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Abstract

Molecular structures are usually calculated from experimental data with some method of energy minimisation or non-linear
optimisation. Key aims of a structure calculation are to estimate the coordinate uncertainty, and to provide a meaningful measure
of the quality of the fit to the data. We discuss approaches to optimally combine prior information and experimental data and the
connection to probability theory. We analyse the appropriate statistics for NOEs and NOE-derived distances, and the related ques-
tion of restraint potentials. Finally, we will discuss approaches to determine the appropriate weight on the experimental evidence
and to obtain in this way an estimate of the data quality from the structure calculation. Whereas objective estimates of coordinates
and their uncertainties can only be obtained by a full Bayesian treatment of the problem, standard structure calculation methods
continue to play an important role. To obtain the full benefit of these methods, they should be founded on a rigorous Bayesian
analysis. To cite this article: M. Nilges et al., C. R. Chimie 11 (2008).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Pour calculer des structures moléculaires a partir des données expérimentales, on utilise habituellement une méthode de
minimisation d’énergie, ou d’optimisation. Les objectifs majeurs d’un calcul de structure sont I’estimation de I’incertitude des
coordonnées, et ’estimation d’une mesure de la qualité de I’ajustement aux données. Nous discutons des approches pour combiner
d’une facon optimale I’information préalable et les données exprimentales, et le lien avec la théorie des probabilités. Nous analy-
sons les statistiques appropriées pour les NOE et les distances dérivées, et les potentiels de contrainte. Finalement, nous discutons
des approches pour un choix optimal du poids sur I’évidence expérimentale, pour obtenir de cette fagon une évaluation de la qualité
de données a partir du calcul de la structure. Des estimations objectives de coordonnées et de leurs incertitudes peuvent seulement
étre obtenues par un traitement completement bayésien du probleme. Neanmoins, les méthodes standard de calcul de structure

Abbreviations: BPTI, bovine pancreatic Trypsin inhibitor; NMR, nuclear magnetic resonance; NOE, nuclear Overhauser effect; PH, pleckstrin
homology; PDB, protein data bank; RMS, root mean square; RMSD, mean RMS distance; RMSDx_,,, mean RMS distance from X-ray crystal
structure; RMSD,,., mean RMS distance from average structure; 114, Interleukin 4; ARIA, ambiguous restraints for iterative assignments; CNS,
crystallography and NMR system; SH3, src homology 3.
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continuent a jouer un role important. Pour obtenir le plein avantage de ces méthodes, elles devraient étre fondées sur une analyse
Bayésienne rigoureuse. Pour citer cet article : M. Nilges et al., C. R. Chimie 11 (2008).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction: structures from noisy and
incomplete data

Experimental data are rarely sufficient to determine
the three-dimensional structure of a macromolecule
by themselves but need to be complemented with prior
physical information. Therefore, structure calculation is
typically a search for conformations that simultaneously
have a low physical energy Eppys(X) and minimise a cost
function E4,,(X) quantifying the disagreement between
a structural model X and the data. This approach was
first implemented for X-ray crystal structure determina-
tion as the minimisation of a hybrid energy [1,2]:

Ehybrid (X) - Ephys (X) + WdataEdata (X) ) ( 1 )

where the force field £,y compensates the lack of data
by imposing physical constraints on the structure. A tar-
get function of this form is widely used in macromolec-
ular structure determination, notably from NMR data
[3,4]. The weight wq,, controls the contribution of the
data relative to the force field. Already when introduc-
ing the hybrid energy concept, Jack and Levitt remarked
that correct weighting of the data “‘is something of
aproblem” [1]. Its value can be critical. If it is too large,
the contribution of the force field might be too small
(overtfitting of the data); if the weight is too small, the
data contributes too little to define the structure (under-
fitting of the data).

Structure determination is an example of fitting of
parameters (principally, the coordinates) to experimen-
tal data. “To be genuinely useful, a fitting procedure
should provide (i) parameters, (ii) error estimates of
the parameters, and (iii) a statistical measure of a good-
ness of fit.”” [5].

Since reviews exist on the most used methods for ob-
taining the coordinates [2,6—10], we will in this paper
analyse to which extent different approaches satisfy
these three conditions. First, we will look at the relation-
ship of the terms in Eq. (1) to probability theory. We
will then discuss the restraint potential, which is related
to the likelihood in Bayesian probability and plays
a fundamental role in obtaining coordinates, their preci-
sion, and evaluating the goodness of fit. Finally, we will

look at the primordial question of correct weighting of
experimental evidence in a structure calculation.

