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Jean Charvolin, Jean-François Sadoc*
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Abstract
Possible ordered geometrical configurations with bicontinuous or cellular topologies, optimizing the frustration of a periodic
system of frustrated fluid films, are analyzed in terms of topological defects. The solutions found have the same symmetries as those
observed for cubic phases of amphiphilic molecules. This agreement leads to consider the latter as structures of defects of rotation,
or disclinations. To cite this article: J. Charvolin, J.-F. Sadoc, C. R. Chimie 11 (2008).
� 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
Résumé
Les configurations géométriques ordonnées ayant des topologies bicontinue ou cellulaire et optimisant la frustration d’un sys-
tème périodique de films fluides sont analysées en termes de défauts topologiques. Les solutions trouvées ont les mêmes symétries
que celles observées pour les phases cubiques de molécules amphiphiles. Cet accord conduit à voir ces dernières comme des
organisations périodiques de défauts de rotation, ou disinclinaisons. Pour citer cet article : J. Charvolin, J.-F. Sadoc, C. R. Chimie
11 (2008).
� 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Observations of three-dimensional crystalline struc-
tures with large cells have pointed out the limitation of
classical crystallography as the study of periodic organi-
zations of objects such as atoms or molecules, object
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without dimension in the topological sense. In the partic-
ular case of three-dimensional liquid crystalline struc-
tures built by amphiphilic molecules, specific concepts
have been introduced, considering them as organizations
of two-dimensional objects, surfaces or films. The crys-
tallographic properties of these structures could then be
studied from an intrinsic point of view, using operations
of symmetry groups defined by displacements on the
surfaces.
by Elsevier Masson SAS. All rights reserved.
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Fig. 1. Phase diagram for the dodecyltrimethylammonium chloride/

water system, La¼ lamellar, Ha¼ hexagonal, M¼micellar, Q0a
and Q00a¼ cubic (from Ref. [1]).

Fig. 3. The structure proposed for the cubic phase Q00a of space

group Pm3n, the amphiphilic molecules build micelles either in an

isotropic environment on the black sites or in an anisotropic environ-

ment on the white sites.
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We consider here the liquid crystalline phases with
cubic symmetry formed by amphiphilic molecules in
the presence of water. These phases are present in some
phase diagrams in the immediate vicinities of lamellar
and hexagonal phases, as shown in Fig. 1 [1e4].
Fig. 2. The structure proposed for cubic phase Q0a of space group Ia3d, th

two interwoven infinite networks.
Although their structures, shown in Figs. 2 and 3, have
topologies and symmetries strikingly different from
those of the two other phases, they can all be understood
within the same geometrical frame if we consider that the
amphiphile/water interface is determinant structurally.
They all are periodic systems of fluid films separated
by interfaces: lamellar phases are periodical stackings
of flat interfaces at constant distances, and cubic or
hexagonal phases can be seen as periodical stackings of
symmetrically curved interfaces. We focus our attention
on cubic phases which are indeed spectacular examples
of how molecules having a liquid-like behavior in their
respective domains, i.e. exhibiting no short-range order,
can build crystalline structures with long-range order.
e amphiphilic molecules build short rods connected three-by-three in



Fig. 4. Schematic representation of the frustration: flat interfaces, this situation is compatible with a constant distance between them, this is the

case in lamellar phases (left), curved interfaces (right), this is not compatible with a constant distance if the lamellar symmetry is kept and this

imposes changes of topology and symmetry.
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This work illustrates the role played by the notion of
defect in the analysis of complex structures in soft con-
densed matter, one of the favorite problems among all
those investigated by Yves Bouligand. It is a pleasure
for us to acknowledge here his most original views
and most stimulating contributions in throwing bridges
between physico-chemical and biological structures.

