

Available online at www.sciencedirect.com

COMPTES RENDUS

C. R. Chimie 10 (2007) 251-258

http://france.elsevier.com/direct/CRAS2C/

Full paper / Mémoire

Synthesis of new chiral *N*-arylsulfonyl-1,3-oxazolidin-2-ones from α -amino acids

Ahmed Ould Aliyenne, Jamil Kraïem, Yakdhane Kacem, Béchir Ben Hassine*

Laboratoire de synthèse organique asymétrique et catalyse homogène, faculté des sciences de monastir, avenue de l'Environnement, 5019 Monastir, Tunisia

> Received 12 April 2006; accepted after revision 20 October 2006 Available online 20 December 2006

Abstract

A variety of new chiral *N*-arylsulfonyl-1,3-oxazolidin-2-ones were prepared in three steps starting from (D)- and (L)-amino acid. *N*-Arylsulfonyl amino alcohols, derived from amino acids, were carbonylated with the bis-(trichloromethyl) carbonate (BTC), in the presence of triethylamine, to provide optically pure *N*-phenylsulfonyloxazolidin-2-ones 3a-f, *N*-naphthylsulfonyloxazolidin-2-ones 3g-j and *N*-tosylsulfonyloxazolidin-2-ones 3k-p in good yields. *To cite this article: A. Ould Aliyenne et al., C. R. Chimie 10 (2007).*

© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Une variété de nouvelles *N*-arylsulfonyloxazolidin-2-ones chirales a été préparée en trois étapes à partir d'acides α -aminés (D) et (L). Les *N*-arylsulfonyl aminoalcools, dérivés des acides aminés, ont été carbonylés par l'intermédiaire du carbonate de bis-trichlorométhyle, avec de bons rendements chimiques. *Pour citer cet article : A. Ould Aliyenne et al., C. R. Chimie 10 (2007)*. © 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Keywords: Amino acids; Bis-(trichloromethyl)carbonate; N-Arylsulfonyloxazolidin-2-ones

Mots-clés : Acides aminés ; Carbonate de bis-trichlorométhyle ; N-Arylsulfonyloxazolidin-2-ones

1. Introduction

1,3-Oxazolidin-2-ones are structural components of many compounds that display pharmacological properties [1-11]. Furthermore, they have also been used as chiral auxiliaries and intermediates in asymmetric synthesis of numerous pharmaceutical products [12,13]. During the past few years, significant progress has been made in the discovery of new biologically active *N*-aryl and *N*-alkyloxazolidin-2-ones [14-16]. However, the *N*-sulfonylated oxazolidin-2-ones were not sufficiently elaborated, and only few reports have described the synthesis of *N*-tosyloxazolidin-2-ones [17-19].

Several methods have been employed for the synthesis of racemic and optically active oxazolidin-2-ones. One of the most efficient methods to build the heterocyclic carbamate involves the condensation of 1,2-amino

1631-0748/\$ - see front matter © 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crci.2006.10.004

^{*} Corresponding author. *E-mail address:* bechirbenhassine@yahoo.fr (B. Ben Hassine).

alcohols with carbonyl derivatives such as phosgene [20], trichloromethyl chloroformate [18], bis-(trichloromethyl) carbonate [21], isocyanates [12], chloroformates [22], ureas [23], or diethylcarbonate [24]. The catalyzed addition of CO_2 to aziridines has also been employed to prepare racemic *N*-tosyloxazolidin-2-ones [17].

Izuhara et al. [18] have described a four-step synthesis of the optically pure 4-benzyl-3-tosyloxazolidin-2-one starting from (L)-phenylalanine. In this sequence, the trichloromethyl chloroformate has been employed as a carbonylating agent. In this work, we describe a three-step synthesis of a variety of new chiral *N*-arylsulfonyloxazolidin-2-ones, using the same strategy cited above. We have employed the bis-(trichloromethyl) carbonate (BTC) instead of the trichloromethyl chloroformate, since it appears to be safer due to its lower vapor pressure and higher stability [25].

2. Results and discussion

Enantiomerically pure N-arylsulfonyloxazolidin-2ones are prepared in three steps from commercially available (D)- and (L)-amino acid. As illustrated in Scheme 1, sulforylation of α -amino acids with arylsulfonylchlorides, in a two-phase mixture of *i*-PrNEt₂ in acetone and aqueous NaOH, leads to the N-arylsulfonyl amino acids 1a-p, which were then reduced to the *N*-arylsulfonyl amino alcohols $2\mathbf{a}-\mathbf{p}$ with good to excellent yields (Table 1) by use of lithium aluminium hydride in THF or (THF:Et₂O). The same procedure has been employed by Berry and Craig [26] to prepare *N*-tosyl- α -amino alcohols from α -amino acids. These authors have determined the enantiomeric purity of *N*-tosyl- α -amino alcohols (entry **2m**-**p**) by the formation of the corresponding MTPA esters [27], the minor diastereoisomers have not been detected in the 500 MHz ¹H NMR spectrum of the crude product [26].

As far as we know, compounds **2a–l** were prepared for the first time during this study. Compounds **2m–p** were prepared by Barry and Craig [26].

Subsequent reaction of compounds $2\mathbf{a}-\mathbf{p}$ with BTC, in the presence of Et₃N at -78 °C to r.t., provided the corresponding *N*-arylsulfonyloxazolidin-2-ones $3\mathbf{a}-\mathbf{p}$ in excellent yields without racemization, as confirmed by chiral HPLC analysis on tow compounds (entries $3\mathbf{c}$ and $3\mathbf{h}$) (Scheme 2).

In Table 2, are given the chemical yields and the physical properties of compounds 3a-p, which have not been reported to date, except compound 3p.

3. Conclusion

We have synthesized, in good yields, a variety of new chiral *N*-arylsulfonyloxazolidin-2-ones from their corresponding α -amino acids. The test of the biological activity and the study of synthetic properties of these new products are under investigation in our laboratory.

4. Experimental section

TLC was performed on Merck 60F-254 silica gel plates (layer thickness 0.25 mm). Column chromatography was performed on silica gel (70-230 mesh) using ethylacetate and cyclohexane mixture as eluents. Melting points were determined on a Electrothermal 9002 apparatus and are uncorrected. ¹H NMR spectra were recorded at 300 MHz. All chemical shifts are reported as δ values (ppm) relative to internal tetramethylsilane. CH₂Cl₂, THF were respectively distilled over CaH₂ and Na/benzophenone. Elemental analyses were carried out by 'Service de microanalyse' of 'Institut national de recherche et d'analyse physico-chimique de Tunis'. HPLC analyses were conducted on a methanol/hexane [70:30] system with a UV detector at 254 nm, using a Chirobiotic V column $(250 \times 46 \text{ mm})$ and a flow rate of 0.6 mL/min.

