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Abstract

We derive the effective long-wavelength Euclidean action for the antiferromagnetic spin-waves of ordered quantum antiferro-
magnets subject to a uniform magnetic field. We point out that the magnetic field-dependence of the spin-wave dispersion predicted
by the usual O(3)-quantum nonlinear sigma model disagrees with spin-wave theory. We argue that the nonlinear sigma model does
not take into account all relevant spin-wave interactions and derive a modified effective action for the long-wavelength spin-waves
which contain an additional quartic interaction. At zero temperature the corresponding vertex is relevant in the renormalization
group sense below three dimensions. To cite this article: N. Hasselmann et al., C. R. Chimie 10 (2007).
� 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Recently, two of us derived a new effective field the-
ory [1] for transverse spin fluctuations in ordered quan-
tum antiferromagnets. Our approach is based on the
HolsteinePrimakoff transformation [2], which maps
the original spin Hamiltonian onto a bosonic many-
body Hamiltonian. However, rather than working di-
rectly with the canonical HolsteinePrimakoff bosons,
we express them in terms of Hermitian field operators
representing staggered and uniform transverse spin
fluctuations [3]. The main advantages of this procedure
are as follows: (a) the suppression of the effective inter-
action between antiferromagnetic magnons at long
wavelengths is manifest; (b) the relation between
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HolsteinePrimakoff bosons and the fields of the nonlin-
ear sigma model [4] (NLSM) representing the trans-
verse staggered spin fluctuation is made precise; (c)
the zero wave vector modes of the uniform and stag-
gered magnetizations can be easily treated within this
approach [3], which is important in the study of finite
magnets; (d) the transverse ferromagnetic fluctuations
may be eliminated to yield an effective theory involving
only transverse antiferromagnetic fluctuations. This is
most easily done within a path integral approach; the
resulting effective action coincides with the NLSM at
the Gaussian level. Although the interaction terms
of the effective action differ from those of the NLSM,
the renormalization group flows of both theories agree
to one-loop order [1].

Here, we extend the Hermitian operator approach to
antiferromagnets in a uniform magnetic field. In this
case, the differences between this approach and the
d by Elsevier Masson SAS. All rights reserved.
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NLSM become more substantial. Already at the Gauss-
ian level the two theories differ: while the Hermitian op-
erator approach reproduces by construction the correct
spin-wave dispersion as known from spin-wave theory,
the NLSM does not. More severely, we show below that
a quartic interaction term present in the Hermitian oper-
ator approach is absent in the NLSM.

We shall constrain the analysis here to a Heisenberg
model on a hypercubic lattice with nearest neighbor an-
tiferromagnetic coupling J> 0. It is, however, straight-
forward to extend the results to general bipartite
lattices. This would also cover a recently synthesized
metaleorganic S¼ 5/2 quantum antiferromagnet on
a distorted honeycomb lattice [5], which is bipartite.
In presence of a uniform external field h (measured in
units of energy), the Hamiltonian is given by

bH ¼ J
X
hiji

Si$Sj �
X

i

h$Si ð1Þ

Here, Si is spin operator normalized such that
S2

i ¼ SðSþ 1Þ, and the first sum is over nearest neighbor
pairs hiji of a hypercubic lattice with lattice constant a.

Our main interest is a description of the low-energy
and long-wavelength properties of the Heisenberg
model (1). A standard approach to this problem is the
O(3) quantum NLSM whose effective action describes
only the relevant staggered spin fluctuations. According
to Refs. [6,7], a magnetic field can be taken into account
within the NLSM approach by replacing the derivative
vt with respect to the imaginary time t with a covariant
derivative (or Lie derivative, see Ref. [8])

vt/vt� ih� ð2Þ

With this minimal coupling the NLSM in a uniform
magnetic field has the form

SNLSM½U� ¼
r0

2

Zb
0

dt

Z
dDr

"XD

m¼1

ðvmUÞ2

þ 1

c2
0

ðvtU� ih�UÞ2
#

ð3Þ

where the unit vector Uðt; rÞ represents the slowly fluc-
tuating staggered magnetization, r0 and c0 are the spin
stiffness and spin-wave velocity at temperature T¼
1/b¼ 0, and vm¼ v/vrm is the spatial derivative in direc-
tion m¼ 1,., D. Numerical values of r0 and c0 must be
computed microscopically, e.g. by means of a 1/S-
expansion [4]. To leading order in 1/S, one has
r0 z JS2a2�D and c0 z 2D1/2JSa. For later reference,
we note that the classical uniform transverse suscepti-
bility is c0¼ r0/c0

2 with c0 z (4DJaD)�1 to leading or-
der in 1/S. The classical uniform magnetization per
volume is M0 ¼ c0h.

