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Abstract

A theory of fracture of entangled polymer interfaces was developed which was based on the bridge entanglement concept and
the vector percolation model of Kantor and Webman, in which the modulus E is related to the lattice bond fraction p, via E ~
[p – pc]

s. The Hamiltonian for the lattice was replaced by the strain energy density function of the bulk polymer, U = r2/2E,
where r is the applied stress and p was expressed in terms of the normalized entanglement density m, using the entanglement
molecular weight, m ~ Me

−1. The polymer fractured critically when p approached the percolation threshold pc, which was accom-
plished by utilizing the stored strain energy in the network to randomly disentangle or fracture [p – pc] bonds. The fracture
energy was found to be G1c ~ [p – pc]. When applied to interfaces of width X, containing an areal density R of chains, each
contributing L minor chain entanglements, the percolation term p ~ R L/X and the percolation threshold was related to Rc, Lc, or
Xc. This gave a unified theory of fracture for the virgin state of polymers in the bulk and a variety of polymer interfaces. The
fracture strength r of amorphous and semicrystalline polymers in the bulk could be well described by the net solution,
r = [E Do q/16 Me]

1/2, where Do is the bond energy and q is the density [R.P. Wool, J. Polym. Sci., Part A: Polym. Phys.
43 (2005) 168]. It was found to be in excellent agreement with a large body of data. Fracture by disentanglement was found to
occur in a finite molecular weight range, Mc < M < M*, where M*/Mc ≈ 8, such that the critical draw ratio, kc = (M/Mc)

1/2, gave
the molecular-weight dependence of fracture as G1c~[(M/Mc)1/2–1]2. The critical entanglement molecular weight is related to
the percolation threshold pc, via Mc = Me/(1 – pc) and combined with reptation dynamics, entanglement percolation gave an
apparent 3.4 power law for the zero-shear melt viscosity go ~ M3.4. Fracture by bond rupture was in accord with Flory’s sugges-
tion, i.e. G/G* = [1 – Mc/M]. For welding of A/A symmetric interfaces, p = RL/X, and pc ≈ Lc/M ≈ 0, such that when R/X ~1/M
for randomly distributed chain ends, p ~ L ~ (t/M)1/2, G/G* = (t/s*)1/2, where s* ~ M, when M > M*, and s ~ M3, when M < M*.
When the chain ends are segregated to the surface, R is constant with time and G/G* = [t/s*]1/4. For sub-Tg welding, there exists
a surface mobile layer of depth X ~ 1/DTm such that G ~ DT-2m. For incompatible A/B interfaces of width d, normalized width w,
and entanglement density Nent ~ d/Le, p ~ d such that G ~ [d – dc], G ~ [w – 1], and G ~ [Nent – Nc]. For incompatible A/B
interfaces reinforced by an areal density R of compatibilizer chains, L and X are constant, p ~ R, pc ~Rc, such that G ~ [R – Rc].
The percolation approach unifies and interrelates the different theories and experiments on a variety of symmetric and asym-
metric interfaces by providing a general connectivity relation for structure and strength. The correct time and molecular weight
dependence of welding above and below Tg are predicted with a logical extension to the fully healed or virgin strength for linear
polymers, rubbers, thermosets and polymer-solid interfaces. To cite this article: R.P. Wool, C. R. Chimie 9 (2006).
© 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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Résumé

Une théorie de la rupture d’interfaces polymères enchevêtrées a été développée en se fondant sur le concept de ponts enche-
vêtrés et sur le modèle du vecteur de percolation de Kantor et Webman, modèle dans lequel le module E est lié à la fraction de
liaisons du réseau p par la relation E ~ [p – pc]

s. Le hamiltonien pour le réseau est remplacé par la fonction densité d’énergie de
déformation du polymère massique U = r2/2E, expression dans laquelle r est la contrainte appliquée et p est exprimé en termes
de densité d’enchevêtrements normalisée m, en utilisant la masse molaire d’enchevêtrement m ~ Me

−1. Le polymère subit une
fracture critique lorsque p tend vers le seuil de percolation pc, ce qui correspond à l’énergie de déformation emmagasinée dans
le réseau pour désenchevêtrer ou rompre les liaisons [p – pc] de manière aléatoire. L’énergie de rupture G1c est proportionnelle
à [p – pc]. Lorsqu’il est appliqué à des interfaces d’épaisseur X comportant une densité de chaînes R par unité de surface,
chacune contribuant à des enchevêtrements mineurs L, le terme de percolation s’écrit p ~ RL/X et le seuil de percolation devient
fonction de Rc, Lc ou Xc. Cela conduit à une théorie unifiée de la rupture pour les polymères vierges dans leur état massique et
pour une grande variété d’interfaces polymères. La résistance à la rupture r de polymères massiques amorphes et semi-
cristallins peut aussi être décrite par l’expression r = �E D0 q/16 Mc �

1/2 [R.P. Wool, J. Polym. Sci., Part A: Polym. Phys. 43,
168 (2005)] Un excellent accord a été obtenu pour un grand nombre de résultats. La rupture par désenchevêtrement a été
observée pour une gamme de masses molaires Mc < M < M*, avec M*/Mc ≈ 8, telles que le rapport critique d’élongation
kc = (M/Mc)

1/2 conduise à une fonction de l’énergie de rupture avec la masse molaire de la forme G1c~ ��M /M c�
1/2–1�

2. La
masse molaire critique d’enchevêtrement est liée au seuil de percolation pc par Mc = Mc/(1 – pc) et, en faisant intervenir la
dynamique de reptation, l’enchevêtrement de percolation révèle une viscosité à l’état fondu à cisaillement nul, de type g0 ~ M3.4.
La rupture par scission des liaisons est en accord avec la suggestion de Flory, à savoir G/G* = �1–Mc/M � . Dans le cas du
soudage d’interfaces symétriques A/A, p = R L/X et p ≈ Lc /M = 0, de telle manière que lorsque R/X ~1/M pour des extrémités de
chaînes distribuées aléatoirement, p ~ L ~ (t/M)1/2, G/G* = � t/s* �

1/2, où s* ~ M quand M > M* et s* ~ M3 quand M < M*. Quand
les extrémités de chaînes sont ségrégées vers la surface, R est constant avec le temps et G/G* = [t/s*]1/4. Dans le cas de soudages
effectués à des températures inférieures à Tg, il se crée une couche superficielle mobile d’épaisseur X ~ 1/D Tv, de sorte que G ~
DT2m. Pour des interfaces incompatibles A/B d’épaisseur d, d’épaisseur normalisée x et de densité d’enchevêtrement Nent ~ d/Lc,
on obtient p ~ d, ce qui conduit à G ~ [d – dc], G ~ [x – 1] et G ~ [Nent – Nc]. Pour des interfaces incompatibles A/B renforcées
par des chaînes de compatibilisant de densité surfacique R, L et X sont constants, p ~ R, pc ~ Rc, de telle manière que G ~ [R –
Rc]. Cette approche sous l’angle de la percolation permet d’unifier et de corréler les différentes théories et expériences relatives
à une grande variété d’interfaces symétriques et asymétriques, en fournissant une relation générale liant structure et résistance.
Les relations entre temps et masse molaire sont prévues correctement dans le cas de soudages en dessous et au dessus de Tg avec
l’extension logique à la prévision de la résistance de polymères linéaires, caoutchouc, thermodurcissables et interfaces polymère–
solide, à l’état vierge ou parfaitement cicatrisé. Pour citer cet article : R.P. Wool, C. R. Chimie 9 (2006).
© 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