 $\begin{aligned} \mathbf{1a-f}: & \text{Ar} = \text{C}_{6}\text{H}_{5^{-}}; \mathbf{1g-j}: \text{Ar} = 2\text{-Naphthyl}; \; \mathbf{1k-p}: \text{Ar} = p\text{-}\text{H}_{3}\text{C}\text{-}\text{C}_{6}\text{H}_{4^{-}} \\ & \mathbf{2a-f}: \text{Ar} = \text{C}_{6}\text{H}_{5^{-}}; \mathbf{2g-j}: \text{Ar} = 2\text{-Naphthyl}; \; \mathbf{2k-p}: \text{Ar} = p\text{-}\text{H}_{3}\text{C}\text{-}\text{C}_{6}\text{H}_{4^{-}} \end{aligned}$

Scheme 1. Synthesis of N-arylsulfonyl-α-amino alcohols.

Table 1 Preparation of *N*-arylsulfonyl-α-amino alcohols

Entry	R	Ar	Config.	[α] _D	m.p. (°C)	Yields (%)
2a	<i>i</i> -Pr	C ₆ H ₅ -	S	-10	76-78	98
2b	Me	C_6H_5-	S	+15	Oil	97
2c	<i>i</i> -Bu	C_6H_5-	S	+18	102-104	99
2d	Ph	C_6H_5-	R	-10	114-116	98
2e	Bn	C_6H_5-	S	+18.7	64-66	95
2f	s-Bu	C_6H_5-	S	+25	58-60	99
2g	Me	2-Naphthyl	S	+23	82-84	82
2h	<i>i</i> -Pr	2-Naphthyl	S	-10	96-98	86
2i	s-Bu	2-Naphthyl	S	+18	112-114	85
2ј	Bn	2-Naphthyl	S	+22	106-108	75
2k	s-Bu	$p-H_3C-C_6H_4-$	S	-15	80-81	98
21	Ph	$p-H_3C-C_6H_4-$	R	-10	93-94	97
2m	<i>i</i> -Pr	$p-H_3C-C_6H_4-$	S	+16.8	88-89	98 (99) ^a
2n	<i>i</i> -Bu	$p-H_3C-C_6H_4-$	S	+23.7	105-106	96 (98) ^a
20	Bn	$p-H_3C-C_6H_4-$	S	-15	74-75	97 (99) ^a
2p	Me	<i>p</i> -H ₃ C-C ₆ H ₄ -	S	+15.8	57-58	98 (100) ^a

^a Chemical yields **2m**-**p** reported by Berry and Craig [26].

N-Arylsulfonyl amino alcohols **2a**–**p** were prepared according to literature [26]; compounds **2m**–**p** were reported by Berry and Craig [26].

4.1. (2S)-N-(Phenylsulfonyl)valinol: 2a

Yield = 98%; m.p.: 76–78 °C [hexane:ethylacetate (90:10)]. IR (cm⁻¹): $\nu_{\rm NH}$ = 3215, $\nu_{\rm OH}$ = 3493; [α]_D = -10 (c = 1, CHCl₃). ¹H NMR (300 MHz, CDCl₃): 0.70–0.79 (2d, 6H); 1.73–1.82 (m, 1H); 2.22 (s, 1H); 3.03–3.09 (m, 1H); 3.54–361 (m, 2H); 5.24 (d, 1H); 7.28–7.60 (m, 3H); 7.92 (d, 1H). ¹³C NMR (75 MHz, CDCl₃): (18.80, 19.49, 2CH₃–); (29.83, – CH–); (61.48, CH–NH–); (63.41, –CH₂–O–); (127.49–140.93, C_{arom}). Anal. calc. for C₁₁H₁₇NO₃S (243.32): C, 54.30; H, 7.04; N, 5.76. Found: C, 54.20; H, 7.20; N, 5.72.

4.2. (2S)-N-(Phenylsulfonyl)alaninol: 2b

Yield = 97%; oil; $[\alpha]_D = +15$ (*c* = 0.6, CHCl₃). IR (cm⁻¹): $\nu_{NH} = 3217$, $\nu_{OH} = 3477$. ¹H NMR (300 MHz,

3a-f : Ar = C_6H_5 -; **3g-j** : Ar = 2-Naphthyl ; **3k-p** : Ar = p-H₃C- C_6H_4 -

Scheme 2. Synthesis of N-arylsulfonyloxazolidin-2-ones.

 $\begin{array}{l} \text{CDCl}_3\text{):} \ 0.98\ (d,\ 3\text{H});\ 3.01-3.06\ (m,\ 1\text{H});\ 3.08\ (s,\ 1\text{H});\\ 3.37-3.58\ (m,\ 3\text{H});\ 5.75\ (s,\ 1\text{H});\ 7.48-7.60\ (m,\ 3\text{H});\\ 7.91\ (d,\ 2\text{H}).\ ^{13}\text{C}\ \text{NMR}\ (75\ \text{MHz},\ \text{CDCl}_3\text{):}\ (17.28,\ 1\text{CH}_3-);\ (51.91,\ -\text{CH}-\text{NH}-);\ (66.47,\ -\text{CH}_2-\text{O}-);\\ (127.35\ \text{and}\ 141.01,\ C_{arom}\text{).}\ \text{Anal.}\ \text{calc.}\ \text{for}\\ C_9H_{13}\text{NO}_3S\ (215.27):\ C,\ 50.22;\ H,\ 6.09;\ N,\ 6.51.\\ \text{Found:}\ C,\ 50.10;\ H,\ 6.10;\ N,\ 6.42.\\ \end{array}$

4.3. (2S)-N-(Phenylsulfonyl)leucinol: 2c

Yield = 99%; m.p.: 102–104 °C [hexane:ethylacetate (90:10)]; $[\alpha]_{\rm D}$ = +18 (c = 1, CHCl₃). IR (cm⁻¹): $\nu_{\rm NH}$ = 3201, $\nu_{\rm OH}$ = 3397. ¹H NMR (300 MHz, CDCl₃): 0.61–0.68 (2d, 6H); 1.22–1.51 (m, 2H); 3.02 (s, 1H); 3.17–3.56 (m, 3H); 5.25 (d, 1H); 7.30– 7.53 (m, 3H); 7.86 (d, 2H). ¹³C NMR (75 MHz, CDCl₃): (20.24, 22.30, 2CH₃–); (38.75, -CH₂–); (51.72, CH–NH–); (64.92, -CH₂–O–); (126.48– 140.25, C_{arom}). Anal. calc. for C₁₂H₁₉NO₃S (257.35): C, 56.01; H, 7.44; N, 5.44. Found: C, 55.80; H, 7.42; N, 5.39.

