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Abstract
During the past decades, NMR spectroscopy of isotopically labelled proteins has emerged as a unique tool for the study of in-
ternal protein dynamics in solution. The possibility of measuring spin relaxation rates in proteins has motivated numerous theoret-
ical and methodological developments aiming at the interpretation and the prediction of their internal dynamics. In this article, we
discuss the possibility of predicting 15N relaxation rates using a Network of Coupled Rotators to describe internal motions of a pro-
tein starting from its three-dimensional structure, and illustrate the approach by the example of the protein calbindin. To cite this
article: G. Nodet et al., C. R. Chimie 11 (2008).
� 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
Résumé
Au cours de ces dernières décennies, la spectroscopie de résonance magnétique nucléaire s’est révélée un outil de choix pour
l’étude de la mobilité interne des protéines en solution. La possibilité de mesurer les vitesses de relaxation de spin dans les protéines
a motivé nombre de développements théoriques et méthodologiques visant à l’interprétation et à la prédiction de leur dynamique
interne. Dans cet article, nous discuterons la possibilité de prédire les vitesses de relaxation des noyaux 15N l’aide d’un réseau de
rotateurs couplés utilisé pour décrire la dynamique interne des protéines à partir de leur structure tri-dimensionnelle, et nous illus-
trerons cette approche par l’exemple de la protéine calbindin. Pour citer cet article : G. Nodet et al., C. R. Chimie 11 (2008).
� 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Over the past decades, the crucial role of internal dy-
namics for the function of a protein has emerged and
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has motivated many studies. Beyond the well-known
structureefunction relationship, there is compelling ev-
idence that internal motions in proteins take part in
their mechanism of action at the atomic level. The issue
of the relationships between structure and mobility
therefore arises, and has been tackled in various ways
[1e3].
by Elsevier Masson SAS. All rights reserved.

mailto:daniel.abergel@ens.fr
http://france.elsevier.com/direct/CRAS2C


525G. Nodet et al. / C. R. Chimie 11 (2008) 524e529
Nuclear magnetic resonance (NMR) has proven to
be a unique tool to provide detailed descriptions of in-
ternal motions in proteins, and a vast NMR panoply
of techniques, relying mainly on spin relaxation mea-
surements, has been developed to access internal mo-
bility in proteins over time scales ranging from
picoseconds to milliseconds. Fast motions on the sub-
nanosecond time scale involve rotations, vibrations
and librations of chemical bonds, and can be related
to conformational entropy and other thermodynamical
quantities [4,5]. For instance, binding with a ligand or
another macromolecule may be associated not only
with a local reduction of conformational degrees of
freedom in the vicinity of the interaction site [4,5],
but also with an increase of entropy in remote parts of
the protein, possibly leading to a global favourable en-
tropic contribution to binding [6,7].

Spin relaxation is essentially caused by molecular
motions [8e10]. In an attempt to interpret and predict
NMR relaxation experiments, we have recently devel-
oped an NMR-oriented model for internal protein
dynamics, based on a Network of Coupled Rotators
(NCR). In this model the protein is represented by an as-
sembly of vectors (defined by selected chemical bonds)
that undergo rotational diffusion in a harmonic poten-
tial. This potential is defined as a superposition of pair
potentials that couple the network vectors to each other
and can be thought of as resulting from the combination
of various physical interactions (electrostatic, van der
Waals, etc.). One of the main features of this approach
is that the potentials only depend on the deviation from
equilibrium of angles subtended by pairs of vectors,
rather than on the position of atoms. In this sense, it is
NMR-adapted, as it depends on the orientation of vec-
tors. In previous studies, we have demonstrated the abil-
ity of this simple model to predict parameters obtained
from NMR relaxation experiments, in particular the so-
called generalized model-free order parameters S2 and
effective correlation times [11,12]. In this article, we
extend our previous findings and demonstrate that the
NCR approach allows one to predict NMR relaxation
rates.

