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Abstract
The concept of geometrical frustration is recalled, in particular in the case of frustrated icosahedral order. The curved space
approach allows one to relax the frustration at the price of curving the underlying space. Topological defects are then introduced
to produce a realistic structure in R3. In this paper we focus on the description of two types of large cell crystalline structures with
frustrated order, the metallic FrankeKasper alloys and the cholesteric blue phases. Both structures can be described as a periodic
array of disclination line defects threading a medium with (slightly deformed) local and medium range order. To cite this article:
R. Mosseri, C. R. Chimie 11 (2008).
� 2007 Published by Elsevier Masson SAS on behalf of Académie des sciences.
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1. Introduction

The concept of frustration has proved to be very rich
in condensed matter physics during the last 30 years. In
this paper, we shall focus on geometrical frustration, as
it was initially discussed for icosahedral order in amor-
phous systems and later generalized to other types of
order. Frustration applies to cases where a given con-
densed matter system is subjected to uncompatible re-
quirements, with a pronounced tendency to form well-
defined local configurations, and the impossibility for
the latter to perfectly fill the 3-dimensional Euclidean
space.
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In the icosahedral order case, this concept unifies,
in the same approach, clusters, amorphous systems,
quasicrystals, and even large cell crystals known as
FrankeKasper phases. A general approach to treat
this problem has been introduced by Sadoc [1e3].
The method consists in a first step to relax the
space-filling constraint to allow a free propagation
of the local configuration throughout the space.
The price to be paid is that the underlying space be-
comes curved (positively curved in this case), and
one eventually gets a regular icosahedral structure,
a polytope on a 3-dimensional hypersphere S3 em-
bedded in 4 dimensions. One can then study, in
this curved space model, those properties which are
mainly due to the local order itself.

This curved space approach has later been success-
fully applied to other frustrated situations, like tetra-
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coordinated covalent structures [4], double-twisted cho-
lesteric blue phases [5], frustrated polymers [6] and
frustrated amphiphilic films [7,8].

Once the ideal curved space structure has been de-
fined, one must, in a second step, find ways to ‘‘trans-
form’’ the curved space ideal structure back to the
Euclidean 3-dimensional space. For that purpose, the
free propagation of local configurations must be inter-
rupted by regions (that we shall call ‘‘defects’’), which
carry an opposite curvature content, in such a way that
the underlying space be flat on the average. The final
structure will therefore be described as a complex jux-
taposition of (positively curved) regions where the or-
der is very close to that of the ideal polytope, and of
defective regions. An order of magnitude has been
gained in the analysis and geometrical description of
these structures. Their complexity is not coded in terms
of the individual atomic coordinates, but in the mutual
arrangement of the defects.

We shall see below that, among all possible defect
types, disclination lines play a centre role. From a de-
scriptive, but also conceptual point of view, an impor-
tant result of this approach is to allow the following
classification, in terms of the disclination lines’
arrangements:

- no disclinations: ideal structure defined in curve
space;

- periodic disclination networks: large cell crystals,
like the FrankeKasper metallic phases [9], and
even some clathrates. In the liquid-crystal field, this
corresponds to the cholesteric blue phases and to
some complex crystalline amphiphilic films. The
cholesteric case is particularly interesting, since dis-
clination lines were studied at length in these systems,
in particular by Bouligand [10] and Kleman [11];

- hierarchical disclination network: quasicrystals;
- disordered arrangement of disclinations: amor-

phous structures.

In this paper, after recalling the curved space
model in the icosahedral order case, we shall focus
on the unexpected analogy between two complex
large cell crystals, the FrankeKasper metallic alloys
and the cholesteric blue phases. In both cases, the
structure can be described as a periodic arrangement
of disclination lines, whose origin is simply related
to the presence of geometrical frustration, which is re-
laxed on the positively curved S3 hypersphere. An ar-
ray of line defects carrying negative curvature is then
necessary to embed the structure in a 3-dimensional
Euclidean space.
2. Frustration in close sphere packings
and icosahedral order

2.1. Sphere packing and ‘‘LennardeJonesium’’ solid

Atomic close-packings are widely met in condensed
matter systems. A (classical) model consists in having
spherical particles interacting through a pair potential
displaying isotropic long-range (van der Waals-like)
attraction (to eventually get a structure) and short-range
repulsion (to prevent the system from collapsing). A
widely studied such atomic pair potential is the
LennardeJones potential:

VðrÞ ¼ 43
h
ðs=rÞ12�ðs=rÞ6

i

Is is well known that, varying the clusters size, a large
fraction of structures with (pseudo)icosahedral symme-
try are found which minimize the LennardeJones total
energy [12]. In the early seventies, this knowledge, and
the experimental strong indication of a polytetrahedral
(and therefore (pseudo)icosahedral) atomic order in
amorphous metals [13], opened the way for a rich scien-
tific exchange between the amorphous and the cluster
scientific communities.