2. Bayes’s rule and the hybrid energy

The hybrid energy function is motivated by maxi-
mising the posterior probability of a structure when
prior information and experimental data are available.
If we restrict the analysis to the molecular coordinates
X, Bayes’s theorem [11] yields the posterior probability
distribution for the unknown coordinates:

p(X|D,I) o (X|D,I)L(X|D,I). (2)

The posterior p(X|D, I) factorises into two natural
components (Fig. 1).
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Fig. 1. Prior knowledge is incorporated in a natural way using the
laws of probability theory. In the illustrated case, the prior knowledge
(dotted line) is the probability to observe a particular torsion angle
before any data are measured (for example, we know that the protein
backbone torsion angle ¢ is in most cases negative). The likelihood
(dashed line) adds the knowledge obtained from the data: in our case,
there are two peaks in the likelihood. The posterior probability (solid
line) is obtained by multiplication of the prior probability and the
likelihood and represents the total knowledge we have about the
conformation.
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1. The prior p(X|I) describes knowledge about general
properties of biomolecular structures. At a given
temperature of the system, the Boltzmann distribu-
tion 7t(X) « exp(—BEpnys(X)) is the least biasing
prior distribution [11]; § is (kgT)fl, with the Boltz-
mann constant kg and temperature T. Eppy(X) is in
general related to a molecular dynamics force field,
although the analytical form and the weighting of
different energy terms in the force field is often
adapted to the structure calculation task. Molecular
dynamics force fields are derived to match observed
dynamical properties of a molecule, whereas a re-
finement force field should provide the probability
of a distortion [12].

2. In the Bayesian context, the second term on the
right hand side, L(D|X, I), is called the likelihood.
This is the probability of the data D, given the
molecular structure X. To evaluate this probability,
we need to have a model or a theory allowing us to
calculate the data from a structure. It is important
to note that these theories introduce further param-
eters (such as the parameters of the Karplus
relationship between torsion angles and scalar cou-
pling constants) that we cannot measure directly.
We also need an error distribution, that is, a distri-
bution of deviation of the measurements from our
theory. If we repeat an experiment many times, the
experimental values scatter around an average value
that will approach the “true’” value with the number
of experiments. To derive the likelihood, we usually
assume that the experimental data are distributed
around the average value in the same way as they
are distributed around the value predicted from the
theory, i.e., that the model does not introduce a sys-
tematic bias. This does not mean that the true value
and the predicted value are identical, just that the
distributions are similar enough. For example, the
data may follow the distribution:

LOX.Dxerp{ ~ 3520}, 5)

where the function %*(X) quantitates the average
discrepancy between the experimental measurements
y; and the data predicted from the structure X by our
a theory, y;(X). For a Gaussian distribution, this is

n

X (X) = [y —y(X)P. (4)

i=1

o is the mean deviation of the measurements from the
theoretical value. This is another, important, parameter

we generally cannot measure but need to introduce for
the modelling.

Bayes’s rule combines the two components (the prior
and the likelihood; quantities we can calculate) to
derive the probability of a particular structure X (the
quantity we are interested in). In the absence of prior
information 7, Bayes’s rule reduces to p(X|D) « L(D|X),
i.e., we directly identify the probability of the data,
given the structure, with the probability of the structure,
given the data. This is the basis of the maximum likeli-
hood method.

If we take the negative logarithm of both sides of Eq.
(2), we obtain an equation of the form of Eq. (1), the
hybrid energy:

—log[p(X|D, )] = —log[m(X|I)] — log[L(DX|,1)]
+ const. (5)

We can identify the hybrid energy function Eypria(X)
with —gBlog[p(X|D)]—const, and the pseudo energy
Eg.(X) with the negative logarithm of the likelihood,
—log[L(D|X, I)]. If we assume a known and constant
o, we obtain for the likelihood in Eq. (3):

1
Ehybrid (X) = ﬂEphys (X) + ﬁ XZ (X)’ (6)

where the factor 8 defines the energy scale; it is 1 if we
measure the energies in units of kg7. Two conclusions
follow from this analysis: first, if we know g, it deter-
mines the weight on the data in the minimisation,
Wdaa- 1t should ideally be set to reflect the quality
(consistency) of the data: the larger o, the lower the
weight. Second, minimising a hybrid energy Epypria(X)
is a way to maximise the probability of a structure
X. In the absence of prior information, and with
a Gaussian error distribution, this illustrates the rela-
tionship between least-squares and maximum likeli-
hood methods.

We use this here mostly as a motivation, since we
will see further down that the analysis is incomplete.
In particular, knowledge of ¢ (or of any of the param-
eters necessary to formulate the likelihood L(D|X, 1))
is not necessary in a truly probabilistic analysis. The
assumption of the prior knowledge of ¢ is unrealistic:
o varies from data type to data type, and also from ex-
periment to experiment. In NMR, in contrast to X-ray
crystallography, we cannot easily obtain an estimate
from repeatedly doing the same experiment, since, in
particular for the NOE, ¢ is dominated by discrep-
ancies between theory and experiment and not experi-
mental noise. Approaches based on minimising Epybria
(or maximising the posterior probability p(X|D, I)) are
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much less powerful than a full Bayesian treatment,
since all additional unknown parameters need to be as-
sumed as known and are generally fixed during the
calculation.

3. Obtaining coordinates and their precision
3.1. Estimation from repeated structure calculation

In structure determination by NMR (and sometimes
also in X-ray crystallography [13,14]) one tries to ob-
tain a measure of coordinate uncertainty by repeated,
independent minimisations of Eq. (1). Estimating un-
certainties in coordinates in this way has been a pre-
occupation in NMR structure determination since its
beginning [15,16]. The results differ from calculation
to calculation with identical data, since all standardly
employed minimisation approaches contain a random
element. In approaches using standard minimisation
(such as DIANA [17]), the initial coordinates are set
to random values; in simulated annealing approaches
[18,19], initial coordinates and initial velocities are cho-
sen randomly; and in metric matrix distance geometry
[20], a definite distance needs to be chosen for each
pair of atoms before the embedding step, again using
a random number generator.

