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Abstract
To honor Yves Bouligand, champion of new ideas, complexity and living systems, I give a brief overview of our recent discovery of
a biaxial Bouligand arceau in achiral tetrahedratic banana liquid crystals. To cite this article: P. Elizabeth Cladis, C. R. Chimie 11 (2008).
� 2008 Published by Elsevier Masson SAS on behalf of Académie des sciences.
Résumé
En l’honneur du Prof. Yves Bouligand, le maı̂tre des nouvelles idées en sciences de la complexité et des matériaux du vivant,
voici un bref aperçu de notre toute nouvelle découverte. Il s’agit de l’arceau biaxial Bouligand dans un crystal liquide banane à la
fois tétraédrique et achiral. Pour citer cet article : P. Elizabeth Cladis, C. R. Chimie 11 (2008).
� 2008 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Keywords: Tetrahedratic; ‘‘Banana molecules’’; Arceaus in cholesterics
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1. Introduction

Yves Bouligand’s stunning interpretation of bow-
shaped fibers (arceau) as a structure fibrillaire torsadée
[1] launched the field of cholesteric liquid crystal de-
fects in physics [2,3], polymeric liquid crystals [4]
and biology [2,4,5]. Why cholesterics? Because they
are chiral, nematic liquid crystals with a length scale.
Nematic liquid crystals, now on every laptop in the uni-
verse, have no length scale. While triggering a roaring
avalanche, Bouligand gently noted: Ce phénomène est
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trop irrégulier pour qu’on puisse adopter avec certitude
cette interprétation. [1].

A group theoretic treatment of defects in systems
with broken continuous symmetries lead Volovik and
Mineev to class multiplication tables for cholesteric de-
fects [6]. They argued that cholesterics could belong to
the same group as the biaxial nematics of Toulouse [7]
and Mermin [8]. But, cholesterics have a length scale
thus limiting the rigor of a group theoretic treatment.
One can summarize: Ce phénomène est trop régulier
pour qu’on puisse adopter avec certitude cet
interprétation.

Because nematics have no length scale, we can adopt
with certainty, the Class Multiplication Table for
on behalf of Académie des sciences.
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Table 1
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Fig. 1. In nematics, there is only one line defect e includes edge

disclinations [11].
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nematic defects1 (Table 1). Only two characters are
needed to completely describe a uniaxial nematic’s
symmetry group: the identity, E, and C2, an 180� rota-
tion of the nematic director, n. Because two 180� rota-
tions recover the identity (C2�C2 4 E in Table 1),
S¼�1 disclinations are not line defects in 3D, i.e.
they are homotopic to the uniform state (E) [9].

As Toulouse enunciated in his talk at Bell Labs
(w1977): ‘‘You cannot lasso a basket ball’’, the basket-
ball being a hemisphere (because n¼�n) of allowed
orientations for n and the lasso, a closed loop on that
surface, can shrink to a point representing a uniform
state. The only other closed line on this surface joins
two diametrically opposite but physically equivalent
points. It topologically describes a Möbius line defect,
S¼þ1/2 or S¼�1/2. Each can turn into the other
just by ‘‘going over the top’’ of the hemisphere [4,10].
Or, in a Toulouse corollary, each Möbion is its own
anti-defect.

I was delighted. Just before I left Orsay in 1972 for
Bell Labs, Yves and I had been studying the optical con-
trasts of defects in thin slices of polymerized liquid
crystals. I had made a calculation to understand the
bright focused lines often associated with S¼�1/2 de-
fects when viewed between glass plates. The calculation
was considered WRONG, because it showed an S¼
þ1/2 turning into an S¼�1/2 when it ‘‘turned a cor-
ner’’ in a cube.

Without benefit of homotopic theory of defects,
Yves had to fight long and vigorously to convince
formidable experts [4]. A similar, but not exact, David
and Goliath scenario comes to mind. Not exact be-
cause, 5 years later, Toulouse still did not know about
Ref. [4].