2. Competition of physical forces and frustration

The concept of geometrical frustration [5] applies to
systems in which several ordering forces have contradic-
tory effects. It is clearly the case for amphiphile/water
systems. We do not detail the forces acting in these sys-
tems. We only consider that they have components nor-
mal to the interfaces that impose constant distances
between them when moving along them, and components
parallel to the interfaces, whose values in the aqueous
and paraffinic media control the interfacial curvature.
The structures of these fluid films must therefore concil-
iate constant interfacial distances and curvatures, and we
Fig. 5. The spherical torus can be built by identifications of the sides of a sq

distortion. The torus represented in this figure is a stereographic projection

thogonal circles in S3.
want to understand them investigating the geometrical
configurations which satisfy these constraints. When the
thermodynamical conditions are such that the interfaces
are flat, the obvious configuration is that of the periodical
stacking along one dimension of the lamellar phase
shown in Fig. 4. When these conditions deviate from
the above, the interfaces become curved and a typical
case of geometrical frustration is met, as shown in
Fig. 4, as the normal forces, which want to maintain a
constant distance, are in conflict with the parallel forces,
which want to maintain a constant curvature. This frustra-
tion has no direct solution in flat Euclidean space R3 but
has one in curved space S3, the hyper-sphere. However,
the real systems exist in R3 and the possible configura-
tions are to be found in this space. They will be obtained
by introducing defects of rotation, or disclinations, to
suppress the curvature of S3 [6]. Following this process
the structures of amphiphile/water liquid crystals can be
looked at as structures of disclinations. We study here
the particular processes leading to configurations having
the topologies of cubic phases [7,8].
uare sheet in S3; as this is done in a curved space, the sheet suffers no

in R3 of the spherical torus in S3; the two CN axes are identical or-



Fig. 6. A Volterra defect inserted in a volume of matter.
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3. Relaxation of the frustration in S3

The whole periodic system of frustrated fluid films
can be represented without frustration in S3 by transfer-
ring the middle surface of the film in one cell onto sur-
faces separating S3 in two identical sub-spaces. Doing
so, the symmetry of the film and the periodicity (defined
as generated by displacements along geodesics of the
space, here great circles of S3 normal to the interfaces)
are preserved. There are two surfaces separating S3 in
two identical sub-spaces: the spherical torus T2 and the
great sphere S2. The spherical torus can be obtained by
identifications of the opposite sides of a square sheet in
S3, as shown in Fig. 5, and, therefore admits a {4, 4}
regular tiling.1 The great sphere S2 is an ordinary sphere
embedded in the hyper-sphere, it is equivalent to the
equator of the sphere when two-dimensional spaces are
considered. Now, being a curved space, the hyper-sphere
presents an angular deficit around each of its points with
respect to the flat Euclidean space where we live, and cor-
recting this deficit by angular defects, i.e. disclinations,
bringing the necessary angular complements is a way
to map S3 onto R3. But the nature and the mode of intro-
duction of the disclinations must respect the symmetries
of the relaxed structures in S3 [9].

4. Disclinations normal to the spherical torus and
‘‘bicontinuous’’ cubic structures

Disclinations are to be introduced around the sym-
metry axes of the relaxed structure in a manner respect-
ing the symmetries. The process for introducing
a disclination in a material is known as the Volterra’s
1 The Schlafli notation {p, q} for a two-dimensional tiling means

