3)-\mathrm{C}(6 \mathrm{~B})$	1.557(16)
$\mathrm{Cu}-\mathrm{N}$	2.015(3)	$\mathrm{C}(4)-\mathrm{C}(5)$	1.381(6)
$\mathrm{Cu}-\mathrm{O}(2)$	2.655(4)	$\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A}) \# 2$	1.486(17)
$\mathrm{Cu}-\mathrm{O}(2) \# 1$	$2.655(4)$	$\mathrm{C}(6 \mathrm{~B})-\mathrm{C}(6 \mathrm{~B}) \# 2$	1.35 (6)
$\mathrm{O}(1)-\mathrm{C}(7)$	1.265(5)	$\mathrm{C}(7)-\mathrm{C}(8)$	1.521(6)
$\mathrm{O}(2)-\mathrm{C}(7)$	$1.232(5)$	$\mathrm{C}(8)-\mathrm{C}(9)$	1.497(6)
$\mathrm{N}-\mathrm{C}(5)$	$1.324(5)$	$\mathrm{C}(9)-\mathrm{C}(10)$	1.510 (6)
$\mathrm{N}-\mathrm{C}(1)$	1.337 (5)	$\mathrm{C}(10)-\mathrm{C}(11)$	1.504(6)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.367(6)	$\mathrm{C}(11)-\mathrm{C}(12)$	1.516(6)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.375(7)	$\mathrm{C}(12)-\mathrm{C}(12) \# 3$	1.487(9)
$\mathrm{O}(1) \# 1-\mathrm{Cu}-\mathrm{O}(1)$	180.0(3)	$\mathrm{N}-\mathrm{C}(1)-\mathrm{C}(2)$	122.5(5)
$\mathrm{O}(1) \# 1-\mathrm{Cu}-\mathrm{N} \# 1$	91.23(12)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	120.9(5)
$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{N} \# 1$	88.77(12)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	116.3(4)
$\mathrm{O}(1) \# 1-\mathrm{Cu}-\mathrm{N}$	88.77(12)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(6 \mathrm{~A})$	118.8(6)
$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{N}$	91.23(12)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(6 \mathrm{~A})$	124.5(5)
$\mathrm{N} \# 1-\mathrm{Cu}-\mathrm{N}$	180.0(2)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(6 \mathrm{~B})$	128.0(12)
$\mathrm{O}(1) \# 1-\mathrm{Cu}-\mathrm{O}(2)$	125.48(12)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(6 \mathrm{~B})$	108.2(13)
$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{O}(2)$	54.52(12)	$\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(3)-\mathrm{C}(6 \mathrm{~B})$	34.8(10)
$\mathrm{N} \# 1-\mathrm{Cu}-\mathrm{O}(2)$	90.48(12)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	120.0(4)
$\mathrm{N}-\mathrm{Cu}-\mathrm{O}(2)$	89.52(12)	$\mathrm{N}-\mathrm{C}(5)-\mathrm{C}(4)$	123.2(4)
$\mathrm{O}(1) \# 1-\mathrm{Cu}-\mathrm{O}(2) \# 1$	54.52(12)	$\mathrm{C}(6 \mathrm{~A}) \# 2-\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(3)$	107.8(8)
$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{O}(2) \# 1$	125.48(12)	$\mathrm{C}(6 \mathrm{~B}) \# 2-\mathrm{C}(6 \mathrm{~B})-\mathrm{C}(3)$	110(3)
$\mathrm{N} \# 1-\mathrm{Cu}-\mathrm{O}(2) \# 1$	89.52(12)	$\mathrm{O}(2)-\mathrm{C}(7)-\mathrm{O}(1)$	123.2(5)
$\mathrm{N}-\mathrm{Cu}-\mathrm{O}(2) \# 1$	90.48(12)	$\mathrm{O}(2)-\mathrm{C}(7)-\mathrm{C}(8)$	121.4(5)
$\mathrm{O}(2)-\mathrm{Cu}-\mathrm{O}(2) \# 1$	180.00(14)	$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	115.4(4)
$\mathrm{C}(7)-\mathrm{O}(1)-\mathrm{Cu}$	107.6(3)	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	116.5(4)
$\mathrm{C}(7)-\mathrm{O}(2)-\mathrm{Cu}$	74.2(3)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	116.9(4)
$\mathrm{C}(5)-\mathrm{N}-\mathrm{C}(1)$	116.9(4)	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	116.4(4)
$\mathrm{C}(5)-\mathrm{N}-\mathrm{Cu}$	121.1(3)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	112.8(4)
$\mathrm{C}(1)-\mathrm{N}-\mathrm{Cu}$	122.0(3)	$\mathrm{C}(12) \# 3-\mathrm{C}(12)-\mathrm{C}(11)$	114.7(5)

Symmetry transformations used to generate equivalent atoms: \#1 $-x,-y,-z \# 2-x-1,-y-1,-z \# 3-x+1,-y+1,-z-1^{\prime}$.