Since no algorithm ever locates ““‘the”” global mini-
mum but gets invariably trapped in one of the many lo-
cal minima, repeated calculation with exactly the same
data will result in different structures. A binary criterion
(“no violations above 0.5 A”) is then employed to dis-
tinguish between accepted and rejected structures. The
accepted structures are considered equivalent solutions,
and the distribution of the structures in space is a mea-
sure of the uniqueness and is often called ““sampling”
of conformational space. The acceptance criterion has
been of some concern, since it is inherently subjective.
Energy-ordered RMSD plots [21], for example, give
some better insights into the convergence of the struc-
ture ensemble and can be used to rationalise the choice
of a particular cutoff; however, they fail to offer a truly
objective criterion.

The expectation is that the distribution of structures
is influenced by the data quality. If the weight wg,, de-
pends on the standard deviation ¢ of the data, the influ-
ence of the data is reduced for low quality data and the
result of repeated structure calculations can be expected
to show larger variation. Most structure calculations
employ lower and upper bounds with error tolerances
that should be set according to ¢. Then, the expectation
is that the wider the bounds, the larger the difference
between individual structures [16].

The resulting structure ensemble of m structures can
be characterized by its average structure X,.:

Xave = <X> = %Zm:Xia (7)

and the covariance matrix C(X), with diagonal elements
containing the variances of each element of X, and off-
diagonal elements containing the covariances between
the elements of X.

C(X)i‘j: <(xi - <xi>) (xi - <x1>>> (8)

where i, j=1, 1/4, ..., 3n40m-

Although the result of such a procedure is useful as
a rough guide, there are two fundamental problems
with using independent solutions of an optimisation to
characterise the distribution of structures. First, optimi-
sation algorithms are neither guaranteed to find all im-
portant regions of the distribution nor to reproduce the
correct populations of the different regions: optimisa-
tion methods will have the tendency to end up in the
region that is easiest to reach for the particular algo-
rithm. Thus the “sampling” provided by optimisation
methods, starting from randomly varying initial points,
will mostly depend on algorithmic properties. Second,
many of the parameters that are necessary for calculat-
ing structures (such as the weight wg,, in Eq. (1) need to
be fixed before the calculation and the influence of their
value and of its variation on the coordinate precision
cannot be assessed.

3.2. The probabilistic least-squares approach

Altman and Jardetzky [22] introduced an entirely
different approach to the problem, which directly ob-
tains coordinate uncertainty by the use of the Kalman
filter. The Kalman filter is a set of equations that was
originally developed to extract a time-dependent signal
from a set of noisy observations. The aim of its applica-
tion to NMR structure determination is to transform
a collection of observations into optimal mean atomic
positions and associated uncertainties implied by the
data set. Given an initial state, the algorithm sequentially
introduces the observations on the molecule. The result
is a series of iteratively improved structures and uncer-
tainty estimates. The algorithm directly optimises
mean positions X,., and the covariance matrix C(X).

Initial values must be assigned to X and C(X) before
the introduction of data. They can be set to random
values or obtained from an exhaustive sampling of
conformational states with simplified models.
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Restraints derived from data have generally the
form:

2= h(X) +v, 9)

where z is the measured value (e.g., a distance derived
from NOE measurements), 2(X) is the function that cal-
culates the data from X (e.g., the distance between two
points in the structure X), and v is a random variable
(white noise) that models the experimental errors in
the system. Values for v are drawn from a Gaussian dis-
tribution with zero mean and with a variance that de-
pends on the data precision (e.g., 0.1 A for bond
lengths and between 1 and 5 A for NMR-derived
distances).

The coordinates and the covariance matrix are then
updated iteratively based on the values of the restraint
function A(X). For an A(X) linear in X:

X(new) = X(old) + K[z — h(X(old))], (10)

where K is a matrix depending on the covariance matrix
C(X) and the derivative of the restraint function A(X).
Simply stated, a new estimate of mean position is based
on the current estimate of mean position, corrected by
a weighted difference between the observed value of
the measurement z, and the value predicted from the
current X. The weight depends via the matrix K directly
on the derivative of the restraints with respect to the co-
ordinates, the covariance matrix, and the estimated data
precision. The covariance matrix has a critical role in
guiding the search for the optimum: the elements of X
that have a large variance are more “flexible” than
those with a smaller variance and are therefore more
affected by the introduction of data. The covariance ma-
trix itself is updated in parallel in a similar manner. The
restraints are usually introduced sequentially since the
introduction of all restraints simultaneously would
lead to large matrix inversions.

The basic equations for the Kalman filter, Eq. (10),
presume a linear dependence of /4(X) on the coordinates
X. In the (usual) case of a non-linear dependence, an
extended form of the Kalman filter needs to be used.
The algorithm may run into convergence problems
(called ““divergence’”) due to the fact that in the course
of the iterations, the elements of the covariance matrix
may get so small that the newly introduced data carry
almost no weight.