4.4. (2S)-N-(Phenylsulfonyl)phenylglycinol: 2d

Yield = 98%; m.p.: 114–116 °C [hexane:ethylacetate (90:10)]; $[\alpha]_D = -10$ (c = 0.5, CHCl₃). IR (cm⁻¹): $\nu_{NH} = 3302$, $\nu_{OH} = 3477$. ¹H NMR (300 MHz, CDCl₃): 3.35 (s, 1H); 3.72–3.75 (m, 2H); 4.07–4.59 (m, 1H); 6.25 (d, 1H); 7.04–7.37 (m, 10H). ¹³C NMR (75 MHz, CDCl₃): (60.23, CH–NH–); (66.49, -CH₂–O–); (126.76–140.56, C_{arom}). Anal. calc. for C₁₄H₁₅NO₃S (277.34): C, 60.63; H, 5.45; N, 5.05. Found: C, 60.53; H, 5.42; N, 5.10.

 Table 2

 Preparation of N-arylsulfonyloxazolidin-2-ones

Entry	R	Ar	Config.	m.p. (°C)	[α] _D	Yields (%)
3a	Bn	C ₆ H ₅ -	S	107-109	+38.3	96
3b	<i>i</i> -Pr	C_6H_5-	S	99-101	+56.8	95
3c	Me	C_6H_5-	S	60-62	+45.0	95
3d	<i>i</i> -Bu	C_6H_5-	S	139-141	+39.6	96
3e	Ph	C_6H_5-	R	118-120	-13.6	97
3f	s-Bu	C_6H_5-	S	144-146	+60.0	95
3g	Me	2-Naphthyl	S	129-131	+40.1	88
3h	<i>i</i> -Pr	2-Naphthyl	S	141-143	+16.7	85
3i	s-Bu	2-Naphthyl	S	130-132	+60.0	81
3ј	Bn	2-Naphthyl	S	126-128	+71.4	79
3k	<i>i</i> -Pr	$p-H_3C-C_6H_4-$	S	115-118	+58.2	95
31	<i>i</i> -Bu	$p-H_3C-C_6H_4-$	S	151-153	+38.4	96
3m	s-Bu	$p-H_3C-C_6H_4-$	S	170-172	+41.0	95
3n	Me	<i>p</i> -H ₃ C-C ₆ H ₄ -	S	117-119	+52.2	97
30	Ph	<i>p</i> -H ₃ C-C ₆ H ₄ -	R	149-151	-39.5	95
3p	Bn	<i>p</i> -H ₃ C-C ₆ H ₄ -	S	136-138	+36.2	96

4.5. (2S)-N-(Phenylsulfonyl)phenylalaninol: 2e

Yield = 95%; m.p.: 64–66 °C [hexane:ethylacetate (90:10)]; $[\alpha]_{D} = +18.7$ (c = 0.5, CHCl₃). IR (cm⁻¹): $\nu_{NH} = 3193$, $\nu_{OH} = 3416$. ¹H NMR (300 MHz, CDCl₃): 2.64–2.83 (dd, 2H); 3.46–3.70 (m, 3H); 5.40 (d, 1H); 6.90–7.73 (m, 10H). ¹³C NMR (75 MHz, CDCl₃): (38.10, -CH₂–); (57.22, -CH–NH–); (64.36, -CH₂–O–); (126.76–140.30, C_{arom}). Anal. calc. for C₁₅H₁₇NO₃S (291.36): C, 61.83; H, 5.88; N, 4.81. Found: C, 61.72; H, 5.80; N, 5.80.

4.6. (2S, 3S)-N-(Phenylsulfonyl)isoleucinol: 2f

Yield = 99%; m.p.: 58–60 °C [hexane:ethylacetate (90:10)]; $[\alpha]_D = +25$ (c = 0.6, CHCl₃). IR (cm⁻¹): $\nu_{\rm NH} = 3216$, $\nu_{\rm OH} = 3408$. ¹H NMR (300 MHz, CDCl₃): 0.69 (d, 3H); 0.86 (t, 3H); 1.02 (m, 2H); 1.41–1.52 (m, 2H); 2.35 (s, 1H); 3.15–3.24 (m, 1H); 3.52–3.54 (m, 2H); 5.09 (d, 1H); 7.23–7.51 (m, 3H); 7.86 (d, 2H). ¹³C NMR (75 MHz, CDCl₃): (13.24, 22.91, 2CH₃–); (25.39, 35.27, 2-CH–); (60, CH–NH–); (60.65, $-CH_2-O-$); (127.34–142.58, C_{arom}). Anal. calc. for C₁₂H₁₉NO₃S (257.35): C, 56.01; H, 7.44; N, 5.44. Found: C, 56.10; H, 7.52; N, 5.42.

4.7. (2S)-N-(2-Naphthylsulfonyl)alaninol: 2g

Yield = 82%; m.p.: 82–84 °C [hexane:ethylacetate (90:10)]; $[\alpha]_D = +23$ (c = 1, CHCl₃). IR (cm⁻¹): $\nu_{\rm NH} = 3175$, $\nu_{\rm OH} = 3327$. ¹H NMR (300 MHz, DMSO): 1.81 (d, 3H); 2.21 (s, 1H); 3.72–4.64 (m, 3H); 5.64 (s, 1H); 7.58–7.81 (m, 2H); 7.90–8.18 (m,

4H); 8.69 (s, 1H). ¹³C NMR (75 MHz, DMSO): (20.11, CH₃-); (56.86, CH-NH-); (70.89, -CH₂-O-); (119.73-13251, C_{arom}).

4.8. (2S)-N-(2-Naphthylsulfonyl)valinol: 2h

Yield = 85%; m.p.: 96–98 °C [hexane:ethylacetate (90:10)]; $[\alpha]_D = -10$ (c = 1, CHCl₃). IR (cm⁻¹): $\nu_{\rm NH} = 3187$, $\nu_{\rm OH} = 3491$. ¹H NMR (300 MHz, DMSO): 0.61–0.89 (2d, 6H); 2.05 (s, 1H); 3.89–4.51 (m, 3H); 5.82 (d, 1H); 7.60–7.73 (m, 2H); 7.89–8.05 (m, 4H); 8.54 (s, 1H). ¹³C NMR (75 MHz, DMSO): (16.27, 20.07, 2CH₃–); (30.10, –CH–); (61.20, CH– NH–); (66.92, –CH₂–O–); (120.12–1139.75, C_{arom}). Anal. calc. for C₁₅H₁₉NO₃S (293.38): C, 61.41; H, 6.53; N, 4.77. Found: C, 60.80; H, 7.10; N, 4.62.