2. Spin-wave dispersion

In the absence of a magnetic field, the NLSM pre-
dicts a doubly degenerate antiferromagnetic spin-wave
mode with long-wavelength dispersion Ek ¼ c0jkj, in
agreement with linear spin-wave theory [4]. Rather sur-
prisingly, however, in the presence of a magnetic field
the long-wavelength dispersion derived from the
NLSM in Eq. (3) disagrees with spin-wave theory. To
see this, let us recall the spin-wave dispersion predicted
by linear spin-wave theory. In this approach the spin op-
erators are expanded in deviations from the classical
ground state spin configuration, using either the
HolsteinePrimakoff [2] or the DysoneMaleev [9]
transformation. The classical ground state of a quantum
antiferromagnet in a uniform external field is canted,
where the staggered magnetization is perpendicular to
the magnetic field, as shown in Fig. 1. To leading order
in 1/S, spin-wave theory [5,10,11] predicts two trans-
verse spin-wave modes, one gapless and one gapped,
with long-wavelength dispersions (see Eqs. (17) and
(20) below)

Ekþz
�
h2þ c2

þk2
�1=2

; Ek�zc�jkj ð4Þ

where the spin-wave velocities are

cþ ¼ c0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3m2

0

q
; c� ¼ c0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m2

0

q
ð5Þ

Here, m0 ¼ jm0j is the length of the normalized classi-
cal uniform magnetization

Fig. 1. Spin configuration hSii ¼ Sbmi in the classical ground state of

a two-sublattice antiferromagnet subject to a uniform magnetic field

h¼ hex, where ri belongs to sublattice A and rj to sublattice B. Here

m0 [ h/(4DJS) and n0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

0

p
.
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m0 ¼ aD M0

S
¼ h

4DJS
ð6Þ

which is related to the classical canting angle w0 be-
tween the direction of the staggered magnetization
and the local magnetic moments by m0¼ sin w0. In gen-
eral, the classical canting angle is renormalized by
quantum fluctuations [5,10].

Let us compare Eqs. (4) and (5) with the dispersion
relation obtained from the NLSM. Denoting by ea the
unit vectors in the fixed directions a¼ x, y, z and assum-
ing h ¼ hex to point along the x-axis, we write

U¼Pkex þPtey þ
h
1�P2

k �P2
t

i1=2

ez ð7Þ

and expand the action SNLSM½U� to quadratic order in
the fluctuations Pk and Pt transverse to the direction
of the staggered magnetization. One easily finds from
Eq. (3) that the spin-wave mode Pk polarized parallel
to the magnetic field is gapped with energy dispersion

Ekk ¼
�
h2þ c2

0k2
�1=2 ð8Þ

while the spin-wave mode Pt polarized perpendicular
to the magnetic field has a gapless linear dispersion,

Ekt ¼ c0jkj ð9Þ
The spin-wave spectrum of the NLSM given in Eqs. (8)

and (9) does not reproduce the correct magnetic field-
dependence of the spin-wave spectrum in Eqs. (4) and
(5) obtained via conventional spin-wave theory. Obviously,
the above minimal coupling (2) does not account for order
(h/J)2 corrections to the dispersion, even though the quali-
tative aspects of the dispersion are correctly described.

3. Effective action

In Ref. [1] we have developed a new method to derive
the effective action for staggered transverse spin
fluctuations. We here sketch the main steps of the derivation
adapted to a quantum antiferromagnet subject to a uniform
magnetic field [12]. Starting point is the representation of
spin operators in terms of canonical boson operators bi

and bi
y using the HolsteinePrimakoff transformation [2].

Let us denote by bmi ¼ hSii=S the directions of the spins
in the true ground state and introduce a local right-handed
orthogonal triad of unit vectors e