The Kalman filter is related to least squares estima-
tion. It has been pointed out [23] that it represents a recur-
sive solution to the standard least squares problem, in
particular for a stationary solution and in the absence
of prior information. In structure determination, we are

looking for stationary solutions. The advantage over
standard least-squares estimation is the more efficient
calculation due to the recursive nature of the algorithm,
and the straightforward introduction of prior information
in the form of initial estimates for X,,. and C(X). We note
that the prior information here is of a different nature and
is handled differently from the Bayesian treatment.

The method has the merit to try to directly address
the problem of obtaining an estimate of the uncertainty
of the structure determination. The result obtained for
C(X) depends directly on the estimated quality of the
data [24,25]. The results can be displayed in the form
of ellipsoids describing the extent of motion in the three
spatial directions.

However, the method makes strong and unjustified
assumptions that influence the final result: (i) the distri-
bution of structures is assumed to be uni-model and
Gaussian (a mean position with a standard deviation),
and (ii) it requires prior knowledge of data uncertainties.
The mean position obtained by the algorithm does not
necessarily correspond to a physical structure. Despite
the introduction of the algorithm nearly 20 years ago,
there is not much experience that would allow an
evaluation of its reliability and convergence properties.

3.3. The inferential structure determination method

In order to rigorously address the problem of obtain-
ing unbiased coordinate precision with the full depen-
dency on all unknowns, we need to abandon the idea
of minimising a hybrid energy or maximising the prob-
ability. Rather, we need to evaluate a probability P; for
all possible structures X;. Generally, a continuum of P;
values is distributed over conformational space. Only
if all but one P; vanish, we can invert the data uniquely,
obtaining exactly one structure from the data. On the
other hand, in the case of uniform P;, the data are com-
pletely uninformative with respect to the structure. In
the case of a continuous parametrisation (Cartesian co-
ordinates, dihedral angles) P; is a density p(X|D, I); the
integral [, dX p(X|D,I) evaluates the probability that
region R of conformational space contains the true
structure.

For a single—or very few—unknown (coordinates
and other parameters), one could calculate the proba-
bility of every conformation, for example, by a grid
search. For the large number of unknowns typical for
the structure determination of a macromolecule this
is unfeasible and the space of possible conformations
has to be explored by a suitable sampling algorithm.
The recently developed inferential structure determina-
tion method ISD [26] is therefore based on Monte
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Carlo sampling to explore the probability distribution
over conformational space. Monte Carlo sampling is
not used as a means to find the maximum of a probabil-
ity but to evaluate the integrals over parameters that
appear in the use of Bayes’s rule, Eq. (2) or (11).

Once the model to describe the data (i.e., the likeli-
hood function) has been chosen, the rules of probability
theory, Eq. (2) or (11), uniquely determines the poste-
rior distribution. The appropriate statistics for model-
ling distances and NOEs are discussed further below.
No additional assumptions need to be made.

3.3.1. Nuisance parameters

The full power of a full Bayesian treatment of the
problem becomes apparent if there are additional un-
known, auxiliary parameters. It is basically always nec-
essary to introduce such auxiliary parameters in order to
describe the problem adequately. For example, the pa-
rameters A, B, C of the Karplus relationship are, strictly
speaking, unknown for the particular protein that one is
investigating. Also, the data quality ¢ is an unknown pa-
rameter, as is the calibration factor v for NOE volumes.

In Bayesian theory, these additional parameters are
called “‘nuisance parameters’’. In ISD, all additional un-
known parameters of the error model and of the theory
are estimated along with the structure. They are treated
in the same way as the coordinates. To add the unknown
a, we simply replace X with (X, ¢) in Eq. (2), and the full
posterior becomes:

p(X,a|D,I)ct(X|)m(a|)L(D|X,a,I). (11)

Here, we a priori assume independence of X and the
nuisance parameters—the prior for the coordinates
does not depend on the values of the ¢ and vice versa-
—and we introduce the additional prior 1v(a|l) (Jeffreys
prior [27]) expressing our ignorance on this parameter.
Other nuisance parameters (the calibration factor 7,
Karplus parameters, tensor parameters, ...) are treated
in exactly the same way and simply lead to additional
terms in the equation.

The posterior density for the coordinates by them-
selves is formally obtained by integration over nuisance
parameters (also called marginalisation [11]):

p(XID, 1) = / do p(X, o|D, 1) <p(X|1)
/d(fp(D\X7 a,w(a|l). (12)

That is, in order to account for our ignorance regarding
nuisance parameter g, we have to replace p(D|X, I) in

Eq. (2) with a weighted average over the likelihood con-
ditioned on all possible values of ¢. This is in marked
difference to standard structure determination by mini-
misation, where the value of any unknown parameter
needs to be fixed before the structure calculation, and
therefore only one single value is used. In contrast,
the result of a structure calculation by inference directly
contains the influence of the uncertainty in the addi-
tional parameters.

