

Available online at www.sciencedirect.com

C. R. Chimie 9 (2006) 466-471

http://france.elsevier.com/direct/CRAS2C/

Some triple resonance experiments in solid-state CP MAS NMR: ⁵¹V/²⁹Si, ³¹P/¹³C, and ²⁹Si/¹³C

Christian Bonhomme ^{a,*}, Cristina Coelho ^a, Thierry Azaïs ^a, Laure Bonhomme-Coury ^a, Florence Babonneau ^a, Jocelyne Maquet ^a, René Thouvenot ^b

^a Laboratoire de chimie de la matière condensée, UMR 7574, université Pierre-et-Marie-Curie, 4, place Jussieu, 75252 Paris cedex 05, France

^b Laboratoire de chimie inorganique et matériaux moléculaires, UMR 7071, université Pierre-et-Marie-Curie, 4, place Jussieu, 75252 Paris cedex 05, France

Received 30 March 2005; accepted 6 June 2005

Available online 08 September 2005

Abstract

It is shown that the phenylphosphinic acid $C_6H_5PH(O)(OH)$ and the octavinylsilsesquioxane $[SiO_{1.5}(C_2H_3)]_8$ act as good candidates for the set-up of the Hartmann–Hahn condition under MAS condition for ${}^{31}P \rightarrow {}^{13}C$ and ${}^{29}Si \rightarrow {}^{13}C$ CP transfer, respectively. The study of the polyoxometalate derivative $[AsW_9O_{33}('BuSiO_3(VO)]("Bu_4N)_3$ allowed us to clearly demonstrate the effect of { ${}^{51}V$ } decoupling during ${}^{29}Si$ acquisition for this type of compounds. These examples open new possibilities for the detailed study of inorganic compounds and hybrid materials, by triple resonance solid-state NMR experiments. *To cite this article: C. Bonhomme et al., C. R. Chimie 9 (2006)*.

© 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Nous montrons que l'acide phénylphosphinique $C_6H_5PH(O)(OH)$ et l'octavinylsilsesquioxane $[SiO_{1.5}(C_2H_3)]_8$ peuvent servir de standards pour le réglage des conditions de Hartmann–Hahn suivantes (sous rotation à l'angle magique MAS) : ${}^{31}P \rightarrow {}^{13}C$ et ${}^{29}Si \rightarrow {}^{13}C$. L'étude du polyoxométallate $[AsW_9O_{33}('BuSiO)_3(VO)]("Bu_4N)_3$ permet de mettre clairement en évidence l'effet du découplage { ${}^{51}V$ } sur l'acquisition ${}^{29}Si$ dans ce type de composés. Ces exemples montrent que les expériences de triple résonances à l'état solide offrent d'excellentes perspectives pour l'étude de composés inorganiques et de matériaux hybrides. *Pour citer cet article : C. Bonhomme et al., C. R. Chimie 9 (2006).*

© 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Keywords: Solid-state NMR; Cross polarization; Heteronuclear transfers

Mots-clés : RMN du solide ; Polarisation croisée ; Transferts hétéronucléaires

* Corresponding author.

E-mail address: bonhomme@ccr.jussieu.fr (C. Bonhomme).

^{1631-0748/}\$ - see front matter © 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved. doi:10.1016/j.crci.2005.06.028

1. Introduction

Since the pioneering work of Fyfe [1] and Eckert [2] in the 90 s, ¹H–X–Y triple resonance solid-state NMR probes are now used in the frame of inorganic materials, as invaluable tools of structural investigation. Various {X–Y} pairs have been considered, including the most frequently used, {²⁷Al,³¹P}, {²⁷Al,²⁹Si} and {¹⁹F,²⁹Si}. Demonstration of the use of more 'exotic' {X,Y} pairs has been also proposed in the literature, including: {³¹P,¹¹³Cd} [2b], {²⁷Al,¹³C} [3], {³¹P,⁷⁷Se} [4], {³¹P,²⁹Si} [5]. The NMR techniques used so far can be roughly divided in three categories: • (*i*) CP MAS [6,7] experiments (cross polarization

- (*t*) CF MAS [6,7] experiments (cross polarization magic angle spinning), involving either a single $X \rightarrow Y$ transfer or a double ¹H $\rightarrow X \rightarrow Y$ transfer (with Y detection in both cases). In the latter case, ¹H irradiation is mainly used for T₁ purposes;
- (*ii*) REDOR [8] (rotational-echo double resonance) and TEDOR [9] (transferred-echo double resonance) experiments;
- (*iii*) *J*-mediated techniques, like *J*-resolved and HMQC [10] (heteronuclear multiple quantum coherence) experiments.