that the tiling is made of regular polygons having p edges that

meet q by q at vertices. Notation {p, q, r} for a three-dimensional

packing means that the packing is made of regular polyhedra having

faces with p edges, each polyhedron has q faces around one vertex

and there are r polyhedra around one edge.
process. As shown in Fig. 6, a cut is made ending on
a symmetry axis of the material and an angular sector
of the same material is introduced in-between the lips
of the cut, matching the symmetries on either sides of
them in order to avoid any distortion along the surfaces
in contact. After relaxation, the stress, hence the energy
of the defect, is concentrated along the line ending the
cut. When applied to the spherical torus, the Volterra
process leads to a configuration which has a bicontinu-
ous topology similar to that of the cubic phases Q0a. In
the course of this process, the squares of the {4, 4} tiling
of the spherical torus are transformed into hexagons
without any modification of the number of polygons
per vertex, or the p/2 values of the angles, as shown
in Fig. 7. A new surface is therefore generated by this
disclination process which admits a {6, 4} tiling. Obvi-
ously such a tiling is not Euclidean, or planar, and the
new surface has a constant negative Gaussian curvature,
it is a hyperbolic plane. A hyperbolic plane, a bi-dimen-
sional space with constant negative Gaussian curvature,
cannot be embedded in R3 without metric distortions.
However, the properties of such hyperbolic planes can
be studied using the Poincaré model in the Euclidean
plane [10]. A hyperbolic plane with a {6, 4} tiling is
represented in Fig. 8a, together with its orthoscheme tri-
angles or asymmetric units. These triangles have angles
of p/2, p/4, and p/6 and are not Euclidean. The analysis
of their possible configurations, straight or curved sides,
informs about the possible surfaces in R3. We consider
only one case here, when the two sides of the right angle
are straight; other cases are discussed in Ref. [7]. These
straight sides build a lattice of intersecting straight lines
whose element is a non-planar quadrangle (a, b, g, d)
with three angles of p/2 and one of p/3. These elements
can be assembled four-by-four in a more symmetrical
skew quadrangle (d, 3, 4, c) with four angles of p/3
and four equal sides (Fig. 8b). These quadrangles are
regularly organized on the hyperbolic plane and it was
shown by Schoenflies [11] and Schwarz [12] that,
when embedded in R3, they build a cubic lattice whose



Fig. 7. A -p-disclination in a square transforms it into an hexagon, the four-connectivity is preserved at every vertex; if the original square is in

a plane with zero Gaussian curvature, the plane transforms into a hyperbolic surface with negative Gaussian curvature.
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translation cell is shown in Fig. 8c. Schwarz has shown
that this cubic lattice is the support of an infinite peri-
odic minimal surface (IPMS), called F or D, separating
R3 into two identical sub-spaces whose labyrinths are
the two interwoven, but not connected, lattices of rods
shown in Fig. 9. These two interwoven labyrinths are in-
deed identical to those which were determined for the
cubic phase built by lipids extracted from insect cuticles
[13] and more recently for that built by glycerol mono-
oleate [14]. (In these cases the labyrinths are channels
of water separated by a bilayered film of amphiphile
Fig. 8. Poincaré’s representation of a hyperbolic plane with {6, 4} tiling a

ganization of quadrangles (a, b, g, d) in the saddle (d, 3, 4, c) in R3 (left), th
whose middle surface should follow the F-surface
very nearly).

The two other configurations possible for the ortho-
scheme triangle, one with a straight hypotenuse and
another with all sides curved, permit to build two other
cubic phases [8]: one with Im3m symmetry, where it is
the P surface of Schwarz which separates labyrinths of
rods connected six-by-six, another with Ia3d, where
two labyrinths of rods connected three-by-three are
separated by a surface G calculated more recently by
Schoen [15] (see also Fig. 2).
nd its orthoscheme triangles with angles p/2, p/4, p/6 (top), the or-

e monkey saddle cell with a set of six quadrangles (d, 3, 4, c) (right).



Fig. 9. The translation cell for the F-surface of Schwarz and the labyrinths of the Pn3m cubic structure separated by this surface.
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5. Infinite periodic minimal surfaces, ‘‘bicontinu-
ous’’ cubic structures and the hyperbolic plane

Using intrinsic operations of symmetry groups defined
by displacements inside the surface, we take advantage of
the relation existing between these groups and those char-
acterizing the tilings of the hyperbolic plane. The three
IPMS of negative curvature admit a {6, 4} tiling. It is
therefore tempting to associate these IPMS with a surface
of constant negative Gaussian curvature, the hyperbolic
plane also admitting a {6, 4} tiling [16]. It is possible to
show that the relationships existing between the hyper-
bolic plane and the IPMS are indeed of the same nature
as those existing between the Euclidean plane and other
surfaces, such as a cylinder or a torus. A cylinder is ob-
tained by cutting a strip from a plane and identifying the
two boundaries, a torus of genus g¼ 1 is obtained by cut-
ting a square, or a rectangle, in a plane and identifying the
opposite edges 2 by 2. If a Euclidean {4, 4} net of unit cells
is defined on the original plane, the identifications needed
for building the cylinder and the torus are identical to the
application of Bornevon Karman conditions preserving
the translational periodicity of the plane. Thus, new sur-
faces can be built from the plane by substituting some op-
erations of translation by identifications.
Fig. 10. A disclination along a C2 axis of S2 in S3 (for the sake of clarity on