In this paper, we explore a new approach to under-
standing the molecular aspects of adhesion at polymer-
polymer interfaces. Percolation theory is used as a
means to parameterize the making and breaking of con-
nectivity at polymer-polymer interfaces [1,2]. The
strength G1c, of polymer interfaces has been investi-
gated by many [1–52], and different theories have been
proposed to relate interface structure to strength. For
welding symmetric A/A interfaces as a function of dif-

fusion depth X, it was suggested that G1c ~ X [4–7], or
the number of bridges per unit area of interface, P,
G1c ~ P [9–14], or the crossing density q, G1c ~ q [8],
or the contour length L, G1c ~ L [16–20]. For incom-
patibleA/B interfaces as a function of equilibrium width
w, it has been suggested that G1c ~ w2 [21,22], or
G1c~ w [22]. For incompatible A/B interfaces as a func-
tion of the number of entanglements N, in the inter-
face, the relation G1c ~ N2 was proposed [23]. For an
incompatible A/B interface reinforced with R compati-
bilizer chains per unit area, G1c ~ R2, has been sug-
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gested [24–31]. Other approaches to analyzing the
strength of interfaces have involved simulations
[32–34], theoretical modeling [34–41], experimental
correlation between toughness and interfacial width
[42–49], non-isothermal modeling of composite inter-
faces [50] and sub-Tg welding [51,52]. Theories relat-
ing structure to strength were proposed or utilized for
each specific interface, and while all had a measure of
success in describing the strength of a targeted inter-
face, essentially none were readily transferable to
describe other interfaces, or could be readily extended
to provide an acceptable theory of strength for the bulk
polymer. Thus, for example, no one has a theory that
can simultaneously model strength development dur-
ing welding of symmetric A/A interfaces and which
can be readily extended to understanding the reinforce-
ment of incompatible A/B interfaces by R compatibi-
lizer chains, while at the same time predicting the
molecular weight dependence of the virgin state. Even
within a single interface type, such as welding of sym-
metric A/A polymer–polymer interfaces, there is little
agreement between investigators. The Wool–O’Connor
model [16] appears to have the correct form theoreti-
cally and experimentally [1] such that the fracture
energy G as a function of time t and molecular weight
M, behaves as G ~ L ~ (t/M)1/2 However, we can criti-
cize the relation G ~ L since it does not have the num-
ber of chains per unit area R involved. Consequently, if
we have just one chain of length L compared to
1014chains, the average L can be the same in both cases

but the strength can be radically different. Thus, we are
unable to describe the data of Brown et al. [24–31] for
reinforcement of A/B incompatible interfaces with
R A–B compatibilizer chains, or derive the Brown Law
[25], G ~ R2. Therefore, the early Wool theory of weld-
ing cannot be readily extended to other interfaces, even
though it appears to correctly predict the molecular
weight dependence of the virgin fully healed state [1].
The purpose of this paper is to provide a theory of frac-
ture, which can be applied universally to all interfaces
and can be readily extended to understanding the bulk
strength of polymers in terms of known microscopic
parameters and material constants.

The general approach to evaluating the fracture
energy G1c of polymer interfaces is represented in Fig. 1
[1]. Material A is brought into contact with material B
to form an A/B interface, the sample is fractured and
the strength is related to the structure of the interface
through microscopic deformation mechanisms. In the
virgin state, or when welding or crack healing, A = B.
For the incompatible A/B interface, we consider both
the non-reinforced interface, and the interface rein-
forced with an areal density R of compatibilizer chains.
Typically, a crack propagates through the interface
region preceded by a deformation zone at the crack tip.
For cohesive failure, the fracture energy can be deter-
mined by the J-Integral method, as described by Hutch-
inson et al. [53–55], where G1c is the integral of the
traction stresses r(d) with crack opening displace-
ments d, in the cohesive zone, following yielding at a

Fig. 1. The microscopic entanglement structure, e.g. at an interface or in the bulk, is related to the measured macroscopic fracture energy G1c via
the RP theory of breaking connectivity in the embedded plastic zone (EPZ) at the crack tip. The RP theory determines rmax in the EPZ, which is
related to G1c via Hutchinson’s J-Integral theory. The percolation parameter p is related to the interface molecular structure via p ~ R L/X, where
R is the number of chains of length L in an interface of width X.
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local yield or craze stress rY. The cohesive zone at the
crack tip breaks down by a vector percolation process,
as described herein, at a maximum stress value,
rm > rY. Typical ratios of rm /rY are about 4–10 [53].
Both rm and d are rate dependent and in the simplest
case, the fracture energy is determined by:

(1.1)G1c = rm dm

where dm is the critical crack opening displacement.
Both rm and dm depend on the interface structure and
the microscopic deformation mechanisms controlling
the percolation fracture process via disentanglement
and bond rupture. In this paper, we use the Rigidity
Percolation (RP) theory of fracture [3] and apply it to
several cases involving (1) fracture of polymer–
polymer welds, (2) fracture of incompatible A/B
interfaces, and (3), fracture of incompatible interfaces
reinforced with R compatibilizer chains.

2. Rigidity percolation theory of fracture

The transmission of forces through a lattice as a func-
tion of the fraction p, of bonds in the lattice has been
analyzed by Kantor and Webman [56], Feng and Sen
[57,58], Thorpe et al. [58,59] and others [1,60,61]. De
Gennes first suggested that conductivity or scalar per-
colation could be used to quantize the modulus of elas-
ticity E, of randomly connected networks, such as gels
[62]. Analyses based on the Born and Huang model of
the microscopic elasticity of a lattice [63] gave results
for the elasticity which resembled conductivity perco-
lation when shear terms were neglected in the Hamil-
tonian for the elastic energy, as:

(2.1)E ~ [p – pc]
t

where p is the occupied fraction of lattice bonds, pc is
the percolation threshold and the conductivity
exponent, t ≈ 1–2. However, when shear terms
dominated the elasticity, a new form of elasticity began
to emerge which potentially belonged to a new
universality class than conductivity percolation.
Kantor and Webman reformulated the Hamiltonian for
the elastic energy, accounting for both tensile bond
stretching and angle bending between the fractal,
tortuously connected, ‘strings’ of connected bonds
remaining in the lattice near pc, and the macroscopic

elasticity became [56] E ~ [p – pc]
s, where s is the

rigidity percolation exponent, which is larger than the
conductivity (or scalar) percolation exponent t, in Eq.
(2.1). The rigidity percolation threshold pc can also be
greater than the scalar percolation threshold, which is
due to the ‘sloppiness’ of the lattice near pc, thus for
example, allowing the transmission of electrons
through the weakly connected fractal structure, but not
the sensible transmission of vectors.

The vector or rigidity percolation process addresses
several important points. First, consider a 2-D lattice
near the percolation threshold pc, as shown in Fig. 2.
Due to the random fractal connectivity of the lattice,
the stress distribution φ(r), in the bonds becomes highly
non-uniform such that some bonds are highly stressed,
while others bear little stress. The existence of highly
stressed bonds is a prelude to molecular fracture and
parallels the ‘hot bonds’ in conductivity percolation,
where hot bonds arise from high current density in some
individual bonds near the percolation threshold. The
hot bonds overheat like electrical fuses in the high cur-
rent density and break. The concept of mechanical ‘hot
bonds’ is relevant to fracture of polymers in general
and is the basis for understanding why materials frac-
ture at macroscopic stresses, which are orders of mag-

Fig. 2. The role of percolation in the random fracture of bonds in a
model net at constant strain is shown [1]. (a) The net, of modulus E,
is stressed in uniaxial tension to a stress r and stores strain energy
U = r2/2 E. (b) Release of the stored energy causes random fracture
events in the net resulting in a percolating system near the fracture
threshold and a very broad distribution of stress on the bonds.

28 R.P. Wool / C. R. Chimie 9 (2006) 25–44



nitude less than the molecular fracture stresses. When
polymers such as polypropylene and polyethylene are
subjected to uniform tensile stresses, it has been shown
using infrared and Raman spectroscopy that the molecu-
lar stress distribution can be quite broad, even though
the applied stress is well below the macroscopic frac-
ture stress [64,65]. The development of the molecular
stress distribution φ(r) is due to the inherent sloppi-
ness of the lattice. Thus, in the J-integral fracture
mechanics model, the maximum fracture stress near the
crack tip rm, described in Fig. 1 and Eq. (1), remains
closer to the yield stress than to the much higher
molecular fracture stress.

Another point of interest is that only a fraction
[p – pc] of the bonds needs to be fractured before com-
plete failure occurs in a 2-D or 3-D network. Thus, in a
deformation zone at a crack tip, the crack advances
through the zone by breaking a fraction [p – pc] of bonds
or fibrils in parts of a craze network. The broken bonds
do not lie on the same plane, as is in the Nail Solution
[40], and is often assumed intuitively, but are distrib-
uted over the deformation zone volume. The deforma-
tion zone near fracture is best described as a volume of
material preceding the crack tip that contains a consid-
erable number of defects.

An important corollary to the existence of the thresh-
old pc is that when p < pc, the lattice connectivity is
broken and no significant strength exists beyond that
of non-bonded potentials and Van der Waals interac-
tions. Thus, the molecular lengths (L ~ M) must be long
enough, the areal density of chains R, at the interface
must be great enough and the number of entangle-
ments in the lattice N, at an interdiffusion distance X,
or interface width w, has to exceed the percolation
threshold before strength develops. This means that an
initial investment (pc) is needed before strength devel-
ops, such that when G1c ~ [p – pc], there exists corre-
sponding critical parameters such as Mc, Lc, Rc, Xc, Nc,
wc, etc., which are all related to each other through the
percolation parameter p.