3.3.2. Sampling

A good sampling algorithm will produce samples
with the correct probability. That is, the probability
can be directly calculated from the number of times
a particular region is visited. In contrast to an optimi-
sation algorithm, it is designed to visit all regions of
high probability, and not to locate efficiently one of
the maxima.

Sampling of the probability distribution of protein
conformations is difficult, due to a number of factors:
there are many degrees of freedom (essentially the
main chain torsion angles of a protein); the degrees of
freedom are highly coupled; islands of high probability
are separated by large stretches of low probability. To
address this problem, we proposed an extended rep-
lica-exchange Monte Carlo scheme for simulating the
posterior densities [26,28]. The extended scheme uses
a combination of different concepts to sample the coor-
dinates and nuisance parameters: a replica-exchange
scheme using a hybrid Monte Carlo algorithm to sample
the coordinates. The nuisance parameters are sampled
with a standard Monte Carlo method.

In the replica-exchange Monte Carlo method, several
non-interacting copies of the system, so-called replicas,
are simulated in parallel at different temperatures. Ex-
changes of configurations between neighboring replicas
are accepted according to the Metropolis criterion. In
this way, configurations diffuse between high tempera-
ture and low temperature, which effectively reduces
the risk of being trapped in a particular conformation.
Each replica is simulated using the Hybrid Monte Carlo
(HMC) [29] method. This consists of running a short dy-
namics trajectory of 250 integration steps starting with
randomly assigned momenta to generate a new proposal
state, which is then accepted or rejected according to the
Metropolis criterion.

3.3.3. Analysing the results

The result of a Bayesian structure calculation is
a large ensemble of structures sampled at many differ-
ent values of the nuisance parameters. The Bayesian
procedure derives statistically meaningful, objective
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Fig. 2. Estimation of auxiliary quantities. Marginal posterior p(s|D,
I) distribution for the nuisance parameter ¢ (error of the lognormal
model) obtained from Monte Carlo samples. The data set for Ubig-
uitin consisted of 1444 non-redundant distances taken from the
restraint file, PDB code 1d3z; the data set for SH3 was for a perdeu-
terated sample and contained 150 distances between exchangeable
protons.

error bars for all parameters, not only the atom positions
but also the nuisance parameters. An example showing
the distribution of ¢ for two different data sets is given
in Fig. 2. Note that the average value, i.e., the quality,
for the two very different data sets is approximately
similar, but the width of the distribution is very differ-
ent. The reason is the drastically different number of
constraints available for the two proteins.

The variance of the structures automatically contains
the influence of the nuisance parameters on the struc-
tures. The Bayesian structure calculation method is the
only one that provides estimates for all unknown

parameters, error estimates of the parameters, and a sta-
tistical measure of a goodness of fit. Average structure
and the covariance matrix calculated from a structural
ensemble calculated with ISD are therefore more mean-
ingful than in other structure determination approaches.
Fig. 3 shows the result for two structure calculations,
SH3 derived from a very sparse data set, and Ubiquitin
from a much more complete data set.

Since the method has no free parameters that need to
be fixed before the calculation, user intervention is not
necessary, and structure determination becomes more
objective.

4. Data statistics and restraint potentials

The likelihood function L(D|X, I) (or the related po-
tential Eg,(X)) needs to be known for any structure
calculation. It has an important influence on the result-
ing distribution of structures. The role of L(D|X, I) or
Eg..(X) is to introduce our knowledge about expected
deviations between measured and calculated data, and
to evaluate the importance of these deviations. For cer-
tain data types, a Gaussian distribution can be assumed
to a good approximation, e.g., for scalar or residual cou-
plings. In contrast, NOEs and derived distances have
too many large deviations to be well represented by
a Gaussian.

4.1. The standard representation using lower and
upper bounds

The standard way to account for errors and impreci-
sions in NOE-derived distances is by distance bounds
that are wide enough to account for all sources of error
and remove geometrical inconsistencies. This data rep-
resentation with lower and upper bounds, strongly

Fig. 3. Ensembles of most probable structures for the SH3 (left) domain and Ubiquitin (right), with the same data sets as in Fig. 2. The width of
the “sausage” is proportional to the RMSD around the average structure. The distribution of structures contains the uncertainty due to the un-
known nuisance parameters. Note that, whereas the structure ensembles are shown as an isotropic distribution for the sake of simplicity, distri-

butions calculated with ISD are not isotropic or uni-modal.
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influenced by the concept of distance geometry [20,30],
has been used almost exclusively for determining NMR
structures to date. The corresponding potential for
NOE-derived distance restraints has a flat-bottom har-
monic-wall (FBHW) form, that is, it is flat between
the upper and lower bounds u and /, which are derived
from the NOE, and rises harmonically in the deviation
of the distance d(X) from u and /.

FBHW potentials are popular since energy and force
are zero between u and / and, hence, do not influence the
structure if the distance restraint is satisfied. In practice,
however, the distance bounds representation can be
problematic [31,32], and adds a strong subjective ele-
ment to structure determination from NMR data. Fig-
ures of merit for NMR structures are therefore not
very informative. In particular, the bounds representa-
tion makes a comparison of the determined structures
to the estimated input distances meaningless. Also the
RMS difference of the structure ensemble from the
average structure (RMSD,,., “precision’) is heavily
influenced by the width of the bounds and the manipu-
lation of individual bounds [33], and is therefore not an
unbiased measure of the structure quality. In the follow-
ing, we discuss some possibilities to replace the FBHW
potential by potentials derived from an error distribu-
tion of the distances.