The pulse sequences described in (*i*) and (*ii*) rely on the dipolar interaction between X and Y nuclei and allow to establish *spatial connectivities* by 1D (CP, REDOR, TEDOR) or 2D (CP HETCOR, heteronuclear correlation) [1,11] experiments. In some cases, distances between nuclei were even accurately measured by studying carefully the dipolar oscillations of the variable contact time CP curves or by REDOR experiments [1f,12–14]. The spectroscopic approach cited in (*iii*) establishes connectivities between X and Y nuclei through the isotropic J coupling, and allows the direct proof of *chemical bonding* between X and Y [15].

The main goal of this article is to highlight double X/Y and triple ¹H/X/Y CP MAS experiments, involving 'exotic' spin pairs such as $X/Y = {}^{51}V/{}^{29}Si; {}^{31}P/{}^{13}C; {}^{29}Si/{}^{13}C$. One notes that in all cases, at least one resonant nucleus presents a low natural abundance (${}^{29}Si:$ 4.7%; ${}^{13}C:$ 1.1%). In the ${}^{1}H/{}^{29}Si/{}^{13}C$ CP MAS experiments, both target nuclei can be considered as low abundant nuclei. The results presented here are definitely encouraging for the set-up of 2D correlation experiments (such as HETCOR CP MAS experiments). Moreover, three compounds were found to act as good candidates for the set-up of the Hartmann–Hahn condition

under MAS, namely: $C_6H_5PH(O)(OH)$ for the ${}^{31}P/{}^{13}C$ transfer [SiO_{1.5}(C₂H₃)]₈ for the ${}^{29}Si/{}^{13}C$ transfer and [AsW₉O₃₃('BuSiO)₃(VO)]³⁻ for the ${}^{51}V/{}^{29}Si$ transfer. Such experiments seem interesting for the fine description of polyoxometalate derivatives and silica/phosphate based hybrid materials [16–19].

2. Experimental

A typical triple resonance MAS experiment used in this work is presented in Fig. 1. The acquisition of the Y spectra is performed under ¹H CW or TPPM decoupling and with/or without X high-power CW decoupling.

¹H/⁵¹V/²⁹Si experiments were performed on a Bruker AVANCE 400 spectrometer (⁵¹V: 105.40 MHz; ²⁹Si: 79.48 MHz). Zirconia rotors (4 mm) were spun at the magic angle at 2 and 5 kHz (⁵¹V coupled and ⁵¹V decoupled, respectively). The polyoxometalate (POM) derivative $[AsW_9O_{33}(^{t}BuSiO)_3(VO)]^{3-}((^{n}Bu_4N)^{+}salt)$ (Fig. 2) was used as a standard. The multistep synthesis of this hybrid compound proceeds as follows: (i) synthesis of the trivacant anion $[AsW_9O_{33}]^{9-}$ by cocondensation of WO_4^{2-} and AsO_2^{-} under aqueous acidic conditions, (ii) reaction with tertiobutyltrichlorosilane ¹BuSiCl₃ to afford the organosilyl open-structure hybrid $[AsW_9O_{33}(BuSiOH)^{3-}]$ as $[Bu_4N]^+$ salt [24], and (*iii*) reaction with vanadyltrichloride VOCl₃ leading to closing-up of the structure by the capping group VO^{3+} [25]. Standard ¹H/²⁹Si CP MAS experiment (including ¹H CW high-power decoupling) was combined with CW ⁵¹V decoupling. As ⁵¹V is a quadrupolar nucleus, the CW power level on the ⁵¹V channel was carefully adjusted, in order to obtain the best resolution on the

Fig. 1. Typical triple resonance experiment used in this work (under MAS). $X = {}^{31}P, {}^{29}Si; Y = {}^{13}C, {}^{29}Si$. CW decoupling on the X channel (${}^{29}Si, {}^{31}P, {}^{51}V$) is optional (see text for details).

