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Abstract
When immiscible fluids flow in microchannels, monodisperse droplets or jet are obtained depending upon the flow rate of the
aqueous phase and the oil phase. In this work, we present experimental data showing that the confinement and the shape of the
geometry play a fundamental role. We analyze the stability of the jet in the framework of the lubrication at low Reynolds number. In
cylindrical geometry, we relate the transition between the droplets regime and the jet regime to the absolute/convective transition of
the Rayleigh Plateau instability and reach a remarkable agreement with the data. In rectangular geometry, we follow the same analysis
and point out the existence of an absolutely stable bidimensional jet. To cite this article: P. Guillot et al., C. R. Chimie 12 (2009).
� 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
Résumé
Lorsque des fluides non-miscibles coulent dans des microcanaux, des gouttes monodisperses ou des jets sont produits selon les
débits de fluides injectés. Dans ce travail, nous présentons des résultats expérimentaux montrant que le confinement et la forme des
canaux jouent un rle fondamental. Nous analysons la stabilité de l’coulement dans le cadre de l’approximation de la lubrification à
faible nombre de Reynolds. En géométrie cylindrique, nous relions la transition entre le régime de goutte et le régime de jet à la
nature de l’instabilité de Rayleigh Plateau (absolue ou convectée). En géométrie rectangulaire, nous mettons en évidence
l’existence de jet bidimensionnel absolument stable. Pour citer cet article : P. Guillot et al., C. R. Chimie 12 (2009).
� 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Emulsions, foams, dispersions are example of
multiphase fluids. These materials are ubiquitous in
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nature and in industry: e.g., concentrated emulsions,
colloidal dispersion, granular flows, in the food and in
the cosmetic industry [1]. In many of these applica-
tions the dispersion is polydisperse and poorly
controlled due to the difficulties encountered during
the emulsification process. Renewed interest in emul-
sification field has been brought by the demonstration
by Elsevier Masson SAS. All rights reserved.
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Fig. 1. Flow studied. An internal fluid flows with a flow rate Qi in

a an immiscible fluid flowing with a flow rate Qe. The geometry is

a cylindrical one with a radius Rc. The radius of the inner fluid is ro
i .
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that microfluidic devices may produce highly mono-
disperse droplet at the micrometer size [2]. This
control of the droplet size distribution has been
demonstrated to be very useful in new applications and
for developing new technologies. Monodisperse
capsules, multiple emulsions [3,4] or janus particles [5]
have been produced using microfluidic devices. The
perfect control of the size and velocity of droplet
allows one to provide measurements of interest to the
biological and chemical communities. Droplets in
microfluidic devices has been used to study chemical
reaction kinetics on millisecond time scales [6] by
injecting reactive chemicals together to form drops and
in developing platform for crystallisation and phase
diagram [7e9]. Droplets are particularly advantageous
for this sort of study because reagents are not dispersed
beyond the boundary of the drop. In this article, we
deal with the mechanisms involved in the droplet
formation. We first present an overview of the study of
droplets formation in microfluidic devices. We then
report some experiments in various geometries and we
present a simple analytic model allowing us to predict
the nature of the flow. Section 3 is devoted to cylin-
drical geometry. Section 4 deals with rectangular
geometries which are commonly encountered in
microfluidic devices.

2. Biphasic flow in microfluidic devices

Biphasic flow has been widely studied in micro-
fluidic devices [10]. The wetting properties [11] of the
microchannel crucially control the patterns obtained
[12]. Direct emulsions are produced in glass devices
whereas, an inversed one is produced in PDMS devices.
The nature of the flow does also depend upon the
geometry of the microchannel. Using a flow focusing
geometry, Anna et al. [2] have studied drop formation in
liquideliquid systems as a function of flow rates and
flow rate ratios of the two liquids. They present a phase
diagram including one regime where drop size is
comparable to orifice width and a second regime where
drop size is dictated by the diameter of a thin ‘‘focused’’
thread, so drops much smaller than the orifice are
formed. They point out that both monodisperse and
polydisperse emulsions can be produced. Drops are not
the single pattern that may be obtained in microfluidic
devices. Jets or truncated jets [13] are commonly
encountered for high values of the non-wetting phase
flow rate. Surface tension and the viscosity ratio rule the
drop size and the transition between the parallel flow
regime and the drop regime [14]. The understanding of
the droplet formation requires the use of flow stability
analysis or of numerical computation [15]. Flow
stability analysis has been widely used to apprehend
break-up scenario in unbounded flowing systems.
Determining the conditions required to get an absolute
or a convective instabilty allows one to predict the zone
of droplets and jets production. Absolute instability
corresponds to disturbances growing and propagating
both in the downstream and upstream directions. A
continuous jet cannot thus exist and typically, drops are
released intermittently either right at the injection
nozzle or at a finite distance from it to form a dripping
jet. At the opposite, convective instability corresponds
to perturbations that propagate downstream while they
grow, allowing for a long continuous fluid thread to
persist. Several experimental studies support this
picture and the link between the absolute/convective
transition of the instability to the dripping/jetting tran-
sition in the observed spatio-temporal behaviour of the
biphasic flow [16e24]. In the following, we will apply
these considerations to flows in cylindrical microfluidic
devices and in rectangular cross-section microfluidic
devices.