For the present purpose of introducing geometrical
frustration, we can further simplify this potential, and
consider situations where a pair of atoms sit at a distance
were they minimize the LennardeJones energy, and
then add the contribution �3 to the total energy. In
such hard sphere limit, the total energy is just equal to
�3 times the number of sphere contacts. We extend
this to 2 dimensions as a hard-disk close-packing prob-
lem and compare the 2- and 3-dimensional cases
(Fig. 1). In this simple model, one clearly sees that
with four particles, the system minimizes its energy
by adding the fourth particle in such a way to close a reg-
ular tetrahedron, instead of staying on a 2-dimensional
space. The best configuration for the fifth particle con-
sists in closing a second tetrahedron sharing a face with
the first one. The sphere close-packing problem is thus
mapped onto a tetrahedral packing in R3. In an equiva-
lent way, had the configuration been restricted to be pla-
nar, the hard-disk close-packing problem would
translate to a triangular packing in 2d.

And there comes the main difference between close-
packing in two and three dimensions. A triangular pack-
ing can be freely propagated throughout a plane, the
reason being that the corner angle (60�) is a submultiple
of 2p. A triangular lattice, with six equilateral triangles
sharing each vertex, results from that construction, and
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Fig. 2. Frustration problem in 2 and 3 dimensions. Left: tiling the

plane with regular pentagons is impossible, but possible on a sphere.

Right: geometrical frustration in the close tetrahedral packing in R3.

With 20 tetrahedra around a central vertex, an irregular icosahedral

configuration is obtained.

N=2 N=3

U ~ - 

U ~ -5 U ~ -6

?
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U ~ -3 

N=4

N=5

Fig. 1. Packing sequence for few particles in 2 and 3 dimensions.

With N¼ 4, the escape to a third dimension, with a perfect tetrahe-

dral configuration, significantly lowers the energy. The close-packing

problem is then related to the tetrahedral close-packing problem,

which turns out to be frustrated.
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is well known to be the closest 2d lattice packing. This
situation (local ‘‘best’’ configuration which can be freely
propagated in space) is referred to as unfrustrated. On
the contrary, propagation of the tetrahedral order
quickly meets a problem, due to the fact that the regular
tetrahedron dihedral angle (w70�300) is not an integer
submultiple of 2p. Note that it falls short of being the
fifth of 2p. This means that adding more and more tet-
rahedra, there is a trend toward arranging five tetrahedra
sharing a common edge, but each time with a remaining
small hole. These holes accumulate, and eventually de-
stroy the perfect tetrahedral order. This is a typical frus-
trated system. Notice that a set of 20 tetrahedra sharing
a common vertex would define a perfect centrered ico-
sahedron, at the price of having slightly deformed tetra-
hedral symmetry. This is why close-packed tetrahedral
order and icosahedral order are closely linked problems.

2.2. The ideal icosahedral order on a 3-dimensional
curved space

In 1979, Jean-François Sadoc proposed a very orig-
inal approach to analyse this frustration effect in sphere
packing problems. He observed that perfect (unfrus-
trated) icosahedral order can propagate freely through-
out the space if the latter gets positively curved. There is
an analogous problem in two dimensions associated
with pentagonal packing (Fig. 2). The regular pentagon
vertex angle (108�) does not divide 2p, and therefore
cannot perfectly tile an Euclidean plane. But if one tries
instead to tile the surface of a sphere of appropriate
radius, a regular tiling can be obtained: the dodecahe-
dron (with 20 vertices and 12 faces). Sadoc observed
that a correctly scaled, 3-dimensional sphere (noted
S3) can also admit a perfect tetrahedral packing. One
gets a polytope with 120 vertices and 600 tetrahedra
cells; each edge is shared by five tetrahedra and each
vertex is surrounded by a perfect icosahedron. High-di-
mensional polytopes, which are well known and classi-
fied by mathematicians [14], then found a new
application as ideal templates for real atomic packing
problems.