Fig. 2. ²⁹Si CP MAS spectrum (2 kHz) of [AsW₉O₃₃('BuSiO)₃(VO)]^{3–} and the corresponding ORTEP view (orange: V, gray: As, blue: W, red: O, black: C, green: Si). Dashed inset: isotropic lines without {⁵¹V} decoupling. Full line inset: isotropic lines with CW {⁵¹V} decoupling (MAS at 5 kHz, \bigstar spinning sidebands).

²⁹Si spectra. Indeed, it is now well known [11] that efficient decoupling from quadrupolar nuclei is best obtained at rather low power levels (here 30 kHz on the ⁵¹V channel). Other decoupling schemes (such as TPPM) were not used in this case. Chemical shifts are referenced towards TMS (0 ppm). Typical parameters were: recycle delay: 5 s, contact time (¹H \rightarrow ²⁹Si): 5 ms; number of scans (NS) = 4380 for the fully coupled ²⁹Si spectrum (7-mm CP MAS Bruker probe: standard ²⁹Si CP MAS spectrum; 4-mm triple resonance CP MAS Bruker probe: ⁵¹V decoupled ²⁹Si CP MAS spectrum).

¹H/³¹P/¹³C and standard ¹H/¹³C CP MAS experiments were performed on a Bruker AVANCE 300 spectrometer (4-mm triple resonance CP MAS Bruker probe) (¹³C: 75.43 MHz; ³¹P: 121.44 MHz). Zirconia rotors (4 mm) were spun at the magic angle at 5 kHz. The phenylphosphinic acid C₆H₅PH(O)(OH) (purchased from Fluka) was used as a standard compound (see Fig. 3). For the ¹H/¹³C CP MAS experiment: recycle delay: 20 s; contact time (¹H \rightarrow ¹³C): 2 ms; NS: 832. For the ¹H/³¹P/¹³C CP MAS experiment: recycle delay: 20 s; contact time (¹H \rightarrow ³¹P): 2 ms; contact time (³¹P \rightarrow ¹³C): 5 ms; NS = 2500. In both cases, variableamplitude cross-polarization (VACP) pulse schemes were used [20]. In particular, a VACP scheme is absolutely necessary for the second CP transfer (³¹P \rightarrow ¹³C),

Fig. 3. $^{1}H/^{13}C$ and $^{1}H/^{31}P/^{13}C$ CP MAS spectra of the phenylphosphinic acid C₆H₅PO(OH)H (see the inset for the C atoms labeling scheme).

as the rather weak ³¹P–¹³C heteronuclear dipolar coupling is strongly modulated by the MAS process. The second contact time (³¹P→¹³C) is adapted for the detection of close neighbors of the ³¹P nuclei. This parameter can be used for spectral editing purposes. The ¹³C acquisition was performed under ¹H TPPM decoupling, but without ³¹P decoupling (the TPPM parameters – phase and pulse duration – were adjusted by using the phenylphosphinic acid). Chemical shifts were referenced towards TMS (0 ppm) via solid adamantane.

The ¹H/²⁹Si/¹³C experiments were performed on a Bruker AVANCE 400 spectrometer (4-mm triple resonance CP MAS Bruker probe) (¹³C: 100.56 MHz; ²⁹Si: 79.48 MHz). Zirconia rotors (4 mm) were spun at the magic angle at 5 kHz. The octavinylsilsesquioxane [SiO_{1.5}(C₂H₃)]₈ derivative (Fig. 4) (purchased from Hybrid Plastics) was used as a standard for the set-up of the experiment. The following parameters were used: recycle delay: 15 s; contact time (¹H \rightarrow ²⁹Si): 10 ms; contact time (²⁹Si \rightarrow ¹³C): 5 ms, NS = 15000. TPPM decoupling on the ¹H channel was used during the ¹³C acquisition but ²⁹Si decoupling *was not* performed.

Fig. 4. (a) Standard ¹H/¹³C CP MAS spectrum of $[SiO_{1.5}(C_2H_3)]_8$ at low spinning rate and the corresponding ORTEP view (blue: Si, red: O, black: C, white: H). Isotropic lines are shown by arrows. Inset: *satellites related to the ¹³CH resonance due to ¹J(¹³C-²⁹Si) coupling. (CH₂: $\delta \approx 138$ ppm, CH: $\delta = 128$ ppm). (b) ¹H/²⁹Si/¹³C spectrum. The splitting due to ¹J(¹³C-²⁹Si) is clearly observable.