To convert these percolation concepts into quantita-
tive fracture terms, consider the vector percolation
experiment shown in Fig. 2, applied to any 3-D lattice
in general with tensile modulus E. The Hamiltonian for
the stored elastic energy can be formulated using the
Born and Huang [63], or the Kantor and Webman
approach for specific lattices [56], or using the more
simple engineering strain energy density approach as

follows. The stored elastic strain energy density U in
the lattice due to an applied stress r is determined in
the uniaxial approximation by:

(2.2)U = r2/2 E

The stored strain energy can also be determined for
the general case of multiaxial stresses [1] and lattices
of varying crystal structure and anisotropy. The stored
strain energy dissipation per unit volume Uf, to frac-
ture a network consisting of a bond (or entanglement)
density of m bonds per unit volume is:

(2.3)Uf = v Do [p – pc]

where Do is the bond fracture energy, and [p – pc] is the
percolation fraction of bonds which must be broken to
cause fracture in the network. In this approach, the
strain energy U, is first stored in the net and we inquire
if this energy is sufficient to break [p – pc]m bonds per
unit volume when it releases at a critical strain energy
density U* = r*2/2 E, such that at the critical
condition, U* ≥ Uf, Substituting for U* and Uf and
solving for the critical stress r*, we obtain the ‘Net
solution’ for the critical fracture stress as:

(2.4)r* = {2 E v Do [p – pc]}
1/2

This equation predicts that the fracture stress in-
creases with the square root of the bond density. The
percolation parameter p, is in effect, the normalized
bond density such that for a perfect net without defects,
p = 1, and for a net that is damaged or contains missing
bonds, then p < 1. Obviously, as p approaches pc, the
fracture stress decreases towards zero and we have a
very fragile material. This fracture relation could there-
fore be used to evaluate durability, or retention strength
of a material by tracking damage accumulation through
a single parameter p. Note that the Net solution refers
to the stress required to fracture a unit volume of the
net in uniaxial tension.

When applied to interfaces, we let the volume of
material or Net, contain the interface such that we can
calculate r* with a knowledge of p based on a local
normalized entanglement density. In all applications of
the RP model, the stressed state is the reference state to
assess percolation and connectivity. This will become
more apparent when we examine disentanglement for
example, where an unraveling or disentanglement pro-
cess in the stretched state breaks the connectivity.
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3. Fracture by disentanglement

The bridge percolation model of entanglements pro-
posed by Wool [1,66] was recently supported by com-
puter simulations of Theodorou et al. [67,68] and is the
basis for the disentanglement model described herein.
Mc represents a segment of an entangled chain that is
long enough to form a bridge or loop of 3-crossings
(3P) through a plane in the melt.An entangled net forms
when the number of chain (R ~ M–1/2) intersecting the
plane equals the number of bridges. Thus, when
R = 3 P, Mc = 9 (R P)2 M. Computer simulations of
polyethylene melts by Uhlherr et al. [67] showed this
model to be accurate. By sampling the amorphous melt,
they found that the average mesh segment which inter-
sected the plane three times was equivalent to the criti-
cal entanglement molecular weight Mc. Thus, the bridge
with three crossings is the basic mesh element of the
entanglement network capable of transmitting vectors
and defines precisely the number of bonds per chain
which must be broken or disentangled to obtain a criti-
cally connected structure.

Disentanglement is considered to proceed by the
mechanism shown in Fig. 3, where we depict the
response of an (average) entangled chain to a constant
(step function) draw ratio k [1,3]. Fracture by disen-
tanglement occurs by first straining the chains to a criti-
cal draw ratio kc and storing mechanical energy of order

G ~ (kc – 1)2. The stretched chains then relax by Rouse-
like retraction and disentangle, when the energy re-
leased is sufficient to relax them to the critically con-
nected state corresponding to the percolation threshold,
pc. When this occurs, a chain, which initially had many
bridges (~ M1/2), is reduced to a single critically con-
nected bridge by the applied strain. The percolation
parameters [p – pc] associated with the disentangle-
ment process at an interface are derived as follows; p is
the normalized entanglement density defined as:

(3.1)p = g(k) Nv/v

where g(k) is the number of entanglements per chain,
Nv is the number of chains per unit volume and m is the
entanglement density of the perfect net. We define g(k)
as:

(3.2)g(k) = [M/Me(k)] – 1

The chain ends effectively contribute to the loss of
one entanglement. Since Nv = q/M and m = q/Me, then
we have:

(3.3)p =
{[M/Me(k)] – 1]}q/M

q/Me(k)

such that:

(3.4)p = [1 – Me(k)/M ]

Fig. 3. Disentanglement mechanism. (A) Tightened slack between entanglements. (B) Retraction and disentanglement by Rouse relaxation.
(C) Critically connected entangled state at draw ratio kc, where the chain has been reduced to a bridge with 3 crossings of the interface plane.
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where Me(k) is the stretch-dependent Me value after it
has relaxed to position C, as shown in Fig. 3. Me(k) is
given by the following approximation:

(3.5)Me(k) = k2 Me

Me(k) increases between entanglement points due
to the retraction process at constant k. A more detailed
treatment of disentanglement would account for the ori-
entation function of the entanglements and lateral con-
traction, as discussed elsewhere [1]. Eq. (3.4) becomes:

(3.6)p = 1 – k2 Me/M

An important consequence of the latter equation is
that when k = 1, there exists a critical value of molecu-
lar weight M = Mc for which p = pc and we obtain the
relation between Me and Mc as:

(3.7)Mc =
Me

1 – pc

Since pc ≈ 1/2, we note that Mc ≈ 2 Me, as com-
monly observed. Me is determined from the onset of
the rubbery plateau by dynamic mechanical spectros-
copy and Mc is determined at the onset of the highly
entangled zero-shear viscosity law, g ~ M3.4. This pro-
vides a new interpretation of the critical entanglement
molecular weight Mc, as the molecular weight at which
entanglement percolation occurs with the onset of long-
range connectivity. Concomitantly, the dynamics
changes from single chain, Rouse-like behavior, to that
of chains significantly impeded by others, as in Repta-
tion. It also represents the transition from the Nail (weak
fracture) to the Net (strong fracture) solution and the
onset of significant strength development via the for-
mation of stable, strong, oriented fibrillar material in
the deformation zones preceding the crack advance.

When M > Mc, we obtain the critical draw ratio for
fracture kc from Eq. (3.6) as:

(3.8)kc ≈ (M/Mc)
1/2

The maximum molecular weight M* at which dis-
entanglement can occur is determined when strain hard-
ening occurs at kc ≈ 4 such that1:

(3.9)M* ≈ 8 M c

Donald and Kramer [69] also found that the draw
ratio of crazes in several polymers was of order
k ≈ 4 and varied in a range of 2–5. In 1981, A. Donald
explained to R.P. Wool (private communication) the sig-
nificance of straightening the slack between
entanglements, which is key to understanding the
disentanglement process described herein. At
M = M* = 8 Mc, G* ~ 0.42 M* such that Eq. (3.8) gives
the molecular weight dependence of the virgin-state
fracture energy as [1]:

(3.10)G1c/G* = 0.3 M /M c[1 – (M c/M )1/2]2

We have shown that the latter equation gives an
excellent fit to the molecular weight dependence of frac-
ture [3]. At high rates of strain compared to 1/s, the
inverse disentanglement time, or when disentangle-
ment cannot readily occur (M > M*), bond rupture
occurs randomly in the network and the percolation
parameter p becomes dominated by chain ends. In this
case, the entanglement molecular weight Me does not
depend on strain and Eq. (3.4) gives:

(3.11)p = 1 – Me/M

Since G1c ~ [p – pc], and pc = 1 – Me/Mc, we obtain:

(3.12)G1c = G*[1 – M c/M ]

where G* is the plateau fracture energy at high
molecular weight. The latter equation is identical to
the empirical relation for the molecular weight
dependence of fracture suggested by P.J. Flory, who
coincidentally developed the first percolation theory
applied to polymer gelation [70].

In addition to glassy polymers, the RP-fracture
model also describes the fracture of soft lightly
crosslinked rubber materials, as described in detail else-
where [3]. Rubber is an interesting case since the modu-
lus E and crosslink density m in Eq. (2.4) are related via
E ~ m, such that the fracture stress r ~ E, r ~ m and the
fracture energy at low deformation rates behaves as
G1c ~ m. It is also found that a perfect rubber network
(p = 1) cannot break without first undergoing signifi-
cant strain hardening at k ≈ 4, which is the common
experience [3].