2. Brief outline of the theory

In the NCR approach, each member of an ensemble
of bond vectors ui is assumed to undergo a diffusional
‘‘wobbling’’ motion in a potential U ¼

P
i<j Uij that re-

sults from the superposition of coupling potentials Uij

between pairs of vectors ui and uj such that the angle
qij between them fluctuates about an equilibrium value
q

eq
ij defined by the (average) equilibrium structure of
the protein. The shape of the coupling potential Uij is
thus like a well with a minimum at qij ¼ q

eq
ij :

Uij ¼ rirjk0 f
�
qij � q

eq
ij

�
ð1Þ

where k0 is an adjustable parameter that is common to
all pairs of vectors. In the currently preferred imple-
mentation of the model, the function f(x)¼�P2(cos x)
¼�(3cos2 x� 1)/2 is the second-rank Legendre poly-
nomial. In order to account for local packing in the pro-
tein [2,3], each pair potential Uij (Eq. (1)) is also made
proportional to the product of the local densities ri and
rj in the vicinity of chosen ‘reference atoms’ associated
with the coupled vectors ui and uj. These local densities
are defined as the number of atoms in a sphere of radius
Rc. Moreover, the coupling between the vectors is only
taken into account for reference atoms separated by
less than a cut-off distance Rc. Finally, the choice of
the vectors that constitute the network may depend on
the case at hand. To predict 15N relaxation rates, as in
the present work, it is necessary to include vectors
uðNiH

N
i Þ that are collinear to the amide NH bonds.

When the motions of the vectors ui are assumed to
have small amplitudes, which amounts to a harmonic ap-
proximation, the evolution equations governing the dy-
namics of the network can be expressed in terms of the
vector components in a local molecule-fixed Cartesian
frame (ai, bi, ci), such that ci¼ huii [13,14].

The calculation of the amide 15N NMR relaxation
rates of a residue i in a protein requires the knowledge
of the Fourier transforms Jii(u) of the auto-correlation
functions Cii(t), if we neglect interference effects [15].
The longitudinal and transverse 15N relaxation times,
R1 and R2, and the 15N{1H} heteronuclear Overhauser
enhancement factors (hNH) are given by:

R2 i ¼ d2

�
2Jiið0Þ þ

3

2
JiiðuNÞ þ

1

2
JiiðuH �uNÞ

þ 3JiiðuHÞ þ 3JiiðuHþuNÞ
�

þ c2

�
4

3
Jiið0Þ þ JiiðuNÞ

�
ð2Þ

R1 i ¼ d2ð3JiiðuNÞ þ JiiðuH �uNÞ þ 6JiiðuHþuNÞÞ
þ 2c2JiiðuNÞ

hNH i ¼ 1þ gH

gN

d2

R1

ð6JiiðuHþuNÞ � JiiðuH�uNÞÞ

where d2 ¼ ðm2
0Z2=16p2ÞððgHgNÞ2=10r6

NHÞ and c2 ¼
ðgNB0DsNÞ2=15. In these expressions, rNH is the
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average NH distance, gH and gN are the H and 15N gy-
romagnetic ratios, m0 is the vacuum magnetic suscep-
tibility, Z is the reduced Planck constant, and
DsN¼ sk � st, where sk and st are the parallel and
perpendicular components of the 15N chemical shift
tensor assumed to be axially symmetric. For molecules
undergoing isotropic global rotational diffusion, where
global and internal motions can be considered to be sta-
tistically independent, the local correlation functions
Cii(t) can be factorized [11,12,16]:

Cii

�
t
�
¼ C0

�
t
�
CI

ii

�
t
�
¼ exp

�
�t=tg

�
CI

ii

�
t
�

ð3Þ

where C0(t) and CI
iiðtÞ are the correlation functions rel-

ative to the overall tumbling of the molecule and to the
internal motions of the vector uðNiH

N
i Þ and tg is the

overall tumbling characteristic time. It can be shown
that, owing to the harmonic approximation [13,17],
the internal auto-correlation function CI

iiðtÞ of a vector
ui can be written in the local reference frame in terms
of its transverse components only:

CI
ii

�
t
�
¼ S2

iiþ 3
�
uix

�
t
�
uix

�
0
�
þ uiy

�
t
�
uiy

�
0
��

ð4Þ

where the order parameter is defined as:

S2
ii ¼ 1� 3hu2

ix þ u2
iyi ð5Þ

Since correlation functions CI
iiðtÞ can be obtained from

approximate analytical solutions of the rotational Lan-
gevin equations that govern the dynamics of the vectors
in the network [13,17], relaxation rates can also be pre-
dicted directly from our model. Indeed, the correlation
functions of the components of the N vectors ui in the
network are described by the vector [13,17]:

V
�
t
�
¼ eAtV

�
0
�

ð6Þ

where A is the matrix:
A¼

0
BBBB@

�
D1axx

1 � 2D1

�
D1axy

1 D1f xx
12 D1f xy

12 / / D1f xx
1N D1f xy

1N

D1axy
1

ðD1ayy
1 � 2D1Þ D1f yx

12
D1f yy

12 / / D1f yx
1N D1f yy

1N

« « « « « « « «
DNf xx

N1 DNf xy
N1 / / / /

�
DNaxx

N � 2DN

�
DNaxy

N

DNf yx
N1 DNf yy

N1
/ / / / DNaxy

N
ðDNayy

N � 2DNÞ

1
CCCCA ð7Þ
The coefficients axx
i , f xx

ij , etc. in A are defined by the average
structure of the molecule through the potential U, and Di is
the diffusion coefficient of the vector ui [13]. In the NCR
model, the diffusion coefficients Di determine the time
base of internal dynamics. For simplicity they can all be as-
sumed to be equal to a commonvalue D. In Eq. (6), V(t) rep-
resents the auto- and cross-correlation functions of the x-
and y-component of the vectors ui and a given uj:

VðtÞT ¼
��

u1x

�
t
�
ujb

�
0
��
;
�
u1y

�
t
�
ujb

�
0
��
;.;�

uNx

�
t
�
ujb

�
0
��
;
�
uNy

�
t
�
ujb

�
0
��	

ð8Þ

with b¼ x or y and j can take any of the values j¼ 1,.,
N. The vector V(0) is calculated along with order pa-
rameters S2

ii [13].

3. An example: 15N relaxation rates
of apo-calbindin

In this section, we focus on the case of the calcium-
binding protein calbindin and compare our predictions
with experimental measurements [18] performed on
the apo-form of the molecule [19]. Calbindin D9k con-
tains two EF hand motifs composed of helixeloope
helix sequences. Each of these motifs can accommodate
a calcium ion Ca2þ. It was shown that in the absence of
calcium, both these loops and the linker region between
the EF hand motifs exhibit higher mobility than the rest
of the protein, as attested to by lower model-free param-
eters S2 [18]. This feature can be predicted by the NCR
model [13,14]. We will be concerned here with the pre-
diction of experimentally observed R1, R2 and 15N{1H}
NOE relaxation rates, rather than variables such as or-
der parameters or effective correlation times that are
meant to approximately model the spectral density
functions as Lorentzians. Relaxation of amide 15N nu-
clei is mainly driven by the dipolar interaction and by
15N chemical shift anisotropy (CSA), and interference
effects will be disregarded in the following.

For dipolar relaxation, the relevant correlation func-
tion is the one involving the vector uðNiH

N
i Þ defining
the amide NH bond. In addition, the same correlation
function will describe CSA relaxation in this case, as
the principal axis of the (axially symmetric) 15N CSA
tensor is approximately colinear to the NH bond.



Fig. 1. From top to bottom: predicted (circles) and experimental [18] (squares) values of amide 15N R1, R2, and hNH relaxation rates in

apo-calbindin. In the case of transverse relaxation rate, empty circles indicate predicted raw rates, whilst filled circles denote the value

RNCR
2 i þ Rex, where Rex is the exchange contribution to the transverse relaxation rate.