3. Drops and jets in microfluidic devices with
a circular cross-section

3.1. Experimental results in cylindrical geometries

We generate a jet in a cylindrical glass capillary of
inner radius Rc [25], using as a nozzle a glass capillary
of square cross-section with a tapered end (see Fig. 1).

The outer dimension of this square capillary is very
close to the inner diameter of the cylindrical tube
which ensures good alignment and centering. Rc is in
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the 200e500 mm range, whereas the radius of the
tapered orifice of the square tube is set between 20 and
50 mm using a pipetteepuller set up. Syringe pumps
are used to inject an inner fluid of viscosity hi at a rate
Qi in the square capillary and the outer fluid of
viscosity he at a rate Qe through the cylindrical capil-
lary. This leads to coaxial injection at the tapered
orifice. We observe flow patterns which vary
significantly with operational (Qe, Qi), geometrical
(Rc), and system parameters (hi, he, surface tension).
Fig. 2 displays the typical outcome of an experiment
where the flow rates are varied for a given system (here
the inner solution is 50 in weight glycerine in water
solution with hi 55 mPa s and the outer one a silicone
oil for which he 235 mPa s). A droplet regime is found
for low Qi, with either droplets emitted periodically
right at the nozzle symbol (open circle) or non spher-
ical plug like droplets resulting from the instability of
an emerging oscillating jet (filled gray circle). Jets are
found in the bottom right corner of Fig. 2 with different
visual aspects: wavy jets with features that are
convected downstream (open square), and for larger
values of Qi, straight jets (filled square) that persist
throughout the cylindrical capillary. For large values of
the external flow rate Qe, we observe what we call
jetting: thin and rather straight jets (open diamond) that
extend over some distance in the capillary tube before
breaking into droplets at a well-defined and reproduc-
ible location. This jet length increases with Qi for
a fixed value of Qe.
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Fig. 2. Map of the flow behaviour in the (Qe, Qi) plane. The droplet regi

droplets (C) confined by this capillary. Jets are observed in various forms:

wide straight jets that are stable throughout the 5 cm long channel (-),

Parameters are Rc¼ 275 mm, inner viscosity hi¼ 55 mPa s, outer viscosity
3.2. Theoretical description of the droplets jet
transition in cylindrical geometries

We now attempt to model these phenomena
analytically. To reach this aim, we will perform a linear
analysis of the stability of the flow and determine the
conditions required to get an absolute or a convective
instability. Beyond the importance of viscous forces
(the Reynolds numbers are typically small to
moderate), the essential contrast with most of the
previous studies which focused on unbounded flows is
the major role of the microchannel walls which induce
parabolic flow profiles and strongly affect the devel-
opment of perturbations.

In order to get an analytical description, we proceed
with approximations. We neglect inertial effects
(i.e., as the Reynolds number is small in most of our
experiments), and we use lubrication theory (i.e., we
formally assume that the wavelengths of the pertur-
bations are long compared to the capillary radius)
which has been shown to be remarkably insightful in
somewhat related situations [26].

3.3. Lubrication analysis for the cylindrical geometry

We first consider a cylindrically symmetric geom-
etry (see Fig. 1). In a capillary tube of radius Rc are
flown two immiscible and incompressible liquids, an
‘‘inner’’ fluid of viscosity hi is injected at rate Qi in the
104

me comprises droplets smaller than the capillary (B) and plug-like

jets with visible peristaltic modulations convected downstream (,),

and thin jets breaking into droplets at a well defined location (>).

he¼ 235 mPa s, surface tension G¼ 25 mN/m.
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stream of an ‘‘external’’ liquid of viscosity he flowing
at rate Qe.