3.1. Comment on percolation and polymer rheology

Entanglement percolation effects will have a signifi-
cant effect on the manifestation of rheological func-

1 The factor of 8 rather than 16 occurs due to an orientation cor-
rection [1].
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tions associated with the dynamics of disentanglement
via Reptation processes, such as the zero shear viscos-
ity go and creep compliance Je

o. For example, the zero
shear viscosity is well approximated by:

(3.13)go = GN
os

where GN
o is the plateau modulus and s is the terminal

relaxation time. From de Gennes’ reptation theory,
s ~ M3, such that Eq (3.13) predicts that go ~ M3.
However, the exponent of 3.0 disagrees with the
well-known experimental exponent of 3.4. Many have
addressed this problem and no solution is universally
accepted. During relaxation, the rigidity percolation
process allows the stored elastic energy to relax faster
in the terminal relaxation zone. In the melt, the fraction
of entanglements p(t), remaining in the entanglement
lattice will be well approximated at t < Tr by [1]:

(3.14)p(t) = 1 – 4/p3/2 [t/T r]
1/2 – M e/M

where Me/M is the chain-end correction. From Eq 2.1,
the stress relaxation modulus in the terminal zone near
percolation is E(t) = GN

o[p(t)-pc]
s, it follows from Eq.

(3.7) and Eq. (3.14) that the critical relaxation time sRP

is determined as:

(3.15)sRP/T r = 1.94 [M e/M c – M e/M ]2

When M = Mc, sRP = 0 as expected, and when
M = ∞, sRP ~ Tr. Thus, for typical experimental M val-
ues in the order of 5–10 Mc, the mechanical relaxation
time sRP is less than the dynamics relaxation time Tr

due to rigidity percolation of the entanglement net-
work in the terminal zone. A fraction [1 – pc] of the
entanglements relaxes by the single chain Reptation
process and a fraction pc relaxes by a multichain inter-
molecular percolation process with a Rouse-like char-
acter. This produces an apparent go ~ M3.4 law and the
exponent of 3.4 is a consequence of the percolation pro-
cess and has no particular scaling law relevance. In the
absence of percolation in the terminal zone, since the
dynamics relaxation time s ~ R2/D, one can also obtain
a 3.4 power by requiring that the diffusion coefficient
D ~ M–2.4 while the end-to-end vector behaves as R2 ~
M. An analysis of diffusion data by Lodge et al. [71]
suggested that D ~ M–2.3. However, this will not pro-
duce mechanical relaxation times that are significantly
less than the chain dynamics relaxation time as observed
experimentally.

The creep compliance Je
o as a function of molecular

weigh is predicted by the Doi–Edwards theory [72] to
be independent of molecular weight for M > Mc.
However, it is found experimentally that Je

o ~ M at val-
ues of M < M* and Je

o ~ Mo when M > M*, where
M* ≈ 5–8 times Mc. In addition to the 3.4 power for go,
it can be readily shown2 that the percolation correction
also predicts the correct creep behavior using the rheo-
logical functions:

(3.16)go = GN
o�

o

∞

p(t) dt

(3.17)Je
o =�

o

∞

t p(t) dt/GN
o� �

o

∞

p(t) dt� 2

Entanglement percolation effects had not previ-
ously been considered by any investigator in address-
ing the above long-standing unresolved issues in poly-
mer rheology.

4. Polymer–polymer welding

Fig. 4 shows an interface formed by random walk
chains diffusing by reptation across a polymer-polymer
weld line [34]. The molecular aspects of interdiffusion
of linear entangled polymers (M > Mc) during welding
of polymer interfaces are summarized in Table 1 [1].
The Reptation dynamics and the interface structure rela-
tions in Table 1 have been demonstrated experimen-
tally by a series of interdiffusion experiments with
selectively deuterated polymer–polymer interfaces
using Dynamic Secondary Ion Mass Spectroscopy
(DSIMS) and Neutron Reflectivity [73–78]. These
experiments involved interfaces consisting of the fol-
lowing polymer pairs; HDH/DHD, HDH/HPS,
HDH/DPS, DHD/DPS, DHD/HPS and DPS/HPS,
where HDH, DHD, DPS and HPS were centrally deu-
terated (25%) PS chains, End deuterated (25% each
end) PS chains, fully deuterated and fully protonated
(normal) polystyrene chains, respectively. The
HDH/DHD ‘ripple’ experiments clearly showed that
DeGennes’ reptation dyanmics model was an excel-
lent model to describe the interdiffusion process dur-

2 R.P. Wool, American Physical Society Meeting (2000).
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ing welding, the HDH/DPS and DHD/HPS showed the
distinct motion of the chain ends and centers and the
HPS/DPS demonstrated the overall concentration pro-
files. The scaling laws and the complete concentration
profiles were calculated by Kim et al. [19] and Zhang
et al. [20]. The important result for the contour length
L ~ (t/M)1/2, (which is the basis for the early Wool
theory) was also supported by welding computer simu-
lations of Windle et al. [32] Initially, as the symmetric
(A=B) interface wets by local Rouse segmental dynam-
ics, we find that rapid interdiffusion occurs to dis-
tances of the order of the radius of gyration of the
entanglement molecular weight, ca 3 nm. This can also
occur below Tg when the top surface layer becomes
more mobile than the bulk and can be explained by finite
size rigidity percolation theory [79]. However, at this
point, the interface is very weak and fracture can be
described by the Nail solution [40].At the wetting stage,

the frictional pullout of intermeshed chain segments,
which have ‘elbowed’ their way across the interface,
determines the fracture energy (ca 1 J/m2). As welding
proceeds, R minor chains of length L diffuse into an
interface of width X and considerable strength devel-
ops. The diffusing chains are fractal random walks and
interpenetrate with chains, which are fully entangled
(ignoring surface reflection configuration effects on
entanglement density).

The structure of the diffuse weld interface in Fig. 4
resembles a box of width X, with fractal edges contain-
ing a gradient of interdiffused chains, as shown by Wool
and Long [34]. Using Sapoval’s gradient percolation
theory [80], we require that chains, which contribute to
the interface strength, straddle the interface plane dur-
ing welding, such that chains in the concentration gra-
dient which have diffused further than their radius of
gyration cease to be involved in the load bearing pro-

Fig. 4. Polymer interface (one side) formed by random walk chains interdiffusing across the weld line at the bottom. The green chains are the
connected chains that contribute to weld strength by connecting both sides of the interface; the yellow chains are those chains that have inter-
diffused but do not contribute to strength since they are not connected to both sides. The red line is the fractal diffusion front, which divides the
connected from the non-connected chains in the diffusion gradient.

Table 1
Molecular aspects of interdiffusion at a polymer–polymer interface

Molecular Aspect Symbol Dynamic relation,
t < Tr

Static relation H
t = Tr

r, s

General property H(t) tr/4 M –s/4 M (3r–s)/4 r,s
Average contour length l(t) t1/2 M –1/2 M 2,2
Number of chains R(t) t1/4 M –5/4 M –1/2 1,5
Number of bridges P(t) t1/2 M –3/2 M 0 2,6
Average monomer diffusion depth X(t) t1/4 M –1/4 M 1/2 1,1
Total number of monomers diffused N(t) t3/4 M –7/4 M 1/2 3,7
Center of mass
Diffusion

Xcm t1/2 M −1 M 1/2 2,4

Fractal diffusion
Front length

Nf t1/2 M –3/2 M 0 2,6
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cess at the interface. We have shown that this amounts
to a very small number and for narrow molecular weight
distributions, can be ignored [1,19,20]. However, for
broad molecular weight distributions, the fraction of
non-connected chains expressed through gradient per-
colation, can be significant and impacts on the observed
time dependence of welding [1 (p. 76)].

When the local stress exceeds the yield stress, the
deformation zone forms and the oriented craze fibrils
consist of mixtures of fully entangled matrix chains and
partially interpenetrated minor chains. Fracture of the
weld occurs by disentanglement of the minor chains,
or by bond rupture. It is interesting to note that if the
stress rises to the point where random bond rupture in
the network begins to dominate the deformation mecha-
nism, instead of disentanglement, then the weld will
appear to be fully healed, regardless of the extent of
interdiffusion. This can occur at high rates of testing
when the minor chains cannot disentangle and bond
rupture pervades the interface, breaking both the minor
chains and the matrix chains.