4.9. (2S, 3S)-N-(2-Naphthylsulfonyl)isoleucinol: 2i

Yield = 86%; m.p.: 112–114 °C [hexane:ethylacetate (90:10)]; $[\alpha]_{\rm D}$ = +18 (c = 1, CHCl₃). IR (cm⁻¹): $\nu_{\rm NH}$ = 3217, $\nu_{\rm OH}$ = 3512. ¹H NMR (300 MHz, DMSO): 0.81 (d, 3H); 0.83–0.99 (t, 3H); 1.24–1.42 (m, 2H); 1.57–2.74 (m, 1H); 2.18 (s, 1H); 3.86–4.29 (m, 3H); 5.71 (d, 1H); 7.18–7.41 (m, 2H); 7.68–8.27 (m, 4H); 8.83 (s, 1H). ¹³C NMR (75 MHz, DMSO): (1125, 13.08, 2CH₃–); (26.24, –CH–) (36.18, – CH₂–); (60.64, CH–NH–); (66.71, –CH₂–O–); (122.08–139.16, C_{arom}).

4.10. (2S)-N-(2-Naphthylsulfonyl)phenylalaninol: 2j

Yield = 75%; m.p.: 106–108 °C [hexane:ethylacetate (90:10)]; $[\alpha]_{D} = +22$ (*c* = 1, CHCl₃). IR (cm⁻¹):

255

 $\nu_{\rm NH} = 3211, \nu_{\rm OH} = 3519.$ ¹H NMR (300 MHz, DMSO): 2.09 (s, 1H); 2.82–2.89 (m, 1H); 3.41–3.48 (m, 1H); 3.98–4.12 (m, 2H); 4.57–4.62 (m, 1H); 5.75 (d, 1H); 7.21–7.45 (m, 5H); 7.62–7.74 (m, 2H); 8.01–8.16 (m, 4H); 8.74 (s, 1H). ¹³C NMR (75 MHz, DMSO): (40.21, -CH₂–); (57.51, CH–N–); (67.95, -CH₂– O–); (121.75–136.93, C_{arom}).

4.11. (2S)-N-(4-Methylbenzenesulfonyl)isoleucinol: 2k

Yield = 98%; m.p.: 80–81 °C [hexane:ethylacetate (90:10)]; $[\alpha]_D = -15$ (c = 1, CHCl₃). IR (cm⁻¹): $\nu_{\rm NH} = 3300$, $\nu_{\rm OH} = 3481$. ¹H NMR (300 MHz, CDCl₃): 0.75 (d, 3H); (t, 3H); 0.91 (m, 2H); 1.35–1.49 (m, 2H); 2.2 (s, 1H); 2.42 (s, 3H); 3.09–3.13 (m, 1H); 3.55–3.56 (m, 2H); 5.1 (d, 1H); 7.28–7.79 (AA'BB', 4H). ¹³C NMR (75 MHz, CDCl₃): (11.72–21.91, 3CH₃–); (25.60, 36.75, 2-CH–); (60.11 and 60.78, CH–NH–, –CH₂–O–); (127.12–143.50, C_{arom}). MS: C₁₃H₂₁NSO₃; MW = 271 g/mol; m/z = 240 (C₁₁H₁₈NSO₃⁺, 51%); m/z = 155 (C₇H₇SO₂⁺, 67%); m/z = 91 (C₇H₇⁺, 100%).

4.12. (2S)-N-(4-Methylbenzenesulfonyl) phenylglycinol: 2l

Yield = 97%; m.p.: 93–94 °C [hexane:ethylacetate (90:10)]; $[\alpha]_D = -10$ (c = 1, CHCl₃). IR (cm⁻¹): $\nu_{\rm NH} = 3319$, $\nu_{\rm OH} = 3396$. ¹H NMR (300 MHz, CDCl₃): 2.4 (s, 3H); 2.68–2.76 (dd, 2H); 3.49–3.65 (m, 3H); 5.15 (d, 1H); 6.95–7.58 (m, 9H). ¹³C NMR (75 MHz, CDCl₃): (21.61, CH₃–); (61.24, CH–NH–); (67.08, –CH₂–O–); (126.67–141.27, C_{arom}). MS: C₁₃H₂₁NSO₃; MW = 305 g/mol; *m/z* = 274 (C₁₄H₁₆NSO⁺₃, 8%); *m/z* = 214 (C₇H₉NSO⁺₃, 38%); *m/z* = 155 (C₇H₇SO⁺₂, 50%); *m/z* = 91 (C₇H⁺₇, 100%).

4.13. Preparation of (4S)-3-(phenylsulfonyl)-4-benzyloxazolidin-2-one: **3a**

To a solution of bis-(trichloromethyl)carbonate (0.43 g, 1.44 mmol, 0.3 eq) in CH₂Cl₂ (20 mL) at -78 °C was slowly added a solution of *N*-(phenylsulfonyl)phenylalaninol **2e** (1.07 g, 3.68 mmol) in CH₂Cl₂ (40 mL). After 15 min of stirring, triethylamine (10 mmol, 1.4 mL, 3 eq) in CH₂Cl₂ (80 mL) was added dropwise maintaining the temperature below -70 °C. The resulting mixture was stirred at -78 °C for 5 min and then the ethylacetate–N₂ (liquid) bath was removed. The reaction mixture was stirred at room temperature for 2 h and washed with 1 N HCl (50 mL) and brine (3 × 25). Evaporation of the solvent under reduced pressure gave a residue, which was purified by chromatography on silica gel using [cyclohexane/ ethylacetate (8:2)], as mobile phase.