In his 1981 Christmas card, Yves illustrated S¼
�1/2 homotopy (Fig. 1) showing the inclusion of
edge disclinations. With his permission, I submitted
Fig. 1 for our popular article in Physics Today on de-
fects in liquid crystals [10]. To my great regret, it was
edited out for reasons I never knew. It is a good example
of Bouligand’s talents for sharing with the rest of us the
power and beauty of complex liquid crystalline struc-
tures in 3D [11,12].
1 Notation from M. Tinkham, Group Theory and Quantum

Mechanics, McGraw Hill Book Company (1964) p. 324.
2. Arceau

One of Bouligand’s most impressive talents is that he
is not afraid of complexity. In fact, one might say, he
relishes deciphering and discussing complicated images
that tend to immobilize lesser mortals. Then, he ‘‘mag-
ically’’ pulls out of his hat beautiful drawings of the
linchpins to his ideas thus clarifying everything for
everyone.

A good example is his early drawing to account for
the observation of arceau in chromosome fibers
(Fig. 2). The arceau is an idea accessible to many that
came out of observations of a series of very complicated
patterns [1,2].
Fig. 2. The arceau in chromosome fibers [1].



Fig. 3. The many textures observed in thin (1e4 mm) B7 sample

about 12 K below a transition to the isotropic liquid state after

cycling many times in an electric field. The field of view is

w170� 150 mm [14].
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As Yves Bouligand is a champion of complexity, I
would like to share with him some of our recent obser-
vations and thoughts on the B7 phase formed by Weiss-
flog’s banana-shaped molecule [13]. Fig. 3 is a snapshot
showing B7’s resemblance to the biological branch of
the liquid crystal family [14,15].

We distinguish between Weissflog’s B7 bananas,
from other similarly named banana phases, because
its X-ray diffraction pattern does not show a simple lay-
ered structure, or indeed, any structure known up to now
in classical liquid crystals [13]. We do not know the
ground state of Weissflog’s B7. In its B7 phase, many
different birefringent objects come and go in an isotro-
pic (tetrahedratic?) sea, even quite far from the transi-
tion temperature2 to the usual isotropic liquid state
[14,15]. What if the isotropic liquid in Fig. 3 is tetrahe-
dratic [16]? Let’s go to a thicker sample [15].

3. Tetrahedratic banana LCs

While thinking of achiral biaxial smectic liquid crys-
tals, Helmut Brand, Harald Pleiner and myself came up
with banana liquid crystals [17e19]. We found that
even though these objects were achiral (no asymmetric
carbons) they could, by symmetry, have a polarization,
P, when stacked in layers.

To our surprise, when achiral banana liquid crystals
were first synthesized [20,21], they spontaneously
exhibited ambidextrous chirality e both left- and
right-handed structures were observed. Ambidextrous
chirality is unknown in quadrupolar (Qij) liquid
crystals [22].
2 Large latent heat 7.5 cal/g, TB7-I¼ 180 �C, DSC tested stable over

several days of temperature cycling [14].
Before achiral banana-shaped liquid crystals had
been synthesized, Leni Fel went beyond quadrupolar
liquid crystals (Qij) to consider liquid crystal phases
with tetrahedratic (octupolar) order, Tijk [16] (Fig. 4).
Tetrahedratics lack inversion symmetry and are opti-
cally isotropic.

After banana LCs were synthesized [13,20,21],
Rhadzihovsky and Lubensky argued [23,24], that ba-
nana symmetry required the usual quadrupolar order
parameter, Qij [22], a vector order parameter, P [17e
19], and also, Fel’s octupolar order parameter, Tijk

[16], all coexisting at every spot in space and all at
the same time.

A daunting proposition. However, such coexistence
is possible as the different moments of the mass distri-
bution (the second moment for nematics, the third one
for tetrahedratics) are independent of each other [25].

A simplifying feature for analysis is that the free en-
ergy gradient terms in Qij and Tijk can couple at lower
order [25,26] than spatially homogenous ones, rather
similar to cholesterics. While Tijk lacks inversion sym-
metry, it has no preferred sense of rotation. Conse-
quently, this lowest order gradient term accounts for
ambidextrous chirality in achiral banana liquid crystals
by reducing the energy of ambidextrous twist in both
fields below that of the uniform state [26].

Recently we found that the same lowest order cou-
pling term could account for the biaxial myelin in
Fig. 5 by facilitating the spontaneous appearance of biax-
ial Bouligand arceau with an average length scale [25].
Fig. 4. The tetrahedratic order parameter, Tijk, where a¼ 1, 2, 3 or 4

refers to the 4 vectors in the cube. Tetrahedratics are isotropic and

lack inversion symmetry.