The percolation term [p – pc] determines the num-
ber of bonds to be broken, or disentangled such that
when R chains, each with L/Lc entanglements per chain,
interdiffuse in an interface of width X, we obtain

(4.1)[p – pc ~ �R L/X – [R L/X]c �

where pc ~ [R L/X]c. Since R/X ~ 1/M (Table 1), it
follows that pc ~ Lc/M. Thus, when the interdiffused
minor chain length L ≈ Mc, we have no strength (above
that of the Nail solution), and when M >> Mc, pc ≈ 0,
which we will assume henceforth for the welding
analysis. In terms of a time argument, the time at which
pc is reached is controlled largely by Rouse segmental
dynamics, which is much shorter than the long
interdiffusion time determined by reptation dynamics
[81,82]. Thus, the slower interdiffusion process will
dominate strength evolution vs. time.

The interface of width X is composed of a fraction
L/M of diffusing chains and the matrix chain fraction
(1 – L/M), into which the chains are diffusing. The total
stored strain energy in the interface U ~ X, is consumed
in disentangling only the R minor chains of length L,
from the matrix chains, which are being stretched also
but cannot disentangle at the same rate as the minor
chains, and we obtain, G1c ~ p as:

(4.2)G1c ~ R L/X

When the matrix chains disentangle or break along
with the interdiffused chains, then p = 1 and the virgin
strength is reached. The number of diffusing chains per
unit area R, contributing to the interface strength is gov-
erned by gradient percolation, such that only those
chains which straddle the interface are counted. Thus,
only a subset of the concentration depth profile is con-
tributing to strength, namely, those chains which are
simultaneously connected to the A and B side of the
interface. Also, the length L implies the number of
entanglements per minor chain (L/Lc – 1), which can
decrease significantly, for example, if brush-like order-
ing occurs at the interface, or the entanglement topol-
ogy changes such that Lc becomes very large as in a
solvent where Mc depends on polymer concentration
φ, as Mc = Mc(1)/φ.

Applying Eq. (3.1), p = g(k) Nv/m to the interface,
we obtain the number of entanglements per contour
chain length L as, g(k) = (L/Le – 1), the number of
chains in the interface Nv = R/X ~ 1/L∞ (from Table 1),
the crosslink density m ~ 1/Le, the stretch-dependent
entanglement length Le(k) = k2 Le, such that Eq. (3.1)
gives the percolation parameter:

(4.3)p = (L – k2 Le)/L∞

and the percolation threshold pc is determined at
k = 1 and critical length L = Lc as:

(4.4)pc = (Lc – Le)/L∞ ≈ Le/L∞

in which Lc ~ Mc, Le ~ Me , L∞ ~ M and Lc ≈ 2 Le.
Substituting for pc = p in Eq. (4.3) and solving for the
critical disentanglement length kc, we obtain:

(4.5)kc = [L/Le – 1]1/2

Note that when L = 2 Le = Lc, then kc = 1 as required.
Also, when strain hardening occurs at kc = 4, then
L* ≈ 8 Lc, which is the transition from disentanglement
to bond rupture as the maximum strength is obtained.
Since G1c ~ (kc – 1)2, and the time evolution of the
minor chain length L ~ (t/M)1/2 is orders of magnitude
longer that that for the entanglement length Le, the time
dependence of welding is given by G1c ~ L, as:

(4.6)G1c/G1c* = [t/s*]1/2 (t ≤ s*)

Here G1c* is the maximum strength obtained at the
welding time s* ~ M. Note that when M < M*,
L = L∞ (t/Tr)

1/2 such that G1c ~ [t/M]1/2 and full inter-
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diffusion of the contour length is required to L = L∞
and the welding time occurs at t = Tr. However, when
M > M*, full interdiffusion is not required and
full strength is achieved at L = L* = 8 Lc and
L = L* (t/s*)1/2, where s* ~ M. For all molecular-
weights, the molecular-weight dependence of welding
remains as G1c ~ (t/M)1/2. Experimental support for Eq.
(4.64) was reported by O’Connor [16,17] and McGarel
et al. [18] and reviewed in reference [1]. The applica-
bility of the welding law G1c ~ [t/M]1/2 has been dem-
onstrated not only for glassy polymers but also for hot-
tack experiments and rubbery polymers [1 (Chapter 8)].

Thus, for all welds, there exists a critical interdiffu-
sion distance X* to obtain the maximum strength G1c*
as:

(4.7)X* = 0.8 Rg*

where Rg* is the radius of gyration of a polymer with
molecular weight M* = 8 Mc. The time to achieve
complete strength is related to the reptation time by:

(4.8)s* = 64 (M c/M )2 T r

such that when M = 8 Mc, s* = Tr. Quantitative
examples for optimal weld designs are given in the
next section.

4.1. Fracture vs. fatigue

The full interpenetration of chains (X approaches Rg)
is not necessary to achieve complete strength, when
M > M* and s* < Tr. However, a cautionary note: while
complete strength may be obtained in terms of critical
fracture measures, such as G1c and K1c, the durability,
measured in sub-critical fracture terms, such as the
fatigue crack propagation rate da/dN, may be very far
from its fully healed state at s*. We have shown that
while the weld toughness K1c increases linearly with
interdiffusion depth X as K1c ~ X, the fatigue crack
propagation behavior of partially healed welds behaves
as [1,18]

(4.9)da/dN ~ X–5

This fatigue behavior is a very strong function of
interdiffusion depth and underscores the penalty to pay
for partial welding. Thus, the weld strength may be
deceptively close to the virgin strength, but the fatigue
strength may be dramatically reduced below its maxi-

mum value. Thus, one should always design a welding
temperature-time process window with respect to Tr to
achieve maximum durability of welds and interfaces.

The welding times can be readily calculated. The
reptation time Tr is determined from the self-diffusion
coefficient D and the end-to-end vector R, by [81]:

(4.10)Tr = R2/(3 p2 D)

For example, when welding polystyrene at 125 °C,
D = 4 × 10−6/M2 (cm2/s) [77,84], R2 = 0.45 × 10−16 M
(cm2) such that Tr = 4 × 10−13 M3 (s) and s* = 0.0234 M
(s). For the case where M = 400 000 g/mol and
Mc = 30 000 g/mol, we have s*/Tr = 0.36, where
Tr = 435 min and s* = 156 min. In this example, if the
maximum weld strength were obtained at an allowed
welding time of 156 min, the durability as measured
by da/dN, would only be about 1/5 of its virgin value
compared to complete welding at Tr = 435 min. When
plastic parts are being injection molded, laminated, sin-
tered or co-extruded, many internal weld lines are
encountered and this aspect of welding needs to be con-
sidered in designing materials with optimal durability
[1].

Recent studies [83] have suggested that while chains
diffuse in a reptation-like mode, the monomer friction
coefficient (assumed constant for reptation) may have
a weak molecular weight dependence, in the order of
M0.3, resulting in an exponent of 3.3, instead of 3.0 for
the molecular weight dependence of the relaxation time.
If true, this would cause a small change in the expo-
nents for the molecular weight dependence of welding,
but would not affect the time exponents. For example,
the minor chain length L, which from Table 1 behaves
as L ~ t1/2M–0.5 with s ~ M3, would become L ~ t1/2

M–0.65, when s ~ M3.3.

4.2. Chain-end segregation

In the case of chain-end segregation to the surfaces,
as can occur in crack healing and some latex particle
coalescence during film formation, the number of chains
R is constant and the percolation term becomes
p ~ L/X, or p ~X, since X ~ L1/2. Thus, from Table 1, the
strength development would be G1c ~ (t/M)1/4, rather
than the usual t1/2 dependence. This t1/4 result was also
predicted by Prager and Tirrell, using a crossing den-
sity analysis [8], but with a different molecular weight
dependence for both the welding and virgin state.
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4.3. Welding below Tg

Welding below Tg, as recently demonstrated by
Boiko et al. [51,52] can occur due to softening of the
surface layer. We have treated the surface layer soften-
ing as a gradient rigidity percolation issue [79]. The
surface melting and glass transition temperature of thin
films is an important issue for nano-materials, thin film
coating processes, sealing and welding of polymer
materials. A significant number of papers have been
published in this field dealing with the dynamics of het-
erogeneous media near Tg, confinement effects, sur-
face effects, measurement methodology, thin film melt-
ing, thermal and mechanical properties. We have treated
this thin film and surface mobile layer problem as a
finite size vector percolation problem. The percolation
threshold is reduced by the thickness of the film due to
finite size clusters spanning the film.