3. Results and discussion

3.1. ${}^{1}H/{}^{29}Si$ experiments with and without ${}^{51}V$ decoupling

The ¹H \rightarrow ²⁹Si CP MAS spectrum (at 2 kHz) of [AsW₉O₃₃(¹BuSiO)₃(VO)](^{*n*}Bu₄N)₃ is presented in Fig. 2. This compound is one member of the large polyoxometalate family [16]. The polyoxometalate core 'AsW₉O₃₃' is capped by a vanadium atom linked through three 'BuSiO groups (see the ORTEP representation in Fig. 2). This entity can be considered as intermediate between organic and inorganic moieties and acts, therefore, as a hybrid nanocluster [18]. The ORTEP view shows that at most three ²⁹Si isotropic resonances are expected. The ²⁹Si CP MAS spectrum

(without {⁵¹V} decoupling) exhibits a complex isotropic line, involving at least 10 resonances. Such a line can be decomposed into two isotropic contributions $(\delta_1 - 52.3 \text{ ppm}, 2\text{Si}; \delta_2 - 53.0 \text{ ppm}, 1\text{Si})$ subjected to the isotropic J coupling interaction (²J₅₁V₋₂₉Si = 28 Hz). As I = 7/2 for ⁵¹V, eight lines are expected for each ²⁹Si resonance. Whereas the three Si atoms are equivalent in solution, leading to a unique ²⁹Si resonance, this is no longer the case in the solid state, where the three Si atoms are crystallographically independent. The differences in the electronic surrounding of these three nuclei appear not sufficient to resolve three resonances.

By using CW {⁵¹V} decoupling during the ²⁹Si acquisition (at an adequate RF power – see Section 2), the spectrum is clearly simplified. All splitting due to ${}^{2}J_{{}^{51}V-{}^{29}Si}$ couplings are efficiently suppressed and only two isotropic ²⁹Si resonances are observed (δ_1 , δ_2). These are in the ratio 2:1, as expected from the fully coupled spectrum. The high-frequency signal is, however, significantly broader, likely because the two crystallographically unequivalent silicon nuclei are not strictly isochronous. Therefore, it is shown that triple resonance experiments involving exotic pairs, such as ⁵¹V/²⁹Si, open new areas in the structural studies of polyoxometalate derivatives.

3.2. ${}^{1}H/{}^{31}P/{}^{13}C$ experiments on the phenylphosphinic acid: towards ${}^{31}P/{}^{13}C$ spectral editing

The phenylphosphinic acid $C_6H_5PH(O)(OH)$ (see Fig. 3) appears as a good candidate for the set-up of the ³¹P/¹³C Hartmann–Hahn condition under MAS. Indeed, such a compound is characterized by a direct P-H bond, leading to a very efficient ¹H/³¹P CP transfer. Moreover, the attached phenyl group exhibits ¹³C nuclei, which can be easily distinguished through their distances to the ³¹P nucleus. The quaternary C_1 atom is directly related to P, whereas the C₄ (para) atom is characterized by the longest P...C distance. It is, therefore, expected that the CP experiment (based on the dipolar coupling) will allow a clear distinction between ¹³C nuclei, based on the strong variation of ³¹P-¹³C distances. We note, however, that the $T_1(^1H)$ relaxation processes at $v_0 = 300$ MHz ($B_0 = 7$ T) are rather long, leading to a relaxation delay of 20 s (see Section 2). To the best of our knowledge, spectral editing in the frame of ³¹P/¹³C NMR spectroscopy in natural abundance was never proposed in the literature, though some data involving fully labeled ³¹P/¹³C spin pairs were published by Hagaman [21].

The standard ¹H/¹³C CP MAS spectrum is presented in Fig. 3. It is characterized by strong resonances located at $\delta \approx 130$ ppm and related to the phenyl groups. One resonance ($\delta = 135.1$ ppm) is clearly deshielded and can be safely assigned to the C₄ atom [22].