Yield = 96%; m.p.: 107–109 °C [hexane:ethylacetate (90:10)]; $[\alpha]_D = +38.3$ (c = 1, CHCl₃). IR (cm⁻¹): $\nu_{CO} = 1772$. ¹H NMR (300 MHz, CDCl₃): 2.83–2.88 (m, 1H); 3.49–3.55 (m, 1H); 4.11–4.20 (m, 2H); 4.65–4.73 (m, 1H); 7.02–7.70 (m, 10H). ¹³C NMR (75 MHz, CDCl₃): (40.13, -CH₂–); (58.41, CH–N–); (67.06, -CH₂–O–); (127.99–138.48, C_{arom}); (152.38, CO). MS: C₁₆H₁₅NO₄S; MW = 317 g/mol; *m*/*z* = 253 (C₁₆H₁₅NO₂⁺, 64%); *m*/*z* = 141 (C₆H₅O₂S⁺, 81%); *m*/*z* = 91 (C₇H₇⁺, 100%); *m*/*z* = 77 (C₆H₅⁺, 43%). Anal. calc. for C₁₆H₁₅NO₄S (317.36): C, 60.55; H, 4.76; N, 4.41. Found: C, 60.10; H, 4.32; N, 4.20.

4.14. (4S)-3-(Phenylsulfonyl)-4-i-propyloxazolidin-2-one: **3b**

Compound **3b** (90:10); $[\alpha]_D = +58.8$ (c = 0.5, CHCl₃). IR (cm⁻¹): $\nu_{CO} = 1761$. ¹H NMR (300 MHz, CDCl₃): 0.70-0.94 (2d, 6H); 2.41-2.52 (m, 1H); 4.14-4.48 (m, 3H); 7.54-8.11 (m, 5H). ¹³C NMR (75 MHz, CDCl₃): (14.30, 18.16, 30.24, 3CH₃-); (62.08, CH-NH-); (63.90, -CH₂-O-); (128.74-138.46, C_{arom}); (152.79, CO). MS: C₁₂H₁₅NO₄S; MW = 269 g/mol; m/z = 226 (C₉H₈NO₄S⁺, 38%); m/z = 205 (C₁₂H₁₅NO^{±+}, 12%); m/z = 176 (C₉H₈NO[±], 31%); m/z = 141 (C₇H₇SO[±], 100%); m/z = 77 (C₆H⁺, 67%). Anal. calc. for C₁₂H₁₅NO₄S (269.32): C, 53.52; H, 5.61; N, 5.20. Found: C, 53.40; H, 5.52; N, 5.13.

4.15. (4S)-3-(Phenylsulfonyl)-4-methyloxazolidin-2-one: **3c**

Yield = 95%; m.p.: 60-62 °C [hexane:ethylacetate (90:10)]; $[\alpha]_D = +45$ (c = 1, CHCl₃). IR (cm⁻¹): $v_{\rm CO} = 1761$. ¹H NMR (300 MHz, CDCl₃): 1.48 (d, 3H); 3.87-3.91 (m, 1H); 4.37-4.56 (m, 2H); 7.50-8.03 (m, 5H). ¹³C NMR (75 MHz, CDCl₃): (20.66, CH₃-); (53.71, CH-NH-); (69.70, -CH₂-O-); (128.31 - 138.05,C_{arom}); (152.17, CO). MS: $C_{10}H_{11}NO_4S$; MW = 241 g/mol; m/z = 241 M⁺⁺, 7%); m/z = 226 (C₉H₈NO₄S⁺, 30%); m/z = 177 $(C_{10}H_{11}NO_2^{+}, 55\%); m/z = 141 (C_6H_5SO_2^{+}, 100\%);$ m/z = 77 (C₆H₅⁺, 57%). Anal. calc. for C₁₀H₁₁NO₄S (241.26): C, 49.78; H, 4.60; N, 5.81. Found: C, 49.72; H, 4.53; N, 5.60.

Enantiomeric purity of 3c was determined by HPLC analyses on Chirobiotic V column (250×46 mm) with a flow rate of 0.6 mL/min. Mobile phase methanol/hexane

[70:30]; retention times: (4S)-3-(phenylsulfonyl)-4-methyloxazolidin-2-one 10.4 min; (4R)-3-(phenylsulfonyl)-4-methyloxazolidin-2-one 15.2 min.

4.16. (4S)-3-(Phenylsulfonyl)-4-i-butyloxazolidin-2one: **3d**

Yield = 96%; m.p.: 139–141 °C [hexane:ethylacetate (90:10)]; $[\alpha]_D = +39.6$ (c = 0.5, CHCl₃). IR (cm⁻¹): $\nu_{CO} = 1770$. ¹H NMR (300 MHz, CDCl₃): 0.90–1.05 (m, 6H); 1.56–1.67 (m, 2H); 1.94–2.04 (m, 1H); 4.05–4.09 (m, 1H); 4.36–452 (m, 2H); 7.54–8.08 (m, 5H). ¹³C NMR (75 MHz, CDCl₃): (21.44, 23.61, 24.67, 3CH₃–); (42.87, -CH₂–); (56.27, CH–NH–); (68.15, -CH₂–O–); (128.41– 138.21, C_{arom}); (152, CO). MS: C₁₃H₁₇NO₄S; MW = 283 g/mol; m/z = 219 (C₁₃H₁₇NO₂⁺, 13%); m/z = 162 (C₉H₈NO₂⁺, 24%); m/z = 141 (C₆H₅SO₂⁺, 100%); m/z = 77 (C₆H₅⁺, 67%). Anal. calc. for C₁₃H₁₇NO₄S (283.34): C, 55.11; H, 6.05; N, 494. Found: C, 55.01; H, 6.17; N, 4.83.

4.17. (4R)-3-(Phenylsulfonyl)-4-phenyloxazolidin-2one: **3e**

Yield = 97%; m.p.: 118–120 °C [hexane:ethylacetate (90:10)]; $[\alpha]_D = -13.6$ (c = 1, CHCl₃). IR (cm⁻¹): $\nu_{CO} = 1775$. ¹H NMR (300 MHz, CDCl₃): 4.27–4.31 (m, 1H); 4.71–4.77 (t, 1H); 5.42–5.46 (m, 1H); 7.19–7.55 (m, 10H). ¹³C NMR (75 MHz, CDCl₃): (60.41, CH–NH–); (70.51, -CH₂–O–); (127.12–137.68, C_{arom}); (152.02, CO). MS: C₁₅H₁₃ NO₄S; MW = 303 g/mol; m/z = 239 (C₁₅H₁₃O₂N⁺⁺, 65%); m/z = 141 (C₆H₅O₂S⁺, 100%); m/z = 77(C₆H₅⁺, 58%). Anal. calc. for C₁₅H₁₃NO₄S (303.33): C, 59.40; H, 4.32; N, 4.62. Found: C, 59.20; H, 4.21; N, 4.65.