The intermolecular bonding between atoms is anhar-
monic and an atom no longer transmits rigidity when it
has thermally expanded beyond a critical distance, ca
0.22 bond strain, which is related to the position of the
first derivative (force) maximum in the intermolecular
potential energy function. Lindemann, ca 1910, pro-
posed this as a mechanism for melting due to the onset
of vibrational instability in the lattice with a sufficient
number of LA atoms. This concept was later expanded
upon by Born (1939) as the Shear Rigidity Catastro-
phe theory. We have elaborated further on the Born cri-
terion using finite size vector percolation theory. Dur-
ing thermal expansion, we assume that the number of
LA is proportional to temperature, and is in dynamic
equilibrium such that their fraction p ~ T, and pc ~ Tg

∞,
where the latter is the Tg of the bulk glass at infinite
thickness. Since the elastic modulus E ~ [p – pc]

v, where
the exponent v ≈ 1, the glass to rubber transition occurs

when there are sufficient connected clusters of LA
atoms at pc and the high glass modulus decreases
towards zero: E does not actually go to zero experimen-
tally since the rubbery modulus is finite.

For thin polymer films containing a fraction p of LA
atoms at p < pc, clusters of LA can be accessed and
connected from the surface, as shown in Fig. 5. These
fractal clusters are dynamic and if the LA were lights
turning on and off as bonds are broken and reformed,
the clusters would be blinking and dancing with inter-
esting frequencies. We have shown that the accessed
fraction f (dark clusters in Fig. 5), can be described by
the finite lattice size percolation relation [1],

(4.11)f = S(b/h) [1 – p/pc]
–�(p < pc)

where b is the particle diameter, h is the film thickness,
S is the number of free surfaces (S = 3, 2, 1, or 0) and �
is determined by:

(4.12)� = t (D – d + 1)

in which D is the fractal dimension of the clusters, d is
the dimension of the sample (typically d = 2 for
simulations (Fig. 5) and d = 3 for films and surfaces)
and m is the cluster correlation exponent, which gives
the average size of the cluster as

(4.13)n = b 	p – pc | >–t

In 3-D, m = 0.8, D ≈ 2.5, and � ≈ 0.4; in 2-D, m = 4/3,
D ~ 7/4 and � ≈ 1. The S-factor in Eq. (4.11) refers to
the number of free surfaces of the thin material and this
becomes unity if only one surface is free or the film is
adhered to a substrate. In Fig. 5, the surface fraction
accessed at p < pc is determined using d = 2, p = 0.58,
pc = 0.5927, b = 1, h = 512 (lattice size), D = 7/4, and
� = 1, such that Eq. (4.11) predicts that f ≈ 18%,

Fig. 5. Finite clusters of Lindemann atoms (LA) (in black) are shown in a thin film of thickness h at T < Tg.
The LA fraction p = 0.58. The surface accessed (dark) connected fraction f = 17%. [1].
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which is in close agreement with the computer
simulations (17%) at p < pc. The cluster size
correlation length in this case was n = 79 and complete
connectivity would occur (f = 100%) if the thickness h
were reduced from 512 to 93 lattice units.

When heat is applied to the thin film, as implied in
Fig. 5, the free surfaces effectively have a monolayer
of liquid atoms, which enhance the connectivity of the
LA clusters at the surface. Thermal energy invades from
the surface as vibrational waves with random ampli-
tude causing intermolecular dissociation events on the
amorphous ‘lattice’ of anharmonically bonded atoms
on the polymer chains. Using Equation (4.11), and sub-
stituting for p/pc = T/Tg

∞, the finite size percolation
threshold f(h) = p*, such that we obtain the thickness
dependence of Tg(h) as:

(4.14)Tg(t) = Tg
∞ [1 – (B/h)c]

in which B and c are described by:

(4.15)B = S b/p*

(4.16)c = 1/[t (D – d + 1)]

The parameter S can have values of 0, 1, 2, or 3. For
two free surfaces, S = 2, and the value of B ≈ 0.8 is
determined using b = 0.154 nm for a C–C bond, and a
percolation threshold p* = 0.4. For one free surface,
e.g., a bulk surface or a thin film deposited on a neutral
substrate, S = 1, and B = 0.4; for a thin film in contact
with two neutral surfaces, S = 0 and B = 0, such that
the thin film properties are the same as the bulk; for
S = 3, e.g., with 3-D nano-particles of volume V ~ h3,
then B ≈ 1.16, which shows the greatest effect of Tg

reduction with h. For strongly adsorbing thin films, the
mobility of the surface layer is suppressed and Tg and
Tm will actually increase relative to the bulk value. Thin
films with one side free and the other side strongly
adsorbed could provide some interesting local mobil-
ity battles. The value of c is determined by the vector
percolation values of m and D, and is of order unity. For
example with d = 3, m = 0.82 and D = 2.85, Eq. (4.16)
gives c = 1.44. This relation for Tg(h) is in accord with
data recently obtained by several investigators [85,86].

The surface rubbery layer concept-controversy in
thick films is interesting and this percolation theory sug-
gests that for free welding surfaces with S = 1, it exists,
but there is a gradient of p(x) near the surface, where

x < n as implied in Fig. 5, and hence a gradient in both
Tg and modulus E. If the gradient of p is given by
p(x) = (1 – x/n), then the value of Xc for which the gra-
dient percolation threshold pc occurs, and which defines
the thickness of the surface mobile layer, is given by
the percolation theory as:

(4.17)Xc = b (1 – pc)/{pv
c[1 – T/Tg]v}

such that Xc ~ 1/DTm. For example, if T = (Tg – 10),
b = 0.154 nm, pc = 0.4, v = 0.82, then the thickness of
the mobile layer X* = 3.8 nm. This could allow for
healing to occur below Tg assuming that the dynamics
are fast enough, since the mobile layers on both
surfaces effectively disappear when the interface is
formed. If G1c ~ X2 for entangled polymers, then we
could deduce from Eq. (4.17) that for sub-Tg healing at
DT = Tg – T:

(4.18)G1c~DT –2t

This appears to be in qualitative agreement with Boi-
ko’s data [52], who examined the fracture energy of
polystyrene interfaces during welding at temperatures
up to 80°K below Tg.

4.4. Summary comment on welding

In summary, the strength development during weld-
ing of polymers is well described by the relation:

(4.19)G1c = G1c* (t/s)1/2

where G1c* is the virgin strength determined by the
percolation theory (Eq. (3.10)), and s is the welding
time, such that s ~ M when M > M*, and s ~ M3 when
M < M*. Equation (4.19) reflects the scaling law for
welding processes which are dominated by the
diffusion stage of healing. However, as discussed in
detail elsewhere [1,16], the other stages of welding, such
as surface approach, surface rearrangement, wetting and
randomization can play a major role in the time depen-
dence of the overall strength development. It is also
important to note that G1c is not a simple function of
interdiffusion depth X, for all depths, since the transi-
tion from the nail (weak-simple pullout) to the net
(strong-entangled) solution occurs at a particular value
of Xc, of order Rge. This transition will be important in
incompatible amorphous interfaces, as discussed in the
next section.
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5. Fracture of incompatible interfaces

Consider the incompatible A/B polymer interface
shown in Fig. 6. The equilibrium interface width d,
which is typically much less than Rg of either the A or
B chains, can be described by the Helfand relation [35]:

(5.1)d = 2 b/(6 v)1/2

in which v is the Flory–Huggins interaction parameter
and b is the random-walk bond length. The interface
thickness d, derives from a minimum in the free energy
of mixing F, associated with the positive relief of
entropy S, of surface confined chain segments of length
L (S ~ k ln L) as they blossom forth across the interface,
counterbalanced by the negative enthalpy of mixing H,
of incompatible A–B segments (H ~ v L). Letting the
free energy F = H – T S and evaluating the free-energy
minimum, dF/dL = 0, the equilibrium mixing length is
obtained as:

(5.2)L ~ k T/v

Since the interface width d ~ L1/2, the equilibrium
incompatible interface thickness is derived as d ~ 1/v1/2,
as expressed by Helfand in Eq 5.1. With increasing com-
patibility, or as v approaches zero, d approaches the
normal interface width X ~ Rg and the intermeshing
segments becomes highly entangled, thereby produc-
ing much higher fracture energy comparable to the vir-
gin state [1,21].