R3, and the symmetric film supported by S2 is not represented). Left: S2 sepa

sheets limited by the C2 axis, right: a third sub-space, identical to the two
Symmetry operation of a tiling like the {6, 4} are ob-
tained by combinations of the reflections into the sides of
the orthoscheme triangles [17]. If two reflections defined
by two non-intersecting sides are combined, the resulting
operation is, like in Euclidean space, a translation. It is
possible to define translation sub-groups in the {6, 4}
hyperbolic [18].

In the example of the {4, 4} lattice in two-dimensional
flat space, identification of all translations to the identity
leads to a torus of genus g¼ 1. In the case of the {6, 4}
hyperbolic tiling, the identification of all translations to
the identity leads to a torus with a genus g¼ 3. This is
also the property of the three cubic IPMS P, F, G. If only
well-chosen translations are forced to the identity, it is
possible to get surfaces embedded in R3 that are the three
cubic IPMS. Obviously, this can be seen as some kind of
surgery, in which some parts of the hyperbolic plane are
cut and lips of the cut reglued. This method is an interest-
ing tool to study symmetry of networks in R3 [19].

The three cubic IPMS P, F, G have the topologies and
symmetries of the Q0a structures observed in-between
lamellar and hexagonal phases. Among these three
structures, Ia3d is the most commonly observed, fol-
lowed by Pn3m then Im3m structures. In fact, the choice
between one of these three structures results from subtle
ly half a sphere S2 is shown in this stereographic projection of S3 onto

rates S3 in two identical sub-spaces, middle: S2 is partly split into two

first ones, is introduced between the sheets.



Fig. 11. Transformation of a dodecahedron (a) into a tetrakaidecahedron (b) by one 2p/5 disclination along an axis normal to pentagonal faces

and into a hexakaidecahedron (c) by four half disclinations; hexagons created from pentagons by disclinations are hatched.
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changes of physico-chemical parameters (see for in-
stance [20]). It is interesting to quote here that biologi-
cal membranes can eventually build bicontinuous cubic
structures with similar symmetries; they, however, differ
from those of physico-chemical origin described above
by the fact that they exhibit parameters larger by about
one order of magnitude: coarsely, 102 nm against 10 nm
[21]. Most likely, forces related to the specificities of bi-
ological membranes and their molecules are to be taken
into account [22].

6. Disclinations on the great sphere and
‘‘micellar’’ cubic structures

The relaxed structure admits C2 symmetry axes which
are great circles of S2 and the Volterra’s process corre-
sponding to the creation of a disclination along one of
these axes brings in a third finite sub-space, as illustrated
in Fig. 10. The development of this process in order to
map S3 onto R3 leads to a space filling packing of identi-
cal finite cells. The law of topological stability imposes
the search for eventual space filling assemblies of regular
polyhedra, or polytopes, having three faces per edge and
four edges per vertex or, having three faces belonging to
the same polyhedron around one vertex and three polyhe-
dra around one edge [23]. These are, in Schafli’s {p, q, r}
notation, the polytopes of the {p, 3, 3} family. They are
four which, unfortunately, exist in curved spaces only
[24], those being in spherical spaces with constant posi-
tive Gaussian curvatures {3, 3, 3}, {4, 3, 3}, and {5, 3, 3},
and in a hyperbolic space with constant negative curva-
ture {6, 3, 3}. As there is no {p, 3, 3} polytope in a flat
Euclidean space, our problem admits no solution with
identical regular polyhedral cells2 [25]. We are therefore
driven to search for eventual non-regular but, neverthe-
less, periodic solutions. For this it is useful to consider
2 Soap bubble froth are macroscopic examples of the impossibility