4.18. (4S)-3-(Phenylsulfonyl)-4-[(1'S)-1'methylpropyl]oxazolidin-2-one: **3**f

Yield = 95%; m.p.: 144–146 °C [hexane:ethylacetate (90:10)]; $[\alpha]_D = 60$ (c = 1, CHCl₃). IR (cm⁻¹): $\nu_{CO} = 1772$. ¹H NMR (300 MHz, CDCl₃): 0.72 (d, 3H); 0.96–1.00 (t, 3H); 1.09–1.34 (m, 2H); 2.22 (m, 1H); 4.12–4.16 (m, 1H); 4.25–4.31 (t, 1H); 4.53– 4.56 (m, 1H); 7.55–8.11 (m, 5H). ¹³C NMR (75 MHz, CDCl₃): (11.68, 12.19, 2CH₃–); (25.65, – CH–); (37.05, –CH₂–); (61.05, CH–NH–); (63.94, –CH₂–O–); (128.76–138.40, C_{arom}); (152.87, CO). MS: C₁₃H₁₇NO₄S; MW = 283 g/mol; m/z = 219(C₁₃H₁₇NO₂⁺, 17%); m/z = 226 (C₉H₈NO₄S⁺, 15%); m/z = 141 (C₆H₅SO₂⁺, 100%); m/z = 77 (C₆H₅⁺, 63%). Anal. calc. for C₁₃H₁₇NO₄S (283.34): C, 55.11; H, 6.05; N, 4.94. Found: C, 55.10; H, 5.76; N, 4.80.

4.19. (4S)-3-(2-Naphthylsulfonyl)-4methyloxazolidin-2-one: **3g**

Yield = 88%; m.p.: 129–131 °C [hexane:ethylacetate (90:10)]; $[\alpha]_D = +40.1$ (c = 0.5, CHCl₃). IR (cm⁻¹): $\nu_{CO} = 1762$. ¹H NMR (300 MHz, CDCl₃): 1.59 (d, 3H); 3.93–4.66 (m, 3H); 7.62–7.73 (m, 2H); 7.92–8.05 (m, 4H); 8.68 (s, 1H). ¹³C NMR (75 MHz, CDCl₃): (21.19, CH₃–); (54.04, CH–NH–); (69.96, -CH₂–O–); (122.94–135.94, C_{arom}); (152.47, CO). MS: C₁₄H₁₃NO₄S; MW = 291 g/mol; m/z = 291 (M⁺⁺, 13%); m/z = 227 (C₁₄H₁₃NO₂⁺⁺, 35%); m/z = 168(C₁₂H₁₀N⁺, 26%); m/z = 127 (C₁₀H⁺, 100%). Anal. calc. for C₁₄H₁₃NO₄S (291.32): C, 57.72; H, 4.50; N, 4.81. Found: C, 57.62; H, 4.41; N, 4.62.

4.20. (4S)-3-(2-Naphthylsulfonyl)-4i-propyloxazolidin-2-one: **3h**

Yield = 85%; m.p.: 141–143 °C [hexane:ethylacetate (90:10)]; $[\alpha]_{\rm D} = +16.7$ (c = 0.5, CHCl₃). IR (cm^{-1}) : $\nu_{CO} = 1766$. ¹H NMR (300 MHz, CDCl₃): 0.74-0.97 (2d, 6H); 4.14-4.53 (m, 3H); 7.61-7.72 (m, 2H); 7.91–8.02 (m, 4H); 8.68 (s, 1H). ¹³C NMR (75 MHz, CDCl₃): (14.39, 18.17, 2CH₃-); (30.13, -CH-); (62.14, CH-NH-); (63.94, -CH₂-O-); (122.57 - 135.91,C_{arom}); (152.87, CO). MS: $C_{17}H_{19}NO_4S; MW = 333 \text{ g/mol}; m/z = 319 (M^{+\bullet}),$ 11%); m/z = 212 (C₁₃H₁₀NO₂^{+•}, 31%); m/z = 191 $(C_{10}H_7NO_2S^+, 52\%); m/z = 127 (C_{10}H_7^+, 100\%).$ Anal. calc. for C₁₆H₁₇NO₄S (319.38): C, 60.17; H, 5.37; N, 4.39. Found: C, 59.95; H, 5.11; N, 4.44.

Enantiomeric purity of **3c** was determined by HPLC analyses on Chirobiotic V column (250×46 mm) with a flow rate of 0.6 mL/min. Mobile phase methanol/ hexane [70:30]; retention times: (4S)-3-(2-naphthylsulfonyl)-4-*i*-propyloxazolidin-2-one 11.2 min; (4R)-3-(2-naphthylsulfonyl)-4-*i*-propyloxazolidin-2-one 13.3 min.

4.21. (4S)-3-(2-Naphthylsulfonyl)-4-[(1'S)-1'methylpropyl]oxazolidin-2-one: **3i**

Yield = 87%; m.p.: 130–132 °C [hexane:ethylacetate (90:10)]; $[\alpha]_D = +60$ (c = 1, CHCl₃). IR (cm⁻¹): $\nu_{CO} = 1776$. ¹H NMR (300 MHz, CDCl₃): 0.74 (d, 3H); 0.98–1.02 (t, 3H); 1.16–1.37 (m, 2H); 2.04– 2.17 (m, 1H); 4.13–4.61 (m, 3H); 7.12–7.15 (m, 2H); 7.62–8.05 (m, 4H); 8.69 (s, 1H). ¹³C NMR (75 MHz, CDCl₃): (11.75, 12.11, 2CH₃–); (25.68, – CH–); (37.20, –CH₂–); (61.11, CH–NH–); (63.94, –CH₂–O–); (122.93–135.91, C_{arom}); (152.93, CO). MS: C₁₇H₁₉NO₄S; MW = 333 g/mol; m/z = 333 (M⁺⁺, 7%); m/z = 212 (C₁₃H₁₀NO₂⁺⁺, 23%); m/z = 191 (C₁₀H₇NO₂S⁺, 64%); m/z = 127 (C₁₀H₇⁺, 100%). Anal. calc. for C₁₇H₁₉NO₄S (333.40): C, 61.24; H, 5.74; N, 4.20. Found: C, 61.20; H, 5.72; N, 4.10.