To understand the strength G, of incompatible inter-
faces as a function of their width d, we first consider
the random walk of length L, shown in Fig. 6. This
length L is part of a much larger random walk chain,
and is a segment which begins on the B-side and

traverses into the A-side, and returns to the B-side. In
this respect, it is a bridge segment (of a larger chain) of
length Lp, rather than a free chain of length L, such that
the equilibrium interface width is properly described
by:

(5.3)d ~ L1/2 ~ Lp

The number of bridges per unit area crossing theA/B
interface is Rp, which is independent of molecular
weight. As Lp increases, entanglements develop, crazes
form and the percolation relation G ~ [p – pc] applies.
Here, the percolation parameter p = R L/X is now
defined by:

(5.4)p ~ Rp(Lp/Le)/d

where Lp/Le is the number of entanglements per bridge.
Since d ~ Lp

1/2, we obtain p ~ d, pc ~ dc, and hence:

(5.5)G ~ [d – dc]

Here dc is the critical interface width corresponding
to pc, which will be in the order of Rge, and below which
no strength exists, other than that of simple pullout and
surface energy terms, as described by the nail solution.
Letting the normalized width w = d/dc, Eq. (5.5) be-
comes:

(5.6)G ~ [w – 1]

The maximum strength G* is determined by:

(5.7)G* ~ �w* – 1 �

where w* ≈ (M*/Me)
1/4 ≈ 2. Thus, the ratio G/G*

becomes:

(5.8)G/G* = (w – 1)/(w* – 1)

To investigate the latter relation, a plot of G/G* vs.
w, should have a slope of 1/(w* – 1) ≈1, an intercept on
the w axis at wc = 1, and maximum strength attained
(G/G* = 1) at w* ≈ 2, or the value of w* corresponding
to w* ≈ 2 wc.

Fig. 7 shows data obtained by several investigators
and analyzed by Benkoski, Fredrickson and Kramer
[22] for several asymmetric interface pairs. Here, G/G*
is plotted versus the normalized interface width
w = d/dt, where dt is the reptation tube diameter, calcu-
lated as dt = b (4/5 Ne)

1/2. Significantly, no strength
develops below some critical value wc. The magnitude

Fig. 6. Shows a chain segment of length Lp of a B-chain as it forms a
bridge across an A/B incompatible interface of width d ~ Lp

1/2.

38 R.P. Wool / C. R. Chimie 9 (2006) 25–44



of wc is of order unity, but varies for each polymer pair
due to the slight differences in their normalization pro-
cedure (w = d/dt) compared to the above analysis
(w = d/dc). However, the slopes are of order unity, as
predicted herein, and the maximum strength occurs at
w* ≈ 2, when wc ≈ 1, or at w* = 2 wc. The data in Fig. 7
could be readily normalized to wc = 1 to form a master
curve consistent with the very simple relation:

(5.9)G/G* = w – 1

with slope of unity, intercept w = 1 and w* = 2. This
analysis differs from that provided by Benkoski et al.
[22], who developed an interface strength theory based
on the added contributions of monomer friction effects
and an entanglement segment length distribution.
Coupled with the Brown theory of fracture [25,26], this
approach produced a more complex expression for G,
which gave reasonable agreement with their data in
Fig. 7. While being significantly different in their deri-
vation, a major fundamental difference between the
theories is that the Benkoski theory requires both fric-
tion and entanglements to explain all the data in Fig. 7,
while the percolation theory requires only the entangle-
ment effects to explain all the data, since the friction
terms are effectively zero on the G/G* scale.

When w < wc, or p < pc, the Nail solution, G ~ R L2,
applies as the R non-entangled chain segments of length
L pullout in simple friction. However, the chain seg-
ments do not pullout as linear strings of length L, as
can be deduced in Fig. 6, but rather as intermeshed ran-
dom walks of length L1/2; the chain segment is attached
to a very long chain, which is itself entangled, and
hence, will not allow the segment L to pullout as a string.
Thus, the critical stress behaves as r ~ R µ L1/2, where
µ is the friction coefficient. The critical crack opening
displacement behaves as d ~ L1/2, such that the fracture
energy for pullout is:

(5.10)G ~ lRL

Since R is constant and L ~ d2, it follows that in
simple pullout at w < wc:

(5.11)G ~ d2

However, this fracture energy is very low and orders
of magnitude lower than that obtained at w > wc. Both
theories based on the friction contribution agree with
the quadratic dependence G ~ d2, as first proposed by
Willett and Wool [21].

The adhesion between immiscible polymers as a
function of interfacial width was also analyzed by Cole,
Cook and Macosko [23] in terms of the number of
entanglements Nent in the interface. They define Nent in
the incompatible interface of width d as:

(5.12)Nent = d/Le

where Le is the entanglement length, defined by
Le = b [Me/6 Mo]1/2, in which Mo is the monomer
molecular weight and b is the bond length. They
propose that the resistance to fracture is determined by:

(5.13)G ~ Nent
2

Their data is shown in Fig. 8 (Fig. 7 in Cole et al.
[23]), where the slope of 2 from a plot of log G vs. log
Nent suggests support for the quadratic dependence in
Eq. 5.13. The circles in Fig. 8 represent data obtained
from interface pairs consisting of the following; PP/aPA,
PS/aPA, PS/PP, PS/PEO, PS/PC, PS/PVC, PS/PE,
PS/PMMA, PET/PC, using both melt and solvent lami-
nation. The triangles in Fig. 8 represent literature val-
ues for PS-r-PMMA by Brown et al. [25], and the
squares represent PC/SAN data obtained by Janarthan

Fig. 7. Data compiled by Benkoski et al. [22] showing the interfacial
fracture energy vs. normalized interfacial width w, for several A/B
pairs. Circles represent PS/PS-rPVP, boxes PMMA/PS-r-PMMA, dia-
monds PS/PpMS, triangles PS/PBrxS and bowties PS/PS data.
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et al. [87]. Alternatively, using the percolation model,
since p ~ d/Le, then from Eqs. (5.5) and (5.12), we
obtain:

(5.14)G ~ [Nent– Nc]

where Nc is the critical number of entanglements,
corresponding to pc. Normalizing this relation by the
maximum strength G* at N*, G* ~ [N*–Nc], we obtain

(5.16)G/G* = [Nent – Nc]/[N*c – Nc]

Accordingly, a plot of G vs. Nent should give a linear
plot with intercept Nc as shown in Fig. 9, using data
from Cole et al., (Table 3 in ref [23]). The linear fit
correlation coefficient was R2 = 0.95 (neglecting

G = 0 points) with intercept Nc = 0.7, and slope of
11 J/m2. Cole et al. observed at least three G = 0 values
in the vicinity of Nc, supporting the concept that little,
or no strength exists below the percolation threshold

Thus, the data in Fig. 9 is linear with a non-zero
intercept as expected, which meaningfully divides the
data into two regions, Nent < Nc for which G ≈ 0, con-
sistent with very weak interfaces, and Nent > Nc, which
describes the strong interfaces. However, a power law
fit with zero intercept, as required by the homogeneous
function G ~ Nent

b, will suggest an exponent of b ≈ 2,
and also describes both weak and strong regions with
the same function. Clearly, a plot of log G vs. log
[Nent – Nc] would give an exponent of b ≈ 1, consistent
with the percolation theory. During welding, Nent

behaves as Nent ~ t3/4 M−7/4 (Table 1), which we observe
experimentally [1]. However, if one were to use the
strength relation G1c ~ Nent

2, one would predict that
G1c ~ t3/2 M-7/2, and G* ~ M−2, which is universally
inconsistent with all welding and virgin–state data.