ð1Þ
i ; e

ð2Þ
i ; bmi. As explained

in Ref. [13] there is an U(1) gauge freedom in the choice of

the transverse vectors e
ð1Þ
i and e

ð2Þ
i . Defining the spherical

basis vectors ep
i ¼ e

ð1Þ
i þ ipe

ð2Þ
i , p¼�, we express the

components of the spin operator Si in terms of canonical bo-
son operators bi and bi

y as follows [2]:
Si ¼ S
k
i bmiþ St

i ¼ S
k
i bmiþ

1

2

X
p¼�

S�p
i ep

i ð10Þ

with

S
k
i ¼ S� ni; ni ¼ byi bi ð11aÞ

Sþi ¼ ð2SÞ1=2
�

1� ni

2S

�1=2

bi ð11bÞ

and S�i ¼ ðSþi Þ
y. The Heisenberg model (1) can then be

written as a bosonic many-body Hamiltonian [5]. We
expand around the classical ground state configuration
(see Fig. 1)bmi ¼ zin0ezþm0ex ð12Þ

and choose

e
ð1Þ
i ¼ ey; e

ð2Þ
i ¼�zin0ex þm0ez ð13Þ

where zi¼ 1(zi¼�1) for ri˛Aðri˛BÞ. Here,
n0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

0

p
¼ cos w0. To diagonalize the quadratic

part of this Hamiltonian, we first perform a Fourier
transformation in the sublattice basis

bi ¼
ð2=NÞ1=2P

k

eik$ri Ak; ri˛A

ð2=NÞ1=2P
k

eik$ri Bk; ri˛B

8><>: ð14Þ

where the momentum sums are over the reduced (anti-
ferromagnetic) Brillouin zone. After introducing the
symmetric and antisymmetric combinations Cks ¼
2�1=2½Ak þ sBk�, s¼�, we apply the Bogoliubov
transformation�

Cks

Cy�ks

�
¼
�

uks �svks

�svks uks

�� bJksbJy
�ks

�
ð15Þ

where

uks ¼
	

1þ sm2
0gkþ eks

2eks


1=2

ð16aÞ

vks ¼
	

1þ sm2
0gk� eks

2eks


1=2

ð16bÞ

with

eks ¼
h�

1þ sm2
0gk

�2�
�
n2

0gk

�2
i1=2

ð17Þ

Here, gk ¼ D�1
P

m cosðk$amÞ, where am, m¼
1,.,D, are the D primitive lattice vectors of the
hypercubic lattice. The quadratic part of the effective
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boson Hamiltonian assumes then the form of non-inter-
acting harmonic oscillators [5,12],

bH2 ¼
X
k;s

Eks

	 bJy
ks
bJks þ

1

2



ð18Þ

where the operators bJks satisfy the canonical bosonic
commutation relations,h bJks; bJy

k0s0

i
¼ dk;k0ds;s0 ð19Þ

and the energy dispersion of the two spin-wave modes is
given by

Eks ¼ 2DJSeks ð20Þ
In the limit of long wavelengths Eq. (20) reduces to

the energy dispersions given in Eqs. (4) and (5).
To derive the long-wavelength effective action for

the staggered transverse spin fluctuations, we need
the precise relation between the Bogoliubov quasi-
particle operators bJks and the field operators bPks rep-
resenting the transverse fluctuations of the staggered
magnetization. In a Euclidean path integral approach,
these operators correspond to continuum fields
PksðtÞ which are analogs of the fields PkkðtÞ and
PktðtÞ of the NLSM. The relation between these
two different parameterizations of the spin fluctuations
is simply [1]bJkþ ¼ �iðc0=2VEkþÞ1=2�Ekþ bPkþ þ ic�1

0
bFkþ
�

ð21aÞ

bJk� ¼ ðc0=2VEk�Þ1=2�
Ek� bPk� þ ic�1

0
bFk�
�

ð21bÞ

where V¼NaD is the volume of the system. One easily
verifies that the pairs bPs, bFs satisfy commutation rela-
tions of canonically conjugate bosonic field operators,�bPks; bFk0s0

�
¼ iVdk;�k0ds;s0 ð22Þ

The field operators bPks and bFks have a simple inter-
pretation in terms of transverse staggered and uniform
spin components. The Fourier transformed spin opera-
tors on the A and B sublattices are given by

SA=B;k ¼ ð2=NÞ1=2
X

ri˛A=B

e�ik$ri Si ð23Þ

Using Eqs. (10) and (13) we find that, to leading or-
der in 1/S and m0, the transverse staggered components
of the spins are given by1

1 We use here a basis which is rotated compared to the one used in

Ref. [1]. This leads to different appearances of the minus signs in the

transformation Eqs. (24) and (25).
S
ð1Þ
st;k ¼

1ffiffiffi
2
p
�

S
ð1Þ
A;k� S

ð1Þ
B;k

�
z
�
S=aD

�
N�1=2 bPk� ð24aÞ

S
ð2Þ
st;k ¼

1ffiffiffi
2
p
�

S
ð2Þ
A;kþ S

ð2Þ
B;k

�
z�

�
S=aD

�
N�1=2 bPkþ ð24bÞ

In contrast, the transverse components of the uniform
magnetization are related to the operators bFks,