4.22. (4S)-3-(2-Naphthylsulfonyl)-4benzyloxazolidin-2-one: **3**j

Yield = 79%; m.p.: 107–109 °C [hexane:ethylacetate (90:10)]; $[\alpha]_D = +71.4$ (c = 0.5, CHCl₃). IR (cm⁻¹): $\nu_{CO} = 1773$. ¹H NMR (300 MHz, CDCl₃): 2.84–2.93 (m, 1H); 3.57–3.63 (m, 1H); 4.10–4.27 (m, 2H); 4.71–4.80 (m, 1H); 7.15–7.39 (m, 5H); 7.64–7.75 (m, 2H); 7.95–8.11 (m, 4H); 8.74 (s, 1H). ¹³C NMR (75 MHz, CDCl₃): (40.26, -CH₂–); (58.49, CH–N–); (67.05, -CH₂–O–); (122.95– 135.99, C_{arom}); (152.42, CO). MS: C₁₇H₁₉NO₄S; MW = 367 g/mol; m/z = 212 (C₁₃H₁₀NO₂⁺⁺, 15%); m/z = 191 (C₁₀H₇NO₂S⁺, 72%); m/z = 127 (C₁₀H₇⁺, 100%); m/z = 91 (C₇H₇⁺, 100%). Anal. calc. for C₂₀H₁₇NO₄S (367.42): C, 65.38; H, 4.66; N, 3.81. Found: C, 65.32; H, 4.62; N, 3.82.

4.23. (4S)-3-(4-Methylbenzenesulfonyl)-4i-propyloxazolidin-2-one: **3k**

Yield = 95%; m.p.: 115–117 °C [hexane:ethylacetate (90:10)]; $[\alpha]_D = +58.2$ (c = 0.5, CHCl₃). IR (cm⁻¹): $\nu_{CO} = 1770$. ¹H NMR (300 MHz, CDCl₃): 0.72–0.92 (2d, 6H); 2.43 (s, 3H); 4.12–4.45 (m, 3H); 7.32–7.96 (AA'BB', 4H). ¹³C NMR (75 MHz, CDCl₃): (14.3–22, 3CH₃–); (30.26, –CH–); (62.05, CH–NH–); (63.91, –CH₂–O–); (128.7–147.9, C_{arom}); (152.8, CO). MS: C₁₃H₁₇NSO₄; MW = 283 g/mol; m/z = 240 (C₁₀H₁₀NSO⁴₄, 13%); m/z = 219 (C₁₃H₁₇NO⁺₂, 13%); m/z = 176 (C₁₀H₁₀NO⁺₂, 33%); m/z = 155 (C₇H₇SO⁺₂, 100%); m/z = 91 (C₇H⁺₇, 88%). Anal. calc. for C₁₃H₁₇NO₄S (283.34): C, 55.11; H, 6.05; N, 4.94. Found: C, 55.40; H, 5.80; N, 4.70.

4.24. (4S)-3-(4-Methylbenzenesulfonyl)-4i-butyloxazolidin-2-one: **3l**

Yield = 96%; m.p.: 151–153 °C [hexane:ethylacetate (90:10)]; $[\alpha]_D = +38.4$ (c = 0.5 CHCl₃). IR (cm⁻¹): $\nu_{CO} = 1768$. ¹H NMR (300 MHz, CDCl₃): 0.95–0.98 (m, 6H); 1.58–1.64 (m, 2H); 1.97 (m, 1H); 2.43 (s, 3H); 4.03–4.45 (m, 3H); 7.33–7.95 (AA'BB', 4H). ¹³C NMR (75 MHz, CDCl₃): (21.7– 25.06, 3CH₃–); (43.19, $-CH_2-$); (56.59, CH–NH–); (68.48, $-CH_2-O-$); (128.81–145.94, C_{arom}); (152.66, CO). MS: C₁₄H₁₉NSO₄; MW = 297 g/mol; m/z = 233 (C₁₄H₁₉NO₂⁺, 7%); m/z = 176 (C₁₀H₁₀ NO₂⁺, 15%); m/z = 155 (C₇H₇SO₂⁺, 100%); m/z = 91(C₇H₇⁺, 71%). Anal. calc. for C₁₄H₁₉NO₄S (297.37): C, 56.55; H, 6.44; N, 4.71. Found: C, 55.30; H, 6.32; N, 4.60.

4.25. (4S)-3-(4-Methylbenzenesulfonyl)-4-[(1'S)-1'methylpropyl]oxazolidin-2-one: **3m**

Yield = 95%; m.p.: 170–172 °C [hexane:ethylacetate (90:10)]; $[\alpha]_D = +41$ (c = 1, CHCl₃). IR (cm⁻¹): $\nu_{CO} = 1774$. ¹H NMR (300 MHz, CDCl₃): 0.72 (d, 3H); 0.96 (t, 2H); 2.43 (s, 3H); 4.09–4.54 (m, 3H); 7.32–7.96 (AA'BB', 4H). ¹³C NMR (75 MHz, CDCl₃): (11.54, 11.90, 2CH₃–); (25.51, –CH–) (36.89, –CH₂–); (61.31, CH–NH–); (63.82, –CH₂– O–); (127.32–138.41, C_{arom}); (152.75, CO). MS: C₁₄H₁₉NSO₄; MW = 297 g/mol; m/z = 233 (C₁₄H₁₉ NO₂⁺, 10%); m/z = 240 (C₁₀H₁₀NSO₄⁺, 18%); m/z = 155 (C₇H₇SO₂⁺, 100%); m/z = 91 (C₇H₇⁺, 58%). Anal. calc. for C₁₄H₁₉NO₄S (297.37): C, 56.55; H, 6.44; N, 4.71. Found: C, 56.50; H, 6.42; N, 4.62.

4.26. (4S)-3-(4-Methylbenzenesulfonyl)-4methyloxazolidin-2-one: **3n**

Yield = 97%; m.p.: 117–119 °C [hexane:ethylacetate (90:10)]; $[\alpha]_D = +52.2$ (c = 0.5, CHCl₃). IR (cm⁻¹): $\nu_{CO} = 1779$. ¹H NMR (300 MHz, CDCl₃): 1.52 (d, 3H); 2.4 (s, 3H); 3.89–4.57 (m, 3H); 5.15 (d, 1H); 7.33–7.95 (AA'BB', 4H). ¹³C NMR (75 MHz, CDCl₃): (21–22, 2CH₃–); (53.96, CH–NH–); (69.92, –CH₂–O–); (128.71–150.95, C_{arom}); (152.50, CO). MS: C₁₁H₁₃NSO₄; MW = 255 g/mol; m/z = 255 (M⁺⁺, 4%); m/z = 254 (C₁₁H₁₂NSO⁺₄, 32%); m/z = 191(C₁₁H₁₃NO⁺₂, 50%); m/z = 91 (C₇H⁺₇, 73%); m/z = 64(SO⁺₂, 74%). Anal. calc. for C₁₁H₁₃NO₄S (255.29): C, 51.75; H, 5.13; N, 5.49. Found: C, 51.70; H, 5.20; N, 5.40.