6. Fracture of reinforced incompatible interfaces

The role of A–B diblock compatibilizers or random
A–B copolymers of aerial density R at incompatible
A/B interfaces was investigated by Creton, Brown,
Char, Deline and Kramer et al. [24–31]. Fig. 10 shows
results of G1c vs. R for PS/PMMA interfaces rein-
forced by PS(800)–PVP(870) diblocks. Most of the data
are reasonably well described by a line with a slope of
2 on this log–log plot, suggestive of G ~ R2. Brown
analyzed this and other similar data and derived a theory
of fracture, which is referred as the R2 law [25,26]:

(6.1)G1c ~ R2/rcr

in which rcr is the yield stress in the craze zone at the
crack tip. If the G1c ~ R2 law is applied to welding,
from Table 1 R(t) ~ t1/4 M–5/4 and R∞ ~ M–1/2, then one
obtains G1c ~ t1/2 M–5/2 and G* ~ 1/M2, when s* ~ M.
Despite the correct time dependence (t1/2) of welding,
the predictions are not in accord with both the
molecular weight dependence of welding, and
particularly that of the virgin state, where contrary to
all data, it is predicted that the strength decreases with
increasing molecular weight. Alternatively, using Eq.
(6.1), we can let rcr ~ X, such that G1c ~ t1/4 M–9/4.
While the t1/4 dependence is not observed in the usual

Fig. 8. Fracture energy of A/B incompatible interfaces vs. Nent, as
compiled by Cole et al. [23]. The power-law agreement with a slope
of 2 (solid line) suggests a relationship of the form Gc ~ Nent

2 ade-
quately describes the adhesion

Fig. 9. A plot of fracture energy vs. Nent, using data of Cole et al.
[23] from Fig. 11. The line is a best fit of the data to the percolation
relation, G1c ~ [Nent – Nc].
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case, it could occur if the chain ends were segregated to
the weld surfaces, but this was not observed to occur
experimentally in the HDH/DHD experiments of Welp
et al. [73–78] and essentially all welding data supports
the t1/2 dependence. So, the Brown model is incompat-
ible with the Wool welding model, and visa versa. We
can reconcile these differences within the framework
of the percolation model, which predicts that G ~
[p – pc], as:

(6.2)G1c ~ [(R L/X) – (R L/X)c]

Since L and X are constant, then pc ~ Rc, which rep-
resents a critical number of chains required to build up
the network above the percolation level. Letting L/X ~
RgA of the diblock ends, the percolation model predicts
the linear relation:

(6.3)G1c ~ RgA [N – Nc]

Normalizing this relation by the maximum strength
G* at R*, we have:

(6.4)G/G* = [R – Rc]/[R* – Rc]

Fig. 11 shows a plot of G/G* vs. R, using Creton’s
data from Fig. 10. The fracture data was normalized by
G* ≈ 110 J/m2, which is the upper range of the data
presented in Fig. 10. The linear relation for G/G* vs. R
had a correlation coefficient of 0.9 and produced an
intercept on the R-axis of Rc = 0.1/nm2. The slope of
this line is 11.1/nm2. The transition from Nails to Nets,
or weak to strong interfaces, is demarcated by the
threshold value Rc, which, as discussed by Creton et
al., should occur near the overlap of the diblock ran-
dom coils in the interface, such that:

(6.5)Rc ≈ 1/RgA
2

The radius of gyration of the PS ends with
Mn = 83 200 g/mol is RgA

2 = 63.2 nm2, such that Rc ≈
0.016 nm2, which is in reasonable accord with the
experimental value Rc = 0.01/nm2 in Fig. 11. The maxi-
mum value of R* at G* can be determined from the
entanglement bridge theory [66] by:

(6.6)R* = [Mc/M*]1/2/2 a

where a ≈ 1 nm2 is the cross-sectional area of a bridge
segment of a diblock chain as it crosses the interface.
For polystyrene, with Mc = 30,000 and a molecular
weight of M* = 250 000 g/mol, then R* ≈ 0.17 nm2.
When brush-like ordering occurs at the interface,
L ≈ 0 as Me increases, and G1c decreases considerably.

Examining both theories, G1c ~ R2 and G1c ~ [R–Rc],
as plotted in Figs. 10 and 11, respectively, there is suf-
ficient data scatter in both plots such that one could not
judge, based on this data alone, as to which theory was
more valid. However, the percolation model, in addi-
tion to describing the A/B reinforced interface above,

Fig. 10. Fracture energy G1c vs. areal chain density R, data reported
by Creton et al. [27] for the PS(800)-PVP(870) diblock reinforced
PS/PMMA incompatible interface. The solid line was drawn with a
slope of 2, suggestive of the scaling law G1c ~ R2.

Fig. 11. Fracture energy (normalized) G/G* vs. areal density R, of
A–B diblock chains in an A/B incompatible interface, using data of
Creton et al. [27] from Fig. 10. The line is a least-square fit to the
percolation formula, G/G* ~ [R – Rc].
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is universally consistent with welding data, virgin–
state strength and the transition from weak to strong
interfaces. It can be deduced that the exponent of 2,
reported in several instances, is an accidental conse-
quence of inhomogeneous functions for G1c vs. Nent

with incompatible A/B interfaces, G1c vs. R data for
reinforced A/B interfaces and G1c vs. M for virgin
strength data. The percolation theory of incompatible
interfaces is significantly different and in contradiction
with theories proposed by Benkoski et al., Cole et al.
and Brown et al.

7. Conclusion

A theory of fracture of entangled polymers was
developed which was based on the vector percolation
model of Kantor and Webman, in which the modulus E

is related to the lattice bond fraction p, via E ~ [p – pc]
s.

The polymer fractured critically when p approached the
percolation threshold pc, which was accomplished by
utilizing the stored strain energy in the network to ran-
domly fracture [p – pc] bonds. The fracture energy was
found to be G1c ~ [p – pc]. When applied to interfaces
of width X, containing an areal density R of chains,
each contributing L entanglements, the percolation term
p ~ R L/X, and the percolation threshold was related to
Rc, Lc, or Xc. This gave a unified theory of fracture for
the virgin state of polymers in the bulk and a variety of
polymer interfaces. The percolation theory has also been
applied successfully to fracture of carbon nanotubes
[3,88,89 and polymer–solid interfaces [90–92].

Several important results are summarized in Table 2
and include the following:
(1) the fracture strength r of amorphous and semicrys-

talline polymers in the bulk could be well described

Table 2
Interface and bulk properties

Polymer system Property Relation Comment
Symmetric A/A Welding fracture energy G1c G1c = G* (t/s)1/2 s ~ M, M > M*

s ~ M3, M < M*
M* = 8 Mc

s* = 64 (Mc/M)2 Tr

A/A Toughness K1c K1c ~ t1/4 M–1/4 G1c = K1c
2/E

A/A Welding below Tg G1c ~ DT–2m

Xc = b (1 – pc)/{pc
v[1 – T/Tg]v}

m = 0.82
b = 0.154 nm
pc = 0.4

A/A Chain-end segregation G1c = G* (t/s)1/4 p ~ X
A Thin film Tg vs h Tg(h) = Tg

∞ [1 – (B/h)c] c = 1/[m (D – d + 1)]
B = S b/p*

Virgin state Fracture energy G1c G1c/ G* = 0.3 M/Mc [1 – (Mc/M)1/2]2 Disentanglement
M < M*
Mc = Me /(1 – pc)

Virgin state G1c G1c = G* [1 – Mc/M] Bond rupture
M > M*

Virgin state G1c G1c = Go + k M M < Mc

Go = 2 c S
Fatigue da/dN da/dN ~ X−5 Tr ~ M3 necessary
Net solution Fracture stress r r* = {2 E m Do [p – pc]}

1/2 Do = C–C bond
energy

A/B Incompatible interface Fracture energy G G ~ [d – dc]
G/G* = (w – 1)/(w* – 1)
G ~ [Nent – Nc]

w = d/dc

d = 6 b/v1/2

Nent = d/Le

Incompatible with R(A-B) Fracture energy G G1c ~ RgA [N – Nc] Rc ≈ 1/RgA
2

Rubber Fracture stress r and energy G r ~ m
r ~ E
G ~ m

E ~ m k T
m ~ 1/Mx

Thermosets Fracture stress r, energy G r ~ [E m]1/2

G ~ m–1/2
m = crosslink density

The factor of 8 rather than 16 occurs due to an orientation correction [1]. 2 R. P. Wool, American Physical Society Meeting (2000).
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by the net solution, r = [E Do q/16 Me]
1/2, and found

to be in excellent agreement with a large body of
data. This is a first-principles approach to fracture
and requires no fitting parameters;

(2) for welding ofA/A symmetric interfaces, p = R L/X,
and pc ≈ Lc/M ≈ 0, such that when R/X ~ 1/M for
randomly distributed chain ends, G/G* = (t/s*)1/2,
where s* ~ M, when M > M*, and s ~ M3, when
M < M*. When the chain ends are segregated to the
surface, R is constant with time and
G/G* = [t/s*]1/4;

(3) for incompatible A/B interfaces of width d, normal-
ized width w, and entanglement density Nent ~ d/Le,
p ~ d such that G ~ [d – dc], G ~ [w – 1], and G ~
[Nent – Nc];

(4) for incompatible A/B interfaces reinforced by an
areal density R of compatibilizer chains, L and X
are constant, p ~ R, pc ~ Rc, such that G ~ [R –
Rc].
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