S
ð1Þ
k ¼

1ffiffiffi
2
p
�

S
ð1Þ
A;kþ S

ð1Þ
B;k

�
zN�1=2bFkþ ð25aÞ

S
ð2Þ
k ¼

1ffiffiffi
2
p
�

S
ð2Þ
A;k� S

ð2Þ
B;k

�
zN�1=2bFk� ð25bÞ

In terms of these operators, our quadratic spin-wave
Hamiltonian (18) can be written as

bH2 ¼
1

2V

X
k;s

�
c�1

0
bF�ks

bFksþ c0E2
ks
bP�ks

bPks

�
ð26Þ

The effective Euclidean action Seff[Ps] for the
staggered spin fluctuations can now be obtained by
writing the partition function as a phase space path
integral over the fields PksðtÞ and FksðtÞ associated
with the above operators and subsequently integrat-
ing over the Fs-fields which represent gapped ferro-
magnetic fluctuations. At the level of a Gaussian
approximation, we obtain in this way Seff z Seff

(2)

with

S
ð2Þ
eff ½Ps� ¼

c0

2bV

X
K;s

�
u2

nþE2
ks

�
P�KsPKs ð27Þ

Here, we have combined momenta k and bosonic
Matsubara frequencies un in a composite label
K ¼ ðk; iunÞ. We have further defined

PKs ¼
Zb

0

dt eiuntPksðtÞ ð28Þ

At long wavelengths the effective action (27) has the
same form as the corresponding Gaussian part of the ac-
tion of the NLSM. However, in contrast to the NLSM
(3), our effective action (27) has the correct spin-wave
dispersion, even for short wavelengths.

We have calculated the leading corrections to the ef-
fective action Seff[Ps] for staggered spin fluctuations
arising from spin-wave interactions in the Holsteine
Primakoff approach [12]. Keeping only interaction
terms which become relevant below three dimensions
and thus omitting terms which are marginal in D¼ 1,
we find in the continuum limit



64 N. Hasselmann et al. / C. R. Chimie 10 (2007) 60e64
Seff ½Ps� ¼
c0

2bV

X
K;s

�
u2

nþ c2
sk2þ rs

�
P�KsPKs

� ic0h

Zb
0

dt

Z
dDrP2

þvtP�

� c0h2

8

Zb
0

dt

Z
dDrP2

þ
�
P2
þ þP2

�
�
ð29Þ

Here, the cs is the HolsteinePrimakoff results for the
spin-wave velocities, which for large S is given in Eq.
(5). To leading orders in 1/S, the values of the gap param-
eters are rþ¼ h2 and r� ¼ 0. For symmetry reasons, the
true spin-wave spectrum of the P�-mode must remain
gapless at vanishing wave vector (Goldstone mode)
[14], while the spin-wave gap of the Pþ-mode is not re-
normalized [14,15]. In a renormalization group analysis,
this requires fine tuning such that at the fixed point these
conditions are met. While the cubic term in Eq. (29) cor-
responds precisely to the cubic (Berry phase) term in the
NLSM (3), the quartic interaction between the field com-
ponents is absent if the magnetic field is included in the
NLSM by the minimal coupling (2).

4. Summary and conclusion

In this work we have used the HolsteinePrimakoff
transformation to derive an effective action for stag-
gered transverse spin fluctuations of quantum Heisen-
berg antiferromagnets in uniform magnetic fields. Our
effective action contains an additional quartic interac-
tion between the field components which is not con-
tained in the NLSM. It is easy to see that at zero
temperature the quartic interaction vertex in Eq. (29)
is relevant in the renormalization group sense for di-
mensions D< 3, so that we expect that it generates sin-
gularities in perturbation theory [12]. We conclude that
the NLSM given in Eq. (3) does not contain all relevant
interactions in the ordered phase below three dimen-
sions. The reason for this is that not all approximations
that are usually made in the derivation of the NLSM [6]
are justified in the presence of a uniform magnetic field.
In particular, it is not justified to neglect Umklapp scat-
tering processes between transverse and longitudinal
spin fluctuations involving momentum transfers across
the boundary of the magnetic Brillouin zone. As an al-
ternative to Eq. (29) it should be possible to analyse the
long-wavelength staggered spin fluctuations within
a phenomenological GinzburgeLandau model with
a quartic interaction term [16] since this model treats
the longitudinal modes as independent degrees of
freedom.
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