4.2. Derivation of a restraint potential
from error distributions

The distribution of errors of NOE-derived distances
is a priori unknown. If we knew the error distribution
g(d, dy) in the distances d around the ‘“true” distance
dy, we could construct a restraint potential by taking
the negative logarithm of the distribution. Assuming
that the individual distance measurements are statisti-
cally independent, we obtain as potential E%VOE for a sin-
gle restraint i:

E?IOEOC — ]og[g(déxp,di(X))], ()

where di(X) is the distance calculated in the structure X,
and déxp is the measured distance.

To derive the error distribution and the correspond-
ing potential, we need to know the “‘true’” value of the
distance. This can only be warranted by a model study.
We proposed therefore to derive a distance distribution
from a molecular dynamics trajectory [31,33]. As
“true” values dy we used the arithmetic average over
the trajectory. To calculate histograms, we binned the
distance differences dy—d into bins of 0.1 A. Another
possibility is to use the distances in an X-ray crystal

structure as a true value. An error distribution can
then be derived by comparing pairs of X-ray crystal
structures and NOE data sets of the same protein.
Here, we simply assume that the shape of the distribu-
tions around the true distance and around the distance
in the X-ray crystal structure are similar, not that the
distances themselves are the same. A probability-de-
rived potential for structure calculations is then derived
by fitting a differentiable analytic function to the nega-
tive logarithm of the “raw’’ distribution.

We showed for several examples that structures cal-
culated with the potential derived from a molecular dy-
namics trajectory on BPTI (Fig. 4(a)) were of better
quality than those calculated with the FBHW potential,
and that they were systematically closer to the X-ray
crystal structure of the same protein [31]. In addition,
we found that the distribution of structures around the
average automatically depends on the data quality.
This is evidenced in Fig. 5, where increasing amounts
of random noise was added to the experimental data.
Even with a constant weight on the distance restraints,
the RMS difference of the structures to the average
increases linearly with the noise in the restraints.

4.3. The lognormal distribution
and a derived potential

Despite the robustness of the results to the exact
shape of the potential, it may seem problematic to use
a potential with several free parameters in addition to
the overall weight. We discuss therefore another ap-
proach to the derivation, an error distribution and a re-
straint potential, from more fundamental properties of
NOEs and derived distances. To this end, we analyse
the expected deviation of a measurement from the ideal
value. Although the original analysis [46] was performed
for NOE intensities /, it is valid also for distances.

NOE intensities and derived distances are inherently
positive. A calibration factor vy need to be introduced in
order to relate the intensity scale to a distance scale.
Changing the units does not affect the information con-
tent of the data. Hence, the distribution g(/yps, Icac) Of
the deviations between observed and calculated in-
tensities must be invariant under scaling, i.e., g(/yps,
Leaie) = ag(ad gy, alcq1c), which follows from the trans-
formation rule of probability densities. A distribution
that shows this scale invariance is the lognormal distri-
bution:

(o Tete) = e L og? (fob
8 Uobs, Lcale —\/m P 202 g Lac) ]
(14)
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Fig. 4. Negative logarithm of the normalized distribution of re—reyp (solid line), a manually fitted symmetric function, (dashed line, only in (a)),
and optimal fit (dotted line); (a) BPTI trajectory data, (b) 114 [34,35], (c) BPTI [36,37], (d) pH domain [38,39], (¢) GB1 domain [40,41], (f) Ubig-
uitin [42,43]. The dotted line represents a fit of the functional form (the “‘soft-square” potential) already implemented in X-plor [44] and CNS [45]
to the negative logarithm of the distribution. Note the general similarity of the potentials, despite the differences in the used data sets with respect

to completeness and quality. From Ref. [31], with permission.

This distribution is restricted to the positive axis and is
asymmetric around its median /... Measurements are
incorporated without bias in the sense that the probabil-
ity of over- or underestimating the true intensity is both
1/2. This is not the case for error distributions defined
on the entire axis, such as a Gaussian, which assign
a non-vanishing probability to unobservable negative
intensities. The parameter o quantifies the relative devi-
ation of the observed from the calculated intensity,
provided that their difference is sufficiently small. Ex-
perimental NOE data follow this distribution quite
well (see Fig. 6). This indicates that the assumption
that the shapes of the distributions around the mean
and around the value calculated by the theory is indeed
similar, even for the simple ISPA approximation.