In the unperturbed state, the flow is unidirectional
with an inner fluid jet of radius ro

i and pressure
gradients vzPe and vzPi in the two fluids that are
constants. Together with the boundary conditions at the
surface of the jet (continuity of the velocity field and
tangential shear stress) and at the walls of the geometry
(no slip condition) and local force balance leads to:
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The two pressure gradients are linked through the
continuity of the normal stress at the interface:

Po
i �Po

e ¼
G

ro
i

; ð3Þ

where G is the surface tension. For the unperturbed flow,
the radius of the inner jet is constant and the two fluids
bear the same pressure gradient.

We perform a linear stability analysis and consider
the spatial-temporal response of the system to small z-
dependent cylindrically symmetric perturbations dQe,
dQi, vzdPe, vzdPi and dri. We make the perturbations
proportional to e(ikzþut) with k and u complex numbers.
As indicated in Section 1, we restrict our analysis to
the lubrication approximation, assuming formally that
the perturbation wavelength is larger than the capillary
radius Rc. In this framework, the expressions obtained
for the unperturbed flow can still be used locally, so
that the local perturbations in the flow rates read:
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where the partial derivatives are computed using Eqs.
(1) and (2).
However, an important difference is that, as the
radius of the jet varies, the Laplace law now requires
that the two pressure gradients are different:

vzðdPi� dPeÞ ¼ �G

�
vz

�
dri

R2
c

þ v2
z dri

��
; ð6Þ

where dri=R2
c is proportional to the curvature in the

cross-section of the jet and vz
2dri to the curvature in the

flow direction.
This set of equations is equivalent to computation of

the linear response in dri, through a second order
expansion in powers of e ¼ Rc=Lz of the velocity field,
where Lz ¼ 2p=k is the characteristic length scale
involved in the z direction. We recall that in the
lubrication approximation Lz is larger than the capil-
lary radius Rc which implies that e� 1. Note however,
that an additional approximation is required to get
these expressions. Specially, in the calculation of the
O(e2) term, where it is equivalent to neglect the pres-
sure gradient created by the zeroth order in e velocity
compared to the one generated by the interface
curvature along z. We will quantify more precisely this
approximation at the end of this section.

Mass conservation of the incompressible fluids
allows to close the system of equations:

dQeþ dQi ¼ 0; ð7Þ
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We continue with the following set of dimensionless
variables:
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Eqs. (4) and (5) become Eqs. (10) and (11).

deQe ¼ aðxÞvzdePe þ bðxÞdx þ cðxÞ
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Fig. 3. Schematic representation of the absolute instability and the

convective instability. The sytem is absolutely instable when one of

v* is negative and convectively unstable when all the v* are positive.
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bðxÞ ¼ 4x
�
1� x2

�
eðxÞ ¼ 8x3 � 4l�1x3� 4x;
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Using Eqs. (6)e(8) we obtain the dispersion equation
(Eq. 12).
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where we have introduced a dimensionless capillary
number

Ka¼�vzP
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and made use of the shorthand notations:
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The first term of the dispersion equation
�i$x3KaðEðxÞ=DðxÞÞ~k summarizes the convection
kinematics and the mass conservation; the second term
ðFðxÞ=DðxÞÞð~k2 � ~k4Þ describes the convection effect.
E and F are positive functions in cylindrical geometry.
Ka is a genuine capillary number as it is the ratio
between viscous forces heVeRc ¼ �vzP

oR3
c and capil-

lary forces GRc. We have however used a notation
different from the usual Ca to call the reader’s attention
to the fact that Ka is a capillary number at the scale of
the capillary Rc rather than at the scale of the jet.
Obviously in contrast with our approach, studies of
unconfined jets focus on capillary numbers defined
using either the average jet velocity or the velocity at
the surface of the unperturbed jet.