Fig. 1. ORTEP (50\% probability) drawing and atom labeling diagram for $\mathrm{Cu}(\mathrm{bpe})(\mathrm{ddc})$.

Fig. 2. View of a single 2D net of $\mathrm{Cu}(\mathrm{bpe})(\mathrm{ddc})$ along a-axis.

Fig. 3. Perspective view of the crystal structure of $\mathrm{Cu}(\mathrm{bpe})(\mathrm{ddc})$ showing the packing of 2D nets.

Acknowledgements

We gratefully acknowledge support from the National Science Foundation (DMR-0094872 and 0422932) and partial support by Rutgers University.

References

[1] N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, M. O'Keeffe, O.M. Yaghi, Science 300 (2003) 1127.
[2] L. Pan, M.B. Sander, X.Y. Huang, J. Li, M. Smith, E. Bittner, B. Bockrath, J.K. Johnson, J. Am. Chem. Soc. 126 (2004) 1308.
[3] S. Takamizawa, E. Nakata, H. Yokoyama, K. Mochizuki, W. Mori, Angew. Chem. Int. Ed. Engl. 42 (2003) 4331.
[4] A.J. Fletcher, E.J. Cussen, T.J. Prior, M.J. Rosseinsky, C.J. Kepert, K.M. Thomas, J. Am. Chem. Soc. 123 (2001) 10001.
[5] J.S. Seo, D. Whang, H. Lee, S.I. Jun, J. Oh, Y.J. Jeon, K. Kim, Nature 404 (2000) 982.
[6] J. Legendziewicz, B. Keller, I. Turowska-Tyk, W. Wojciechowsi, New J. Chem. 23 (1999) 1097.
[7] E.G. Bakalbassis, M. Korabik, A. Michailides, J. Mrozinski, C. Raptopoulou, S. Skoulika, A. Terzis, D. Tsaousis, J. Chem. Soc., Dalton Trans. (2001) 850.
[8] Y.Q. Zheng, J.L. Lin, Z. Anorg. Allg. Chem. 628 (2002) 1401.
[9] L. Sieron, M. Bukowska-Strzyzewska, Acta Crystallogr. Sect. C 55 (1999) 1230.
[10] J.M. Rueff, N. Masciocchi, P. Rabu, A. Sironi, A. Skoulios, Eur. J. Inorg. Chem. (2001) 2843.
[11] Enraf-Nonius, CAD4-PC Software, Version 1.1, EnrafNonius, Delft (The Netherlands), 1992.
[12] K. Hrams, XCAD4, Program for the Reduction of CAD4 Diffractometer Data, University of Marburg, Germany, 1997.
[13] G.M. Sheldrick, SHELX-97, Program for Structure Refinement, University of Göttingen, Germany, 1997.
[14] International Tables for X-ray Crystallography, Vol. C, Kluwer Academic, Dordrecht, 1989 (Tables 4.2.6.8 and 6.1.1.4.).
[15] S. Youngme, C. Pakawatchai, H.K. Fun, K. Chinnakali, Acta Crystallogr. Sect. C 54 (1998) 1586.
[16] T. Fujia, S. Ohba, M. Nagamatsz, T. Tokii, C.F. Jury, O.W. Steward, M. Kato, Acta Crystallogr. Sect. C 49 (1993) 2095.
[17] T.L. Hennigar, D.C. MacQuarrie, P. Losier, R.D. Rogers, M.J. Zaworotko, Angew. Chem. Int. Ed. Engl. 36 (1997) 972.
[18] M. Fujita, Y.J. Kwon, O. Sasaki, K. Yamaguchi, K. Ogura, J. Am. Chem. Soc. 117 (1995) 7287.
[19] Y.B. Dong, R.C. Layland, N.G. Pschirer, M.D. Smith, U.H.F. Bunz, H.C. zur Loye, Chem. Mater. 11 (1999) 1413.
[20] L. Pan, N. Ching, X.Y. Huang, J. Li, Chem. Eur. J. 7 (2001) 1521.

[^0]: * Corresponding author.

 E-mail address: jingli@rutchem.rutgers.edu (J. Li).

[^1]: ${ }^{a} U_{\text {eq. }}$ defined as one third of the trace of the orthogonalized \boldsymbol{U} tensor.
 ${ }^{\mathrm{b}}$ The S.O.F.s for a and b are 0.765 and 0.235 , respectively.