Fig. 6(c) and (d) shows distributions for distance
differences d,ps—d.,. fitted to a Gaussian distribution.
The distance error distributions are asymmetric and
long-tailed and a Gaussian can significantly underes-
timate the probability of large deviations. Both prop-
erties are much better accounted for by the lognormal
distribution. From a practical point of view, the log-
normal model has several favorable properties. Unlike
a probability distribution corresponding to a flat-
bottom potential, it has a unique maximum. Hence,
measurements are not weighted equally between
bounds but are always penalized depending on the
degree of disagreement with the structure. Further-
more, the lognormal distribution is invariant under
power law transformations. If we raise the intensity
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Fig. 5. RMS and RMSD values plotted against the level of added
random noise added to the experimental distances for Ubiquitin, cal-
culated with the potential from Fig. 4(a), and a data weight of 32. The
values indicate the interval from which the random number was
drawn; 0.2 indicates the interval [—0.2, 0.2] and so forth. Top panel:
RMS, o (solid line) and RMS,., (dotted line). Bottom panel:
RMSDx.ray (solid line) and RMSD,,. (dotted line). Note that all
the calculations were performed with exactly the same conditions,
that is, in marked difference to other studies [16,24], values for the
expected error did not have to be known before the calculation.
From Ref. [31], with permission.

to a power the transformed intensity still follows
a lognormal law, with transformed median and error
parameters. Since the ISPA is a special case of
a power transformation, we obtain identical distribu-
tions for intensities and distances, provided that o
has been transformed appropriately. The lognormal
model is implemented in our software for probabilis-
tic structure determination (ISD) for calculating the
likelihood based on NOE intensities or NOE-derived
distances.

The negative logarithm of the distribution in Eq. (14)
is the corresponding restraint potential:

1 I
ENOE o Jogle(Iops, Leate )] = —— log? [ =2 15
i x Og[g( bs ) L cal )] 252 0g Leate ) ( )

that is, it is harmonic in the difference of the logarithm
of calculated and experimental intensities. Note that
this “log-harmonic” potential has only one single pa-
rameter, the weight depending on ¢. Due to the

property of the logarithm, the corresponding potential
for distances has exactly the same functional form, if
one assumes the ISPA. The exponent —1/6 necessary
to convert the intensities to distances becomes a multi-
plicative factor of the logarithm and simply modifies
the force constant. We have recently implemented
this potential in the program CNS [45], and initial ex-
periences for structure calculations give similar results
as the potentials described in the previous section
(unpublished).

5. Data quality and the weight on Eg,¢,(X)

As already mentioned in Section 1, the weight plays
a fundamental role in calculating structures from experi-
mental data. Within ISD, the weight is estimated along
with all the other unknown parameters (see above). In
astandard structure calculation by minimisation, the exper-
imental data are weighted empirically: wg,, is set ad hoc
and held constant during structure calculation. In their orig-
inal paper, Jack and Levitt [1] proposed to adjust the weight
s0 as to equalise Eppys and waaafgaa(X); this has been later
refined to equalise average gradients [47]. In NMR, one
usually uses fixed empirical values. In particular for the sin-
gle minimum potentials discussed in the previous section,
the weight has a profound influence on the results.

5.1. Setting the weight by empirical means:
cross-validation

An unbiased empirical method to determine the
optimal weight is cross-validation [48,49]. Data are di-
vided into a working set, used to calculate the structure,
and a test set, used only to evaluate the structure. Two
measures of quality can be obtained: the RMS difference
to the working set defines the usual fit to the distance re-
straints (or distance bounds), and the RMS difference to
the test set defines a cross-validated measure that is not
directly influenced by the data. If we measure the devia-
tions from the distance (not from the bounds):

XZ
RMSy ok = {200tk (16)
Nwork
2
RMS,, = ] X& (17)
nCV

where the x? functions are restricted to the working and
test sets, and 71,0, and 7., are the number of data points
in the working and test sets, respectively. Due to the
properties of NMR data (in contrast to X-ray
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From Ref. [46], with permission.

crystallographic data, they are local and sparse), more
stable results are obtained by using used ten-fold com-
plete cross-validation [49], that is, the data is divided
into ten partitions of roughly equal size, each used in
turn as a test set, and the results for RMS,,, and RMS,.,
are averaged. A minimum in RMS,, indicates optimal
calculation conditions.

To determine optimal conditions for a structure cal-
culation, we need to vary these conditions (in our case,
the weight on the distance restraint term) and repeat
structure calculations with otherwise unchanged con-
ditions (around 100 structures for each weight, i.e.,
ten per test set). Often, RMS,, does not show a clear
minimum but an elbow, and it is convenient to define
an optimal weight using the elbow region (e.g., as
the point where there was less than 10% change in
RMS,,).

Fig. 7 shows, for Ubiquitin, the RMS differences and
the WhatCheck [50] quality indices NQACHK and
RAMCHK, as a function of the data weight used in the
calculation. Around the optimal weight, calculations
are not very sensitive to the precise value, and the elbow
region is usually around values between 16 and 32, co-
inciding with the optimal values for RMS differences
from the X-ray crystal structure, and for RAMCHK.

While cross-validation is an unbiased approach to
obtain optimal parameters for a structure calculation,
it is a rather insensitive to the parameter values. If
many weights for different data terms need to be deter-
mined, its use becomes cumbersome, since many
combinations of weights need to be evaluated. Another
disadvantage is the necessity to remove data from the
calculation, which, in the case of very sparse data,
may reduce convergence.
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Fig. 7. RMS differences and quality indices for Ubiquitin for calcu-
lations with the PDFypma, potential. Top panel: RMS difference
from data RMS,.k (solid line), cross-validated RMS difference
from data RMS,, (dotted line). Middle panel: NQACHK (solid
line) and RAMCHK (dotted line). Bottom panel: RMS distance
from the X-ray crystal structure RMSDx_,,y (solid line) and RMS dis-
tance from average structure RMSD,,. (dotted line). Structures were
calculated with the distance restraint potential shown in Fig. 4(a).
From Ref. [31], with permission.

