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Abstract

A Cahn–Ingold–Prelog-like scheme based on edge length allows classification of chiral tetrahedra, free of labels and consid-
ered as geometric objects, into left- and right-handed forms, despite the chiral connection between enantiomers. To cite this article:
P.W. Fowler, A. Rassat, C. R. Chimie 9 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Un critère fondé sur l’esprit des règles de Cahn–Ingold–Prelog et la longueur de bord permet une classification des tétraèdres
chiraux, sans étiquettes et considérés en tant qu’objets géométriques, comme formes gauches ou droites, quel que soit le « raccor-
dement chiral » entre les énantiomères. Pour citer cet article : P.W. Fowler, A. Rassat, C. R. Chimie 9 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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It is well known that the problem of right or left
classification of chiral objects, important in chemistry
and the bio-sciences, has subtleties even for objects as
basic to stereochemistry as the tetrahedron [1,2]. The
history of attempts to devise measures of chirality and
symmetry has recently been reviewed comprehensively
by Petitjean [3]. In the present note we briefly review
some theoretical difficulties and suggest one scheme by
which chiral tetrahedra may be classified as right or left
handed on the basis of their geometry.
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Ruch [4] famously introduced the analogy of pota-
toes and shoes to illustrate a distinction between two
types of chiral objects that we might wish to classify.
Imagine two boxes. We are given a set of chiral objects
and asked to assign each object to a box. In the weak
version of the assignment problem, we must ensure that
objects are assigned subject only to the condition that
no two enantiomers end up in the same box. In the
stronger version, we are asked to put all ‘right’ enantio-
mers in one box (R) and all ‘left’ enantiomers in the
other (L). As Ruch points out, we could expect to per-
form the second task easily enough for shoes, despite
the many differences between two arbitrary right shoes,
but not for potatoes, where we can easily see that each
individual object is chiral (non-superimposable on its
mirror image) but we have no obvious way of labelling
y Elsevier SAS. All rights reserved.
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it R or L. “Any classification would be very artificial”
[4]. Ruch also notes that other objects such as screws
belong to the shoe-like category in that they too can be
split into disjoint right and left forms; in this case, ac-
cording to the direction of motion when the screw is
turned in a clockwise sense.

This distinction between the two types of objects,
with shoe-like and potato-like chirality, corresponds to
the difference that is drawn between chirality and hand-
edness [5]. Shoes have a natural assignment to R or L
and are therefore said to be handed. Potatoes do not
have this natural assignment and so, though they are
chiral, they are said not to be handed. This distinction
is potentially significant in chemistry: chiral molecules
have a huge variety of shapes, with no obvious corre-
spondence to left or right shoes, and so in general they
are potato-like and not handed.

However, a distinction based on a notion of what is
natural is not clear-cut. For instance, one can easily
imagine an innovative fashion designer, or the effects
of extreme wear and tear, producing shoes that would
puzzle the classifier. Similarly, it is conceivable that a
principle accepted as ‘natural’ by some cohort of re-
searchers could be derived for potatoes. Perhaps this
could be based on a chiral effect reflecting the chirality
of the cause, in line with Curie’s Principle. An example
might be a hydrodynamic effect such as the sense of
rotation of a sinking object in a conveniently chosen
fluid under standard conditions, or, on the microscopic
level, the pitch induced in a nematic liquid crystal by
doping with one enantiomer of a molecule to be tested.
In the molecular domain, optically active molecules of
any shape have long been classifiable in a ’natural’
way, by reference to the sign of the optical rotatory
power under specific conditions. At the present time,
the Cahn–Ingold–Prelog (CIP) rules [6–10] constitute
another definition of what is considered by chemists
to be natural in the molecular context, and give an al-
gorithmic procedure for solution of the classification
problem by assignment of labels to chirality elements
inside a molecule, although the list of labels is not nor-
mally condensed to a single whole-molecule descriptor.
These examples suggest that, given a sufficiently flex-
ible notion of what is natural, it should be possible to
attribute handedness to any class of chiral objects.

Even when handedness is uncontested, there are dif-
ficulties. Although the test proposed for the handedness
of a screw is reasonable and objective, and may appear
natural to a right-handed person in a tool-using culture,
there is no necessary connection between R and L shoes
and R and L screws. This depends on a convention.
Thus even within the domain of recognisably handed
objects, we are inexorably faced with the situation de-
scribed by Cahn, Ingold and Prelog, where “systems for
the specification of asymmetric configuration […] have
grown like islands of local government in a large semi-
civilized country” [6]. A convention is inevitably local
to some class of ‘similar’ objects.