An interesting computer simulation, done by Straley
[15], illustrates quite well the frustration effect. Straley
compares annealing of interacting particles in Euclid-
ean and in spherical space. In the first case the structure
is very slowly approaching equilibrium, while on S3,
with adjusted radius, the ground state configuration,
corresponding to the 120-vertex polytope, is reached
very quickly.

Having this ideal template, the physical properties
associated with the perfect icosahedral order can be
computed (see for example [3], and references herein),
keeping for a next step the analysis of how far these
properties will survive in the more realistic structures.

Among the theoretical studies that took advantage of
these ideal templates, one should cite the detailed anal-
yses by David Nelson and co-workers [16e18], who
elaborated on the concept of icosahedral order parame-
ter, and proposed a Landau theory of frustrated system.

2.3. Decurving procedure and topological defects

Once the ideal structure has been defined, its relation
with the real structure must be described. One can imag-
ine several ways for that purpose. If one is interested in
finite clusters of icosahedral symmetry, a simple pre-
scription consists in directly mapping a piece of the
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Fig. 3. Disclination defects in 2 and 3 dimensions. A disclination defect is created, with the Volterra process, by cutting in the structure, and

adding or removing a wedge of material between the lips of the cut. (a) A disclination point defect in an hexagonal tiling, of either positive

or negative nature. (b) A disclination line in an icosahedral configuration changes the 5-fold axis to a 6-fold axis, and concentrates negative

curvature.

Fig. 4. FrankeKasper polyhedra: (a) the Z12 icosahedral shell; (b)

the Z14 shell, with one 6-fold axis. A F-K line (negative disclination)

joins the two dark vertices; (c) the Z16 shell, with four 6-fold local

configurations. The FeK line network corresponds to 4 half-lines,

threading the dark vertices and joining at the centre.
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ideal polytope onto an 3-dimensional Euclidean tangent
space [19]. For infinite structures, the most valuable
method consists in introducing disclination defects. In-
deed, a disclination defect naturally carries curvature,
as shown in a simple 2-dimensional example in Fig. 3.

Let us recall the standard Volterra process to create
a disclination defect. One creates a cut in the structure,
and add or remove a wedge of material along the edge
of the cut (this is to be contrasted with adding or removing
a half plane in the dislocation case), as illustrated in Fig. 3
for a 2(3)-dimensional point (line) defect, respectively. It
is then clear that a disclination ‘‘carries’’ curvature, either
positive or negative. It is then natural to propose, as de-
curving procedure from the ideal template on a 3-dimen-
sional positively curved sphere to the ‘‘flat’’ Euclidean
space, the creation of an adequate density of disclination
lines (see for example [20]). Along this line, an interesting
possibility is the so-called ‘‘Iterative Flattening Method’’,
which gives rise to infinite closely packed structures, with
a hierarchical disclination order, and atomic arrangement
close to that of quasicrystals [21].

2.4. The FrankeKasper phases

Although the present curved space approach was
initially meant to address the structural description
of amorphous systems, it became rapidly clear that
the method applies to large cell crystalline structures
with complex local order inside the unit cell. The
best example is provided by the FrankeKasper metallic
phases [9]. These phases present tetrahedrally close-
packed atoms with many (pseudo)icosahedral local
configurations, which are repeated periodically. An in-
spection of the unit cell arrangements indicates a rather
large fraction of atoms with an almost perfect icosahe-
dral coordination shell (with 12 neighbours, and de-
noted Z12 sites). Frank and Kasper showed that the
remaining atoms have a higher coordination (mainly
Z14, Z15 and Z16), and form uninterrupted networks
(called the ‘‘major skeleton’’) along the directions
where the five-fold local symmetry is replaced by
a six-fold one (Fig. 4). The FrankeKasper skeleton
has been since identified to a disclination line network
threading a medium with the icosahedral polytope or-
der [16,22,23]. The discovery of icosahedral quasi-
crystalline phases [24] renewed the interest toward
the FrankeKasper phases. Many large cell with such
structures were found stable in the vicinity of the qua-
sicrystal phase in most phase diagrams; to some re-
spect, the true quasicrystalline phase can be
understood as the asymptotic element of an infinite
set of periodic structure with increasing large cell
structures, the so-called approximant phases.