Fig. 5. Biaxial myelin observed in a free drop of Weissflog’s B7

about 7 K below TB7-I [15]. Polarizers crossed 45� to the border.
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Nevertheless, the coexistence of the two order para-
meters, Tijk and Qij, at each point in space, poses many
questions. For example, how does one draw the picture?

Our solution is to embed a uniaxial nematic director
in the tetrahedral field (Fig. 6) and draw many pictures
(or phase portraits) when the order parameters vary
spatially.

Fig. 6 shows for spontaneous splay-bend that the tet-
rahedratic vectors are not symmetric around n [25],
making the net field biaxial.

We interpret Fig. 5 as a spontaneous splay-bend tex-
ture viewed from ‘‘the top’’ as in Fig. 6. Its remarkable
features include thick continuous black lines, marked 0,
Fig. 6. The well-known side view of n in a Bouligand arceau alone and supe

n alone and superposed on Tijk, is the view looking down on Fig. 5. Embed

metry (Tijk) can lead to biaxiality [25].
1, 2 and weak biaxiality as evidenced by the extinction
asymmetry when one of the optic axes is perpendicular
(nearly ordinary ray) to the polarizer compared to when
it is parallel (only one extraordinary ray), and the bright
focused spot at the top left of line ‘‘0’’ from one of the
extraordinary rays focusing to the center of the defect
line. The average distance between the black lines is
16.3� 1.8 mm. The biaxiality in Fig. 5 is a consequence
of the lowest order coupling between gradients in quad-
rupolar and tetrahedral (Fig. 4) order [25].

4. Biaxial arceau

Birefringent optics is rich and complex. An extraor-
dinary ray refracts when its index of refraction changes
in space while ordinary rays, having only one index of
refraction, travel in straight lines [27,28]. It might
help to think of the biaxiality in Fig. 5 as weak so that
one of its extraordinary rays is close to ordinary.

In Fig. 7, we take the side view of a biaxial arceau
(Fig. 5) and consider how extraordinary rays travel
through a splay-bend texture when viewed from the
top. We assume that all the black lines, even the faint
ones, are where the optic axis is parallel to the incident
rays. The fact that they are not uniformly black is likely
due to slight irregularities in sample flatness as it
travels. We assume every black line is where the optic
axes are parallel to the incident beam (i.e. 0, p, 2p.
in the side view of Fig. 6, or, homeotropic). Between
every black line in Fig. 5, we imagine a 0ep splay-
bend wall (Fig. 7).
rposed on the computed Tijk. The less familiar top view, an arceau for

ding a uniaxial field (n) in an isotropic field that lacks inversion sym-



Fig. 7. Optical path for the side view of Bouligand arceau in Fig. 6.
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When the polarization is parallel to the splay-bend
texture, the extraordinary wave front bends towards
the region with higher index of refraction i.e. away
from the black lines. When the incident ray is exactly
parallel to n, it bends to either side perpendicular to
the dark lines, doubling when it is a single extraordinary
[27,28] ray. This accounts for the zig-zaggy extinction
lines in the top left quadrant of Fig. 5. The bright white
spot at the end of line ‘‘0’’, is because the single extraor-
dinary ray in this polarization focuses a little bit more
towards the end of line ‘‘0’’ because of the defect
curvature.

As there is relatively little spatial variation in the
nearly ordinary index of refraction when the polariza-
tion is perpendicular to the splay-bend texture, it travels
pretty much straight through. It refracts parallel to the
dark lines. This accounts for the nearly uniform black-
ness of the extinction brush (only a little bit of blackness
leaks out) in the top right quadrant of Fig. 5. A pure or-
dinary ray would not leak.

5. Questions

Fig. 5 may be the first observation of a biaxial ne-
matic defect, predicted to come in three flavors [6e8].
Question: what is the group multiplication table for
a uniaxial nematic embedded in an achiral tetrahedratic
field? Does it differ from biaxial nematics?

Is a biaxial nematic with an average length scale
sufficiently irregular to satisfy Yves Bouligand [1] for
biological systems?
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