A distinct fundamental, problem with any definition
that relies on a continuously variable property such as
rotatory power arises from a general property of three-
dimensional geometrical objects, their chiral connected-
ness [11,12]. Consider the formal interconversion of the
two enantiomers of a chiral object by some continuous
structural deformation. If it is possible to find such a
pathway that consists entirely of chiral configurations,
then the enantiomers are said to be chirally connected.
Suppose that we have defined a chirality index ψ, i.e. a
continuous pseudo-scalar function of structure that by
definition takes equal and opposite values for enantio-
mers. A smooth connection between the enantiomer
with positive ψ and the partner with negative ψ then
demands the existence of a ‘false zero’ [1,4,13], i.e. a
vanishing value of ψ for some chiral configuration, ren-
dering the sign of ψ effectively useless as a global
means of assigning left and right labels to structures.
This problem surfaces repeatedly in the literature, and
has recently been discussed in connection with a mea-
sure originally devised for liquid crystals [14], where
chiral zeroes can be identified for particular choices of
parameters [15].

Thus, at least some chiral structures will have an
undefined chirality for any continuous pseudo-scalar
function ψ [16]. This mathematical fact has physical
counterparts. For example, the Kuhn zero-sum rule for
rotational strengths [17] guarantees that the optical ro-
tation for a given enantiomer of a chiral molecule will
have changes in sign as a function of wavelength and
so, by varying the conditions of the test (hence chan-
ging the definition of the function ψ) a false zero can be
produced. In principle, this objection applies to any test
based on a single continuous physical property, and has
induced some authors to state that it is impossible to
assign handedness to chirally connected objects [1].
To be less pessimistic, it would appear that the problem
can be side-stepped, after a fashion, at the cost of sacri-
ficing continuity, by adopting an open-ended hierarchy
of chirality indices, each to be checked only when pre-
decessors yield false zero results [13,18].

A chirally connected set of labelled vertices must
contain at least five points [11]. A centred tetrahedral
molecule such as the penta-atomic substituted methane
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C(XYZW) is chirally connected, whereas the empty tet-
rahedral cage XYZW is not. Chiral tetrahedra consid-
ered as sets of unlabelled vertices are chirally connected
[1,19]; our subject here is the chiral tetrahedron, free of
labels, considered as a geometrical object. In spite of
their chiral connectedness, all such tetrahedra can be
assigned a handedness. The CIP approach can be
adapted to demonstrate this point. In the CIP system,
absolute configuration labels R,S are assigned to chiral
centres using a set of priority rules based on the chemi-
cal nature of the neighbours. We will use priorities
based on relative edge lengths to assign R,S labels to
vertices and, by convention, transfer them to the tetra-
hedron as a whole. With one addition, an analogy of the
P,M helicity rule of the CIP system, all possible cases
of chiral tetrahedra are covered.

The basis of the classification is geometric: the set of
edge lengths. A tetrahedron is specified up to enantio-
morphism once the set of six side lengths is given, up to
similarity once the set of five relative lengths is given.
Considering all possible combinations of side lengths,
and excluding degenerate planar, linear or point config-
urations, there are 25 different cases, spanning the achir-
al groups Td, C3v, D2d, C2v, Cs (10 cases) and the chiral
groups D2, C2, C1 (15 cases) [2]. The 15 chiral cases are
those shown in Fig. 1, where the first entry for each
point group indicates the maximum possible number of
ig. 1. The 15 chiral tetrahedra, classified according to the pattern of edge lengths. The line styles bold, feint, dashed, hatched wavy and bobbled
dicate edges of different lengths.
F
in
distinct edge lengths, with different line styles for differ-
ent lengths. In D2 symmetry, there are three pairs of
equivalent edges, and no further equalities between them
are allowed. In C2 symmetry, there are two pairs of
equivalent edges, and up to three of the six edges may
have the same length. In C1 symmetry, there can be from
six to three distinct lengths in various arrangements.

The original CIP ‘steering wheel’ rule assigns labels
R,S to a tetrahedrally coordinated atom as follows: as-
sign priorities a > b > c > d to the four neighbouring
groups; imagine a steering wheel with the steering col-
umn going from the central atom down the bond to the
group of lowest priority d; if the priorities a, b, c run
clockwise on the wheel, when inspected from above,
the absolute configuration is R, if they run anticlock-
wise it is S (Fig. 2). In the adaptation for geometric
tetrahedra, we attach R,S labels to a vertex of a tetra-
hedron based on the lengths of the edges that meet at
that vertex, assigning priorities a > b > c to the long,
medium and short edges, respectively, and taking the
steering column to run from the vertex down into the
centroid of the tetrahedron. Of course, only vertices that
are the meeting points of edges of three different
lengths can be labelled in this way. The four vertices
of a chiral tetrahedron fall into 1, 2 and 4 orbits of sizes
4, 2 and 1 in the groups D2, C2, C1, respectively, the
number of orbits giving the maximum number of can-