of filling R3 with {p, 3, 3}.
the fact that the regular {p, 3, 3} polytopes are found in
spaces of decreasing curvatures and are therefore met
one after the other during the progressive introduction
of disclinations needed to map S3 onto R3. The polytope
of interest is obviously {5, 3, 3}, which exists in the space
of lowest positive curvature. We must start from this and
add in new disclinations in order to realize the final map-
ping of S3 onto R3. To maintain the cellular structure
disclinations cannot be contained in the surfaces. Sym-
metries impose to choose new disclinations perpendicu-
lar to cell faces. Indeed it is known that disclinations
perpendicular to pentagonal faces of a dodecahedron
transform it into the tetrakaidecahedron and hexakaide-
cahedron shown in Fig. 11.

These non-regular polyhedra are particularly inter-
esting here as it is known that when slightly distorted
they can be packed so that they build periodic space fill-
ing assemblies of cells [26]. These organizations should
be those of the film and micelles permitted by the prop-
erties of our Euclidean space, the film being supported
by the faces of the polyhedra, and each cage delimited
by it contains a micelle. Several structures can be built
along the above principle and, among them, we can dis-
tinguish two large families according to the fact that
their dihedral and edge angles stay close to those of
fluid films, whether they balance their tensions or not.
If we limit ourselves to the first case, we are left with
two relatively simple structures: firstly, the type-I struc-
ture has space group Pm3n and its crystallographic unit
cell contains 2 dodecahedra and 6 tetrakaidecahedra,
the local arrangement of its polyhedra being shown in
Fig. 12. The second, type-II structure has space group
Fd3m and its crystallographic unit cell contains 16
dodecahedra and 8 hexakaidecahedra. These structures
have the topologies and symmetries of the structures of
the Q00a cubic phases found in-between hexagonal and
micellar phases. The faces of the polyhedra support the
film and the micelles are contained within the poly-
hedra. As there are two types of polyhedra, there are
two types of micelles.



Fig. 12. Aggregation of slightly distorted dodecahedra (black sites) and tetrakaidecahedra (white sites) in a periodic structure with Pm3 symmetry

(from Ref. [26]).
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This agreement shows the importance of the space
filling term in the formation of these structures. How-
ever, observations of a few cases of micellar cubic
phases with other symmetries, for instance compact
hexagonal P663/mmc [27], show that other constraints
may intervene. At last, the well-defined localizations
of bicontinuous and micellar cubic phases in the phase
diagrams, on either sides of the hexagonal phase, can
also be analyzed within the frame of this geometrical
approach [28].

7. Comment

Two incompatible topological requirements are con-
fronted in the systems under study: that looked for by
the local configuration and that imposed by the structure
of our Euclidean space, the second preventing the prop-
agation of the first. This incompatibility vanishes if the
systems are considered as embedded in adequate curved
Fig. 13. A disclination surrounded by saddles, memories of the

spherical torus, in the Pn3m bicontinuous cubic structure (left), a dis-

clination surrounded by junctions of films, memories of the {5, 3, 3}

polytope in the Pm3 micellar cubic structure (right).
spaces; ideal structures can be built there in which the
local configuration propagates freely. Mapping the
curved spaces onto the Euclidean one with disclinations
correcting their angular deficit leads to structures which
can be seen as the best compromises between the two
requirements. In these optimal structures, regions where
the local configuration is kept ideal and regions where it
is distorted by disclinations, illustrated in Fig. 13, are
organized regularly. The energy cost is concentrated
in the latter and their interaction, most likely repulsive,
organizes and stabilizes the structures. These optimal
structures being similar to the observed ones, the com-
plexity of the latter is not to be analyzed as the packing
of individual molecules but as that of these regions,
each of which being made of large numbers of mole-
cules. This explains the changeover from the liquid-
like disorders of the molecules in their respective
domains to the formation of crystalline structures and
justifies the jump by one order of magnitude at least
from the characteristic molecular size to the structural
parameter. By this last point, this problem is not far
from that of the crystalline structures with large cells
formed by certain alloys [29].
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