The system is stable if all urs are negative. This is
not the case. Indeed, low real k values, corresponding
to large wavelengths, are unstable since F(x) is a posi-
tive value. Note that the instability comes from the k2

term which is related to the curvature in the cross-
section of the jet. Decreasing the jet radius size,
decreases the interfacial area and energy cost and
promotes instability. The term k4, related to the
curvature in the flow direction, is a stabilizing term
since undulations in the flow direction increase the
interfacial energy cost. With some ur positive, an
initially localized perturbation generates a growing
distortion.
As the perturbation grows, a leading edge profile is
selected by the flow, such that the long-time profile is
dominated by the mode Kr corresponding to the largest
growth rate wr and an external velocity for the enve-
lope. This leads to the following characteristics for the
selected perturbations [27e29]:

v� ¼ u�r
k�i
;

vu�r
vkr

¼ 0 and v� ¼ vu�r
vki

: ð13Þ

The system is absolutely unstable if there are solutions
such that v* is negative and convectively unstable if all
the solutions v* are positive. In the former case,
a continuous jet can no longer be formed with pertur-
bations propagating backwards. This leads typically to
droplets being released intermittently to form a dripping
jet, either right at the injection nozzle or at any further
point of the entrance zone where the inner stream
adjusts its size to the imposed environment. At the
opposite, if all v*s are positive, the disturbances which
grow in time are simultaneously convected downstream
and a continuous jet can persist in the system. Fig. 3
gives a schematic representation of the two cases.

Solutions of the dispersion equation that satisfy Eq.
(13), lead to four wave vectors that are independent of
the imposed flow (or capillary number):
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On the other hand, the corresponding dimensionless
real part of the growth rate and the dimensionless front
velocity, ev� ¼ v�ro

i =uo, do depend on the capillary
number:

u�r ¼ KaEðxÞx3ek�i þFðxÞ
�
5þ

ffiffiffi
7
p

=18
�

DðxÞ: ð14Þ

The functions E(x) and F(x) are positive. The wave
vectors k�1 and k�2 correspond to downstream propa-
gating (and growing) modes with v* always positive.
We thus focus on the disturbances associated to k�3 and
k�4, which correspond to the same physics as they differ
only by a phase factor. The velocity of the associated
perturbations is given by:

ev� ¼ KaEðx;lÞx3�C1Fðx;lÞ
DðxÞ ; ð15Þ

where C1 ¼ ð5þ
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7
p

=18Þ
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ð24=

ffiffiffi
7
p
� 1Þ

q
.

For sufficiently low capillary numbers Ka, the cor-
responding v* is negative (and ur*> 0), whereas in the
opposite limit of high flow speeds and large Ka, v*
becomes positive. This suggests an absolute to
convective instability transition as the flow rate is
increased, with the associated transition from dripping
to a continuous jet. We thus reach a rather simple
analytical prediction for the transition,ev�ðKa; x; lÞ ¼ 0,
plotted on Fig. 4 in the (x, Ka) plane describing opera-
tional conditions for various values of the viscosity ratio
system l¼ hi/he. This plot can be envisioned as
a dynamic behaviour diagram with a dripping and a jet
regime. For a given l, increasing the capillary number
Ka (i.e., the normalized pressure drop) or the
λ↓

droplets

jet

0 0.2 0.4 0.6 0.8 1
10-3

10-2

10-1

100

101

102

103

x

K
a

Fig. 4. Phase diagram of the instability in the (x, Ka) plane. The lines

correspond to various l equal, from bottom to top, to 10, 1, 0.1, 0.01,

0.001 and 0.0001. Above the lines, the jet is convectively unstable,

whereas below the lines the jet is absolutely unstable. Regions below

the lines correspond to droplets region.
confinement x always eventually lead to a continuous
jet. This is physically sound as increasing Ka corre-
sponds to convecting away the perturbations faster,
while increasing the confinement x results in slowing
down the development rate of the perturbations due to
the proximity of the walls. Decreasing l¼ hi/he

increases the ‘‘droplets’’ regime at the expense of the
‘‘jet’’ regime.