Fig. 2. Steering-wheel mnemonic for the CIP R/S convention.
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didates that need to be considered for labelling in each
group. Thus, at most 1, 2 and 4 inequivalent vertices
qualify for labelling in D2, C2, C1 symmetries. Degen-
eracy amongst the edge lengths may reduce the number
of vertices that can be labelled at first order (see Fig. 1),
but, in every case bar one (4, C2), there is at least one
vertex that can be labelled. Leaving this exception aside
for the moment, Rule I for assigning an R,S label to the
tetrahedron is as follows (Fig. 3a):

● (I.1) label all vertices that can be labelled by the
steering-wheel rule;

● (I.2) identify the ‘senior’ vertex as the labelled ver-
tex that has the longest Long edge, and if more than
one have the same longest edge, select from these
the one with the longest Medium edge, and, if ne-
cessary, decide between these by requiring the long-
est Short edge;

● (I.3) the R,S label for the tetrahedron as a whole is
that of the senior vertex.

Sometimes the full order of precedence in (I.2) must
be invoked. Case 8 with bold edges longer than feint
Fig. 3. (a) Inspection of a vertex for application of Rule I. (b) Alignme
longer than dashed and hatched presents an example
where comparison of short edges is needed to decide
the identity of the senior vertex.

The one exception to Rule I as a complete decision
procedure is 4, C2 where step (I.1) yields no candidate
vertices, and yet the tetrahedron is clearly chiral. In this
case, the tetrahedron has two paths comprised of three
equal edges, forming two oppositely directed helices in
3D space. We can use the helix of longer edges to as-
sign an R,S label to the tetrahedron by Rule II as fol-
lows (Fig. 3b):

● (II.1) view the tetrahedron down the direction of the
central edge of the helix of longer edges. One of the
two remaining edges of the helix will be at the front,
and the other at the back;

● (II.2) bring the front edge into coincidence with the
projection of the back edge by a minimum rotation
of the front edge around the viewing direction: if a
clockwise rotation were required, the helix would
have label P; otherwise the label is M;

● (II.3) by convention, this label is applied to given an
R/S label to the tetrahedron as a whole, by convert-
ing P to R and M to S;

The two rules can be cast in terms of a purely math-
ematical calculation without direct reference to the CIP
rules. It is equivalent to Rule I to make use of a triple
product L ● M × S where L, M and S are the vectors
from the vertex of interest along the long, medium and
short edges, respectively. For each vertex, this pseudos-
calar product is six times the signed volume of the tet-
rahedron: if the product is positive for the senior vertex
the tetrahedron is labelled R, if negative S. Likewise, to
replace Rule II, the triple product can be evaluated for
the three vectors in the path AB, BC, CD of long edges
going from vertex A through vertices B and C to vertex
nt of the helix of a type-4 tetrahedron for application of Rule II.



Fig. 4. Chiral connectivity of geometric tetrahedra. P and P* are mirror images, linked by an entirely chiral pathway through Q. In the R,S
classification, all vertices of P are R and all vertices of P* are S; in Q, A and B are R, C and D′ are S. The senior vertex is D (D′) in P (P*) and C in
Q. All three tetrahedra are of unit volume and the triple product L•M� S is therefore ± 6.
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D, again leading to a label R for a positive sign, S for
negative. [AB ● BC × CD is equal to the product,
DC ● CB × BA, so the sign is unique]. This calculation
automates and simplifies the determination of clock-
wise and anticlockwise senses at vertices, which are
not always easy to see from drawings.

By either approach, all 15 types of chiral tetrahedra
are therefore classified into R and S ‘right’ and ‘left’
classes, in a solution to the strong form of Ruch’s clas-
sification problem. Of course, we have not avoided the
problem of chiral connectedness by this classification.
An R tetrahedron in the present classification can be
transformed continuously to its S enantiomer without
necessarily passing through an achiral intermediary
(Fig. 4). Nor have we obtained an index that partitions
the shape space into homochiral sub-spaces separated
by achiral boundary surfaces: in the five-dimensional
shape-space of chiral tetrahedra, a given R tetrahedron
may be surrounded by S tetrahedra. A tetrahedron could
also jump epimer class under a small change in the
detailed ordering of bond lengths. However, any given
chiral tetrahedron receives a label, and it is therefore
possible to communicate a precise prescription for its
reconstruction in the same absolute configuration by
giving only a set of lengths and that label. We have
therefore applied to geometrical objects the philosophy
used for molecules in organic chemistry, where it is
considered to be more important to define absolute con-
figuration than to worry about continuity between clo-
sely similar species. Although couched in terms of
lengths, Rules I and II are essentially combinatoric,
and in their application we must be prepared to tolerate
jumps in labelling where some small physical change
produces a change in combinatorial type, just as the
CIP rules can allow the labels to jump as a consequence
of small chemical changes to ligands. Finally, we note
that although the case of the tetrahedron has special
claims to be considered fundamental (Td is isomorphic
to the group of permutations of four elements), the prin-
ciple of assignment of assignment of vertex-handedness
could be extended to other geometrical bodies.
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