3. Frustration in cholesteric blue phases

Let us now turn to the, a priori different, frustration
effect in cholesteric systems, made of chiral molecules.
A pair of neighbouring molecules will have an equilib-
rium position corresponding to a minimal energy if they
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sit at a slight angle with respect to each other (imagine
close ‘‘screws’’). It is more convenient to leave the mo-
lecular scale and to consider molecular orientation aver-
aged inside small space regions. The structure is then
described, in this continuous approximation, by a field
of directors (headless vectors), but, except for descrip-
tion and classification of topological defects, it is possi-
ble to consider a standard vector field.

3.1. The double-twist frustration

The classical cholesteric phases correspond to the
case where the twist propagates along one direction
only, leading to planar parallel configurations twisting
in the perpendicular direction. But more complex struc-
tures, called the blue phases, are sometimes found in
a narrow range of the phase diagrams. Their local order
corresponds to more complex arrangements where the
twist seems to propagate along all directions perpendic-
ular to the molecular axis, the so-called ‘‘double-twist’’
configuration. Such a situation is frustrated, as it can be
understood in Fig. 5, by following and keeping track of
the director orientation along two different paths ending
at the same point. It is then impossible to fill the space
with a vector field which obeys everywhere the
‘‘double-twist’’ rule. This is therefore a new example
of geometrical frustration, whose strength is character-
ized by the pitch of the associated rotation.
Fig. 5. Frustration in double-twisted cholesteric phases. (a) Sche-

matic representation of two chiral cholesteric molecules by screws.

(b) Frustration in a double-twist system in R3 . At a given point,

the director orientations are different for two different paths which

continuously satisfy the double-twist condition from the origin.
3.2. The unfrustrated double-twist blue phase on S3

This fascinating example of geometrical frustration
was the first to be treated in a continuous system
[5,25], using an ideal template in S3 whose radius is ad-
justed to the helicoidal pitch. Indeed, a vector field tan-
gent to S3 can be defined such that the double-twist
configuration is everywhere perfect. This field can be
visualized, using the stereographic projection on R3,
as shown in Fig. 6b.

One way to describe this vector field is in relation
with the S3 great circle Hopf fibration. It is possible to
fill the whole S3 with non-intersecting great circles in
such a way that any S3 point belong exactly to one cir-
cle. The ideal blue phase field is nothing but the vector
field tangent to the Hopf great circles. The great circle
gathers on a continuous set of coaxial tori, three of
which being represented in Fig. 6b.

3.3. The cholesteric blue phase as a periodic
arrangement of disclination lines

Topological defects must be introduced to lower the
space curvature, in order to relate the ideal double-twist
structure in S3 and real structures in R3 [26]. Blue
phases are, along this line, similar to Frank and Kasper
phases.

Note that it is already possible to minimize the ‘‘dou-
ble-twist’’ energy in R3, along the central axis of a cyl-
inder, called a ‘‘double-twist tube’’ (Fig. 6a). A standard
model for the blue phases is then a 3-dimensional peri-
odic arrangement of these tubes [27], as displayed in
Fig. 7. But the director field cannot be defined every-
where and a periodic array of disclination lines, of
type ‘‘p’’, is present. The two well-known examples,
blue phases I and II, correspond to different tube ar-
rangements with cubic symmetry.
Fig. 6. (a) The double-twist condition is realized on the axis of a

double-twist tube in R3. (b) A piece of the ideal blue phase in S3,

stereographically mapped onto R3. The field is tangent to the Hopf

fibration circles.



Fig. 7. A model of the blue phase structure: (a) double-twist tubes

arrangement in blue phase II; (b) the associated disclination network.
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The analysis of the field configuration near the tube
interfaces is made easier if one remarks the close relation
with two Infinite Periodic Minimal Surfaces, called P
and D. In particular, a local minimum of the energy is
reached if the director field is tangent to the asymptotic
lines of the surface [26]. Flat points on the surface, which
are singularities for this field, are threaded by axes of
type [111], which corresponds to the disclinations.

4. Conclusion

Geometrical frustration is rather common in con-
densed matter systems. A general approach, which unifies
very different types of material (either metallic, covalent
or liquid crystalline) have been introduced in the 1980s by
different groups, following the pioneer work of Sadoc on
icosahedral systems. The method follows two steps: first,
the definition of an ideal unfrustrated structure in curved
space; then an analysis of real space defects which
follows a decurving process toward a R3 structure.

After having recalled this curved space approach in
the icosahedral order case, we have focussed here on
the description of two types of large cell crystalline
structures, the metallic FrankeKasper alloys, and the
cholesteric blue phases. Both structures can be de-
scribed as a periodic array of disclination line defects
threading a medium with (slightly deformed) local
and medium range order.
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