By using the double CP transfer ${}^{1}H/{}^{31}P/{}^{13}C$, the ${}^{13}C{}^{1}H$ spectrum is strongly modified $({}^{31}P/{}^{13}C$ contact time: 5 ms). The line centered at $\delta = 135.1$ ppm is no more observed, in agreement with the proposed assignment (C₄). Moreover, the part of the spectrum centered at $\delta = 129.2$ ppm is overestimated under the ${}^{31}P/{}^{13}C$ CP transfer. This line can be assigned to C₁. However, the ${}^{13}C$ acquisition was performed under ${}^{11}H$ decoupling, but *without* ${}^{31}P$ high-power decoupling. It has been shown previously that ${}^{1}J_{{}^{31}P-{}^{13}C}$ in phenyl derivatives can be estimated to ~200 Hz [22]. We believe that the line at $\delta = 129.2$ ppm corresponds to one branch of the C₁ doublet, due to the isotropic ${}^{1}J_{{}^{31}P-{}^{13}C}$ splitting. The second branch of the doublet is surely located at $\delta \approx 130.9$ ppm, superimposed to (C₂,C₆) resonances.

Further experiments, involving $\{^{31}P\}$ high-power decoupling and variable ${}^{31}P/{}^{13}C$ contact time, will be necessary for the complete assignment of the ${}^{13}C$ spectrum. Such experiments are now in progress in the laboratory.

3.3. ¹H/²⁹Si/¹³C experiments in natural abundance

The octavinylsilsesquioxane $[SiO_{1,5}(C_2H_3)]_8$ (Fig. 4) has been carefully studied by ¹H/²⁹Si and ¹H/¹³C CP MAS experiments [23]. It can be considered as a starting building block for the synthesis of hybrid material exhibiting tailored porosity [19]. The standard CP 1 H/ 13 C experiment shows resonances assigned to 13 CH₂ and ¹³CH groups, in good agreement with crystallographic data [23]. The ¹³CH resonance is characterized by satellites due to ${}^{1}J_{{}^{13}\text{C}-{}^{29}\text{Si}}$ splitting. This isotropic J coupling was estimated to $|{}^{1}J_{{}^{13}\text{C}-{}^{29}\text{Si}}| \approx 136$ Hz. The double CP (¹H/²⁹Si/¹³C) experiment is presented in Fig. 4b. The signal-to-noise (S/N) ratio is rather poor (NS = 15000 - see Section 2), as ¹³C and ²⁹Si are present in natural abundance. However, this spectrum is highly informative and proves that ¹H/²⁹Si/¹³C experiments can be performed on hybrid silica materials. The ¹³CH₂ resonances are strongly underestimated, as expected. Indeed, CH₂ groups are characterized by long Si…C distances (2.75 Å), when compared to the CH groups (1.81 Å). Moreover, the ¹³CH resonance is splitted into a doublet, corresponding to ¹J_{13</sup>C-²⁹Si coupling, as no {²⁹Si} high power decoupling was applied during ¹³C acquisition. One notes that the intrinsic S/N ratio can be easily improved by using {²⁹Si} high-power decoupling.}

4. Conclusion

Three examples, involving rather 'exotic' spin pairs ${}^{51}V/{}^{29}Si$, ${}^{31}P/{}^{13}C$ and ${}^{29}Si/{}^{13}C$, have shown that triple resonance experiments are particularly adequate for the characterization of inorganic and hybrid molecules/ materials. These examples were based on double CP transfer under MAS conditions in 1D version. 2D HET-COR versions and *J*-derivated experiments [15] can be surely performed as well. The phenylphosphinic acid C₆H₅PH(O)(OH), the polyoxometalate derivative [AsW₉O₃₃('BuSiO)₃(VO)]³⁻ and the octavinylsilses-quioxane [SiO_{1.5}(C₂H₃)]₈ can act as potential standards for the set up of the Hartmann–Hahn condition in the frame of ${}^{31}P/{}^{13}C$, ${}^{51}V/{}^{29}Si$ and ${}^{29}Si/{}^{13}C$ CP MAS NMR, respectively.

References

 (a) C.A. Fyfe, H. Grondey, K.T. Mueller, K.C. Wong-Moon, T. Markus, J. Am. Chem. Soc. 114 (1992) 5876; (b) C.A. Fyfe, K.T. Mueller,H. Grondey, K.C. Wong-Moon, Chem. Phys. Lett. 199 (1992) 198; (c) C.A. Fyfe, K.T. Mueller, H. Grondey, K.C. Wong-Moon, J. Phys. Chem. 97 (1993) 13484; (d) C.A. Fyfe, K.C. Wong-Moon, Y. Huang, H. Grondey, K.T. Mueller, J. Phys. Chem. 99 (1995) 8707; (e) C.A. Fyfe, K.C. Wong-Moon, Y. Huang, H. Grondey, Microporous Mat. 5 (1995) 29; (f) C.A. Fyfe, D.H. Brouwer, A.R. Lewis, J.-M. Chézeau, J. Am. Chem. Soc. 123 (2001) 6882.