Table 1

Rank order rs and linear rl correlation coefficients between predicted

and experimental [18] values of amide 15N R1, R2, and hNH relaxation

rates in apo-calbindin

rs rl s

S2NCR
i vs S2exp

i 0.85 0.82 0.10

RNCR
2 i vs Rexp

2 i 0.65 0.72 0.63

ðRNCR
2 i þ Rex iÞ vs Rexp

2 i 0.84 0.85 0.45

RNCR
1 i vs Rexp

1 i 0.84 0.85 0.13

hNCR
NH i vs h

exp
NH i 0.77 0.76 0.18

In the case of transverse relaxation rates R2, the correlation is improved

if predicted values RNCR
2 i are replaced by RNCR

2 i þ Rex i, where Rex i is the

exchange contribution to the transverse relaxation rate.
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Thus, implementing the strategy described in our
previous work, the equilibrium values V(0) were calcu-
lated, and using Eqs. (3)e(8), the correlation functions
CiiðtÞ ¼ expð�t=tgÞ½S2

ii þ huixðtÞuixð0Þ þ uiyðtÞuiyð0Þi�
involved in backbone 15N dipolar and CSA relaxation
were predicted. The network was defined using four
types of vectors: NH, CaHa, CbCg (or any other heavy
atoms located at this position in the residue) and termi-
nal vectors of lateral chains (LEU: CgeCd1 and Cge
Cd2; MET: SdeCe; GLU: CdeOe1; GLN: CdeOe1;
LYS: CeeNz; ARG: CzeNh1; TYR: CzeOh). Global
parameters were adjusted to the following values:
Rc¼ 6.5 Å, k0¼ 2, and D¼ 2.08�108 rad2 s�1. The
overall tumbling is described by a characteristic time
tg¼ 4.1 ns obtained from the ratios R2/R1 of experi-
mental relaxation rates [18]. Numerical values of
DsN¼ 160 ppm for the 15N CSA and rNH¼ 1.02 Å
for the 15Ne1H distance were used. After numerical
Fourier transformation of Cii(t) giving the spectral den-
sity functions JiiðuÞ ¼

RN
0 CiiðtÞcosðutÞdt, the rates

RNCR
1 i ; RNCR

2 i ; hNCR
NH i; i ¼ 1;.;N, for the N residues of

the protein, were obtained.
Results are presented in Fig. 1. Relaxation rates were

calculated for the set of M¼ 33 structures of apo-calbin-
din deposited in the Protein Data Bank [19]. The struc-
tural differences amongst this set of structures are
responsible for the different values of the predicted rates.
Thus, for each residue i in the sequence, a predicted
relaxation rate averaged over the set of structures,
GNCR

i ¼
PM

j¼1 G
NCRð jÞ
i , with G¼ R1, R2, hNH, was ob-

tained. The comparison with experiment was achieved
by computing rank order (Spearman) rs and linear rl cor-
relation coefficients [20], as well as the root mean square

deviation si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=NÞ

P
iðGNCR

i � G
exp
i Þ

2
q

. The results

are quite satisfactory, with values of rs and rl z 0.8, as
shown in Table 1. However, there are clear discrepancies
between predicted and experimental transverse relaxa-
tion rates, attested to by significantly lower values of
rs and rl. A model-free analysis of experimental relaxa-
tion rates [18] has shown that there is an exchange con-
tribution Rex to the apparent experimental R2exp for
a number of residues. Adding this contribution to the
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predicted RNCR
2 i and comparing the quantities

RNCR
2 i þ Rex i and Rexp

2 i greatly improves the result (see
Table 1). This is easily explained by noticing that
NMR relaxation is sensitive to internal motions that oc-
cur on time scales that are shorter than the overall tum-
bling time tg of the molecule. In contrast, exchange
contributions to the transverse relaxation rates in pro-
teins originate from chemical shift modulations that
take place on the ms time scale or longer. Rex terms can-
not be predicted by our model, which is only designed to
describe fast internal motions.

One of the most popular methods used in protein
NMR is the so-called model-free approach introduced
by Lipari and Szabo [11,12], which is based on the as-
sumption that the internal correlation function in Eq. (3)
can be approximated by a mono-exponentially decaying
function towards the finite limit S2

ii:

CI
ii

�
t
�
¼ S2

iiþ
�
1� S2

ii

�
e�t=te ð9Þ

The effective correlation time te of the model-free cor-
relation function sets the time scale of the internal pro-
cesses. This simple model has been extended [21] to
account for more complex processes where internal mo-
tions are better described by two time scales, rather than
one. As an alternative, the spectral density mapping
(SDM) [22,23] analysis of relaxation data consists in
extracting the values of the spectral density function
only at the frequencies that contribute to the relaxation
Fig. 2. From top to bottom: spectral density functions J(u) at frequencies

experimental relaxation rates [18] (squares) and by our NCR approach (cir

perimental data, whilst filled squares represent the values obtained after subt

verse relaxation rate Rexp
2 i .
rates [8]: Jii(0), Jii(uN), Jii(uH), Jii(uH�uN). However,
since it is not possible to extract five unknowns from
only three independent measurements, a reduced spec-
tral density mapping approach has been introduced,
where high frequency contributions are assumed to be
equal [24e26]: Jii(uH) z Jii(uH�uN). Within this
reduced SDM approach, JSDM

ii ð0Þ, JSDM
ii ðuNÞ, and

JSDM
ii ðuhÞ, the approximate value of the spectral density

function evaluated at high frequencies, can be extracted
from 15N relaxation measurements:

JSDM
ii ðuhÞ ¼

R1i

5d2

gN

gH

ðhNHi�1Þ

JSDM
ii ðuNÞ ¼ R1i

3d2þ2c2

�
1�7gN

5gH
ðhNHi�1Þ

�

JSDM
ii ð0Þ ¼ 1

4
�
3d2þ2c2

��6R2i�R1i

�
3þ18gN

5gH
ðhNHi�1Þ

��

8>>>>><
>>>>>:

ð10Þ

An SDM analysis of amide 15N relaxation mea-
surements performed on apo-calbindin [18] can be
compared to the spectral density functions predicted
by the NCR approach (Fig. 2). JSDM

ii ðuhÞ is compared
to JNCR

ii ðuhÞ defined by JNCR
ii ðuhÞ ¼ 6JNCR

ii ðuHþ
uNÞ � JNCR

ii ðuH � uNÞ=5. The agreement between
values of the spectral densities at u¼ 0, uN and uh,
obtained either by NCR predictions, JNCR

ii , or by spec-
tral density mapping, JSDM

ii , for all residues i¼ 1,.,
N in the protein, is measured by the correlation
u¼ 0, uN, uh, obtained by reduced spectral density mapping from

cles). For J(0), open squares correspond to an analysis of the raw ex-

raction of the exchange contribution Rex i from the experimental trans-



Table 2

Rank order and linear correlation coefficients between spectral densi-

ties JSDM
ii [18] and those predicted by our NCR model JNCR

ii at frequen-

cies u¼ 0, uN, uh

rs rl

JNCR
ii ð0Þ vs Jiið0Þ 0.62 0.69

JNCR
ii ð0Þ vs Jiið0Þ using Rexp

2 i � Rex i 0.78 0.80

JNCR
i ðuNÞ vs JiiðuNÞ 0.84 0.84

JNCR
i ðuhÞ vs JSDM

ii ðuhÞ 0.67 0.72
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coefficients given in Table 2. Discrepancies between
values of JNCR

ii ð0Þ and JSDM
ii ð0Þ are noted for some

residues, in particular when exchange contributions
Rex i are significant. The correlation between JNCR

ii

and JSDM
ii is thus very similar to the correlation be-

tween predicted and experimental relaxation rates
GNCR

i and Gexp
i , and therefore illustrates that both ap-

proaches are consistent with experiment to the same
level of accuracy. Interestingly, the quantities calcu-
lated in the present work yielded significantly higher
correlation with experiment than the comparison per-
formed in previous work between the effective corre-
lation time te obtained either by a model-free analysis
or predicted by the NCR approach on the same pro-
tein (correlation coefficients rs and rl z 0.6) [14].
Altogether, these observations suggest that in this
case the correlation and spectral density functions
predicted by a network of coupled rotators provide
a more relevant picture of internal dynamics than
the one afforded by a model-free analysis.

4. Conclusion

In this article, we have discussed new implications of
a model introduced recently to describe internal dynamics
of proteins. This approach is based on the approximate so-
lutions of the rotational Langevin equations for a network
of coupled rotators. This model does not rely on molecu-
lar dynamics simulations and permits one to predict 15N
NMR relaxation rates, as illustrated for the protein
calbindin.
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