At this stage, we may comment the validity of our
approximations. Two different approximations have
been made. First, we used a dispersion equation
derived in the lubrication approximation framework.
This implies that the parameter 3 ¼ ro

i =Lz is smaller
than 1. The selected wave vector corresponds to
a characteristic length in the z direction, Lz, equals to

Lz ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24=9þ 3

ffiffiffi
7
pq

ro
i . This leads to a value of

3 ¼ r0
i =Lz ¼ 0:0659=x. Assuming that the use of the

dispersion equation obtained in the lubrication
approximation framework is valid for e< 0.2, we can
conclude that this hypothesis is valid for x> 0.33.
Second, we neglected the recirculations inside the
perturbated jets. Indeed, in the calculation of the O(e2)
term, we neglected the pressure gradient created by the
zeroth order in e velocity compared to the one gener-
ated by the interface curvature along z. This is valid for
x> 0.33 if hi=he < 1 and for x> 0.6 if hi=he > 1.
These ranges of parameters correspond thus to the
range where our diagrams are fully valid. Note that this
point will prevent us to compare quantitatively our
results with the ones obtained in unbounded geome-
tries [22,30].

3.4. Comparison with experiments

We now quantitatively compare our predictions to
experimental data obtained for two surface tensions
(see Fig. 5) and two capillary radii Rcs (see Fig. 6).

Clearly, given the approximations involved, our
simple model describes very well the experimental data
with no adjustable parameters, and appears as a power-
ful predictive tool. A certain level of disagreement is
expected for weak confinement (small Qi large Qe) as
the lubrication approximation is formally invalid in this
case. Our model indeed overestimates Ka at the transi-
tion for vanishing x, as demonstrated by comparison to
the exact result of Gañán-Calvo [30] for unbounded
creeping flows. Inertial effects may also slightly alter the
picture for the largest outer flow rates. We also report in
Figs. 7 and 8 all the experimental data obtained for
a given viscosity ratio, but for various surface tensions,
various capillary radii, and various flow rates. This
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shows the relevance of our description in terms of the
dimensional variables Ka and x. An additional interest
of this mapping onto the (Ka, x) plane of this large set of
data is that it collapses relatively well the different types
of flows observed within the droplet and jet regimes as
can be seen by the grouping of the symbols. In short,
droplets correspond to small capillary number Ka and
small confinement ratio x, while plugs require larger
values of x. At higher values of Ka, increasing the
confinement ratio x shifts the behaviour from jetting
102 103 104
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Q
e (
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Fig. 6. Experimental data (symbols) and theoretical predictions (lines) disp

correspond to droplets, , and - to jets. Parameters are inner viscosity hi¼
m. The lines are obtained without adjustable parameters.
(with emission of droplets at a large finite distance from
the nozzle) to stable jets.

4. Drops and jets in microfluidic devices with
a rectangular cross-section

4.1. Experiments in rectangular geometries

In this section, we turn to the most commonly
encountered geometry in microfluidics, namely that of
a microchannel with a rectangular cross-section.
Qi (μL/h)
102 103 104

b
R=430 µm

laying the effect of an increase of the capillary radius Rc. B and C

55 mPa s, outer viscosity he¼ 235 mPa s, surface tension G¼ 24 mN/
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Our microfluidic devices are fabricated using soft
lithography technology [31]. Polydimethylsiloxane
(PDMS) channels or PDMSeglass channels are used.
The microdevices have two inlet arms which meet at
a T junction with a funnel design (see Fig. 9). The flow
patterns are observed in the outlet channel after the T
junction. The inlet channels are connected via tubing to
syringes loaded with the fluids. Syringe pumps allow
us to control the flow rates of the liquids. In this study
the immiscible fluids used are aqueous and oil solu-
tions. Oils are silicone oils (Rhodorsil) of different
viscosities and hexadecane (Prolabo). Aqueous solu-
tions are dilute solutions of Sodium dodecyl sulphate
(SDS) (Merck) above the critical micellar concentra-
tion (cmc) in water (cmc¼ 0.24 wt%) or in a mixture
of glycerine (Prolabo) and water. Adding glycerine
allows us to match the optical index of the aqueous
solution with silicone oil and thus, enables us to
perform fluorescent confocal microscopy.