5.2. Probabilistic approaches to set the weight

Probability theory gives us other possibilities to
weight experimental data in an objective way: (i) the
unknown weight parameter can be sampled along
with the other unknown parameters, as in the ISD
approach [26] described above; (ii) the weight can be
included into the restraint function [51]; or (iii) the
weight can be eliminated by marginalisation.

We focus on the second method, inclusion of the
weight into a restraint function, since it is of most

practical importance for minimisation. The negative
logarithm of Eq. (11), the full posterior probability in-
cluding the nuisance parameter o is

Ejin (X, 0) = 55 (X) + B (X) + log[2(0)/(2)],

where, for the model,

Sy log? [yi/yi(X)).

The term log[Z(co)/m(o)] in the joint hybrid energy,
Eq. (18), is not included in the standard target function
Ehyorigs Eq. (1). However, it is precisely this additional
term which allows us to determine the error. Z(o) orig-
inates in the normalisation of P(D|X, I), (o) is required
by Bayes’s theorem. Both terms are missing in purely
optimisation-based approaches, where normalisation
constants and prior probabilities are usually not incor-
porated; this shows that a probabilistic framework is
necessary for the correct treatment of the problem.

One might think that including the weight directly
into a restraint energy would favour large values for o
with the corresponding weight approaching zero, since
this would automatically minimise the restraint energy.
However, the Bayesian analysis shows [51] that in the
joint target function Ejun,, Eq. (18), two contributions
counterbalance each other: */o* decreases when o
increases, thus preferring large values for the error
when Ejyriq is minimized with respect to the error. In
contrast, the term log[Z(g)/m(g)] is monotonically
increasing with o (for the lognormal distribution, Eq.
(14), itis o ", where n is the number of data points).
The ratio of the two terms therefore shows a finite
minimum, which can be used to calculate the error,
and, correspondingly, the optimal weight.

Minimisation of the resulting joint hybrid energy
EioindX, 0) yields the most probable structure X, and
the most probable error o,,,,x. In case of the lognormal
model, Eq. (14), we obtain oyax = v/X* Ximax)/ (7 + 1).
Further analysis yields for the average weight
(Waaw) = n/x*(X) as an estimate. These estimates concur
with common sense: the average weight quantifies, in
good approximation, how well the structure fits the data,
independent of the size of the data set. The precision of
the estimate, i.e., the width of the weight distribution, in
contrast, decreases with the square root of the number of
data points [51]. Therefore, when sampling the weight,
we obtain sharp distributions for ¢ for typical NMR data
(see Fig. 2). This estimate is much more precise than
what we can obtain from cross-validation.

To apply this estimate in the context of structure de-
termination by minimisation, we can iteratively update

lognormal
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the current weight to Wau = 1/X>(X?) = RMS_2,.

This weight is a conservative estimate since it is always
smaller than xz(Xmax)/(n + 1), the most probable weight
derived from the most probable structure. We are at
present testing implementations of this simple rule
within CNS and ARIA.

6. Conclusions

In this paper, we reviewed approaches to obtain mo-
lecular coordinates from experimental data, with a spe-
cial emphasis on treating it as a data-analysis problem
of parameter fitting. Only the inferential structure deter-
mination method ISD satisfies the three conditions for
a good fitting procedure mentioned in Section 1 in
that it provides fitted parameters, error estimates of
the parameters, and a statistical measure of a goodness
of fit. It is the only method that can derive these esti-
mates for the coordinates taking into account uncer-
tainties in all additional parameters that are necessary
for the structural modelling. It does not require prior es-
timates of data quality, but only information on the gen-
eral form of the error distribution of the data. It can
therefore be regarded as the “king’s way” to structure
calculation.

Least-squares type methods have the disadvantages
that one must define experimental errors a priori, and
that they impose a uni-modal Gaussian distribution on
the resulting structures. In contrast, the standard way
of estimating structural uncertainty by repeated struc-
ture calculations does not impose any distribution on
the structures but suffers from the problem that the
structural ensembles are largely influenced by algorith-
mic properties.

Despite the success of ISD, standard structure deter-
mination by minimisation will undoubtedly continue to
play a dominant role in practical applications. We argue
that, to obtain the maximum benefit, these approaches
should derive from a rigorous probabilistic treatment.
This has implications on the restraint potential and on
the weighting of experimental evidence. For example,
the necessity of defining the data quality a priori can
be removed. Whereas we cannot get statistically mean-
ingful coordinate uncertainties from the minimisation
approach, our experience shows that the uncertainties
in the structure determination automatically depend
on the data quality if an appropriate restraint potential
is used. We also foresee that the analysis of differences
between experimental and calculated data on a per-re-
straint or per-residue basis will be more informative
than with the presently used fixed weights and FBHW
potentials.
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