- [2] (a) D. Franke, C. Hudalla, H. Eckert, Solid-State Nucl. Magn. Reson. 1 (1992) 33; (b) D. Franke, C. Hudalla, R. Maxwell, H. Eckert, J. Phys. Chem. 96 (1992) 7506; (c) L. Zhang, J.C.C. Chan, H. Eckert, Chem. Mater. 15 (2003) 2702; (d) L. Zhang, H. Eckert, Solid-State Nucl. Magn. Reson. 26 (2004) 132.
- [3] L. Van Wüllen, Solid-State Nucl. Magn. Reson. 13 (1998) 123.
- [4] T. Pietrass, R. Seydoux, R.E. Roth, H. Eckert, A. Pines, Solid-State Nucl. Magn. Reson. 8 (1997) 265.
- [5] C. Lejeune, C. Coelho, L. Bonhomme-Coury, T. Azaïs, J. Maquet, C. Bonhomme, Solid-State Nucl. Magn. Reson. 27 (2005) 244.
- [6] S.R. Hartmann, E.L. Hahn, Phys. Rev. 128 (1962) 2042.
- [7] A. Pines, G. Gibby, J.S. Waugh, J. Chem. Phys. 59 (1973) 569.
- [8] T. Gullion, J. Schaefer, J. Magn. Reson. 81 (1989) 196.
- [9] A.W. Hing, S. Vega, J. Schaefer, J. Magn. Reson. 96 (1992) 205.
- [10] S. Braun, H.-O. Kalinowski, S. Berger, in: 150 and More Basic NMR Experiments, Wiley-VCH, Weinheim, Germany, 1998, pp. 350 and 384.
- [11] L. Delevoye, C. Fernandez, C.M. Morais, J.-P. Amoureux, V. Montouillout, Rocha, J. Solid-State Nucl. Magn. Reson. 23 (2002) 501.
- [12] C.A. Fyfe, A.R. Lewis, J.-M. Chézeau, H. Grondey, J. Am. Chem. Soc. 119 (1997) 12210.
- [13] P. Bertani, J. Raya, P. Reinheimer, P. Gougeon, L. Delmotte, Hirschinger, J. Solid-State Nucl. Magn. Reson. 13 (1999) 219.
 [14] G. Mali, V. Kaucic, J. Chem. Phys. 117 (2002) 3327.
- [15] D. Massiot, F. Fayon, B. Alonso, J. Trebosc, J.-P. Amoureux, J. Magn. Reson. 164 (2003) 160.
- [16] Special Issue on Polyoxometalates, Chem. Rev. (1998) 98.
- [17] C.R. Mayer, V. Cabuil, T. Lalot, R. Thouvenot, Adv. Mater. 12 (2000) 417.
- [18] D. Agustin, C. Coelho, A. Mazeaud, P. Herson, A. Proust, R.Z. Thouvenot, Anorg. Allg. Chem. 630 (2004) 2049.
- [19] C. Zhang, F. Babonneau, C. Bonhomme, R.M. Laine, C.L. Soles, H.A. Hristov, A.F. Yee, J. Am. Chem. Soc. 120 (1998) 8380.
- [20] O.B. Peersen, X. Wu, I. Kustanovich, S.O. Smith, J. Magn. Reson. A 104 (1993) 334.
- [21] E. Hagaman, J. Am. Chem. Soc. 110 (1988) 5594.
- [22] C. Gervais, M. Profeta, V. Lafond, C. Bonhomme, T. Azaïs, H. Mutin, C.J. Pickard, F. Mauri, F. Babonneau, Magn. Reson. Chem. 42 (2004) 445.
- [23] C. Bonhomme, P. Toledano, J. Maquet, J. Livage, L. Bonhomme-Coury, J. Chem. Soc., Dalton Trans. (1997) 1617.
- [24] A. Mazeaud, N. Ammari, F. Robert, R. Thouvenot, Angew. Chem. 35 (1996) 1961.
- [25] (a) A. Mazeaud, PhD Thesis, Université Pierre-et-Marie-Curie, Paris-6, 1997; (b) Thouvenot et al., manuscript in preparation.