4.27. (4R)-3-(4-Methylbenzenesulfonyl)-4-phenyloxazolidin-2-one: **30**

Yield = 95%; m.p.:149–151 °C [hexane:ethylacetate (90:10)]; $[\alpha]_D = -39.5$ (c = 0.5, CHCl₃). IR (cm⁻¹): $\nu_{CO} = 1774$. ¹H NMR (300 MHz, CDCl₃): 2.37 (d, 3H); 4.25–4.29 (m, 1H); 5.41–5.43 (m, 1H); 7.09–7.31 (m, 9H). ¹³C NMR (75 MHz, CDCl₃):

4.28. (4S)-3-(4-Methylbenzenesulfonyl)-4benzyloxazolidin-2-one: **3p**

Yield = 96%; m.p.: 136–138 °C [hexane:ethylacetate (90:10)]; $[\alpha]_D = +36.2$ (c = 0.5, CHCl₃). IR (cm⁻¹): $\nu_{CO} = 1774$. ¹H NMR (300 MHz, CDCl₃): 2.37 (d, 3H); 4.25–4.29 (m, 1H); 5.41–5.43 (m, 1H); 7.09–7.31 (m, 9H). ¹³C NMR (75 MHz, CDCl₃): (22, 1CH₃–); (41.25, -CH₂–); (60.7, CH–NH–); (70.8, -CH₂–O–); (127.40–145.59, C_{arom}); (152.45, CO). MS: C₁₆H₁₅NO₄S; MW = 317 g/mol; m/z = 253 (C₁₆ H₁₅NO₂⁺, 71%); m/z = 155 (C₇H₇SO₂⁺, 10%); m/zz = 91 (C₇H₇⁺, 100%); m/z = 77 (C₆H₅⁺, 55%). Anal. calc. for C₁₇H₁₇NO₄S (331.39): C, 61.62; H, 5.17; N, 4.23. Found: C, 61.50; H, 5.20; N, 4.20.

Acknowledgments

We are grateful to the DGRSRT (the Direction générale de la Recherche scientifique et de la Rénovation technologique) for grants to 'Laboratoire de synthèse organique asymétrique et catalyse homogène'.

References

- B.J. Lohray, B.S. Baskaran, B. Srinivasa Rao, B.T. Reddy, I. Nageswara, Tetrahedron Lett. 40 (1999) 4855.
- [2] B. Mallesham, B.M. Rajesh, P.R. Rajamohan, D. Srinivas, T. Sanjay, Org. Lett. (2003) 963.
- [3] D. Mark Gleave, Steven J. Brickner, J. Org. Chem. 61 (1996) 6470.

- [4] S.J. Brickner, P.R. Manninen, D.A. Vlanowicz, K.D. Lavasz, D.C. Rohrer, 206th ACS National Meeting, Chicago, II, August, 1993, p. 22; Abst Pap. Am. Chem. Soc., 206 (1–2).
- [5] S.J. Brickner, U.S. Patent 5, 231, 188, 1993.
- [6] S.J. Brickner, U.S. Patent 5, 247, 090, 1993.
- [7] P.E. Keane, J.P. Kan, N. Sontag, M.S. Benedetti, J. Pharm. Pharmacol. 31 (1979) 752.
- [8] F. Moureau, J. Wouters, D.P. Vercauteren, S. Collin, G. Everad, F. Durant, F. Ducrey, J.J. Koenig, F.X. Jarreau, Eur. J. Med. Chem. 27 (1992) 939.
- [9] F. Moureau, J. Wouters, D.P. Vercauteren, S. Collin, G. Evrard, F. Durant, F. Ducrey, J.J. Koenig, F.X. Jarreau, Eur. J. Med. Chem. 29 (1994) 269.
- [10] A. Mai, M. Artico, M. Esposito, G. Sbradella, S. Massa, O. Befani, P. Turini, V. Glovannini, B. Mondovi, J. Med. Chem. 45 (2002) 1180.
- [11] A. Madhan, A. Ravi Kumar, B. Venkateswara Rao, Tetrahedron: Asymmetry 12 (2001) 2009.
- [12] D.J. Ager, I. Parakash, D.R. Schaad, Chem. Rev. 96 (1996) 835.
- [13] D.J. Ager, I. Parakash, D.R. Schaad, Aldrichim. Acta 30 (1997) 3.
- [14] A. Ghosh, J.E. Sieser, M. Riou, W. Cai, L. Rivera-Ruiz, Org. Lett. 5 (2003) 2207 and references cited there in.
- [15] C. Lamanna, M.S. Sinicropi, P. Pietrangeli, F. Corbo, C. Franchini, B. Mondovi, M.G. Perrone, A. Scilimati, Arch. Org. Chem. (V) (2004) 118.
- [16] A. Ammazzalorso, R. Amoroso, G. Bettoni, B.F. Fantacuzzi, L. Giampietro, C. Maccallini, D. Paludi, M.L. Tricca, Il Farmaco 59 (2004) 685.
- [17] A. Sudo, Y. Morioka, F. Sanda, T. Endo, Tetrahedron Lett. 45 (2004) 1363.
- [18] T. Izuhara, W. Yokota, M. Inoue, T. Katoh, Heterocycles 56 (2001) 553.
- [19] M. Tiecco, L. Testaferri, A. Temperini, L. Bagnoli, F. Marini, C. Santi, Chem. Eur. J. 10 (2004) 1752.
- [20] O. Tamura, M. Hashimoto, Y. Kobayashi, T. Katoh, K. Nakatani, A. Kamada, I. Hayakawa, T. Akiba, S. Terashima, Tetrahedron Lett. 33 (1992) 3487.
- [21] C.L. Gibson, K. Gillon, S. Cook, Tetrahedron Lett. 39 (1998) 6733.
- [22] H.J. Knolker, T. Braxmeier, Tetrahedron Lett. 39 (1998) 9407.
- [23] M. Suzuki, T. Yamazaki, H. Ohta, K. Shima, K. Ohi, S. Nishiyama, T. Sugai, Synlett (2000) 189.
- [24] J.R. Gage, D.A. Evans, Org. Synth. 68 (1990) 77.
- [25] L. Cotarca, P. Delogu, A. Nardelli, V. Sunjic, Synthesis (1996) 553.
- [26] B.M. Berry, D. Craig, Synlett (1992) 41.
- [27] J.A. Dale, D.L. Dull, H.S. Mosher, J. Org. Chem. 34 (1969) 2543.