Fig. 10 shows the flow pattern diagram obtained
with a mixture of 50 wt% of water with SDS at 2 cmc
and 50 wt% of glycerine as aqueous phase and hex-
adecane in a 100 mm� 100 mm microchannel. The
viscosity of the aqueous phase is of 7 cP and the oil
phase is of 3 cP. During the experiment, three typical
0 0.2 0.4 0.6 0.8 1
10−3

10−2

10−1

100

101

x

K
a

Fig. 8. Flow behaviour in the (x, Ka) plane for a given value of the

viscosity ratio l¼ 4.28. These data correspond to two radii and two

surface tensions. The line is the theoretical prediction of our linear

analysis for the droplets/jet transition. Symbols are same as in Fig. 2.
flow patterns have been identified: droplets formed at
the T junction (DTJ), parallel flows or jets (PF) and
parallel flows which break into droplets inside the
channel (DC). Droplets are obtained in the upper left
corner of Fig. 10, i.e., at low water flow rates and
substantial oil flow rates. Two kinds of regimes must
be distinguished. In the DTJ regime represented by
(B), droplets are not always produced with reprodu-
cibilty in size whereas in the DC regime (C), mono-
disperse droplets are produced. In the latter case,
0 1000
0

Qwater μμL/hr

Fig. 10. Flow pattern diagram as a function of the aqueous phase

flow rate (Qwater) and of the oil phase flow rate (Qoil) in

a 100 mm� 100 mm microchannel. The aqueous phase is a mixture

of water with SDS (2 cmc) 50 wt% and of glycerine 50 wt%. The oil

phase is hexadecane. The B refers to droplets formed at the T

junction (DTJ), the > to parallel flows (PF) and the C to parallel

flows that break into droplets inside the channel (DC).



Fig. 12. Schematic representation of a non squeezed and a squeezed jet.
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a parallel flow (i.e., a jet) takes place at the entrance of
the channel and becomes unstable after a short
distance, breaking up into droplets. In the lower right,
corner jets are observed. To investigate the three
dimensional structure of the flow, confocal fluores-
cence microscopy experiments are performed. In this
case rhodamine (Sigma) is added to the aqueous phase
and hexadecane is used as the oil phase. Fig. 11
displays cross-section images obtained for PF in
a 100 mm� 100 mm microchannel. The channel walls
represented here have been drawn and added to the
picture. The bottom wall is in glass and the three others
are in PDMS. At the entrance of the funnel, hex-
adecane starts wrapping around the water. This is due
to the difference of wettability of the two fluids with
the PDMS walls. The water flow cross-section
continues evolving until the flow mainly evolves along
the propagation axis. Depending on the flow rates, jets
or DC are then observed. PF is a truncated cylinder jet
located on the glass at the PDMS glass corner. The
pressure in a cross-section is uniform inside each fluid
and differs from one fluid to the other. The Laplace law
imposes that the free fluid surface has a single
curvature radius.

5. Extension of our model to rectangular geometry

In this section, we try to extend the previous anal-
ysis to a microchannel with a rectangular cross-section.
Two situations have to be analyzed. The inner jet may
or may not be squeezed by the geometric confinement.
We first focus on situations where the jet touches the
upper and lower walls.

5.1. Squeezed jet in rectangular geometry

We consequently consider as the reference geom-
etry a jet squeezed by the geometry. We assume that
the contact angle q between the internal and external
Fig. 11. Cross-section picture of parallel flow between hexade-cane

(O) and aqueous phase with rhodamine (W) in a 100 mm� 100 mm

microchannel: (a) inside the funnel; (b) in the outlet channel.
phases on the glass is constant. In the unperturbated
state, the free fluidefluid interface has a shape
involving a single radius curvature (see Fig. 12).

We wish to analyze again the stability of such a jet
to axial perturbations without having to move to 3D
numerical simulations. We therefore proceed with an
uncontrolled approximation and consider only axially
symmetric perturbations of the radius of the jet inde-
pendent of the polar angle. In the small perturbations
case and for a squeezed jet, the perturbated jet remains
squeezed by the geometric confinement. This point is
very important, since it sets the shape of the pertur-
bations. Indeed, it ensures that the curvature radius
remains constant in the geometry cross-section. The
first term in the Laplace equation (Gvzdri) is thus nil.
As a consequence the dispersion equation in the
approximation of the lubrication reads:

~u¼
�i~k$x3KaEðxÞ �FðxÞ

�
~k4
�

DðxÞ : ð16Þ

All urs are negative and the 2D jet is thus stable.
Confining the jet and squeezing it thus ensures its
stability. Perturbations leading to the interfacial area
reduction are unable to develop. The same results have
Fig. 13. Flow geometry used in the simulation. The internal phase is

a cylinder of radius r which wets a wall with a constant angle q. q is

assumed to be constant with the flow rates. The center of the cylinder

depends only on the radius r and on the contact angle q.
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been previously derived by Miguel et al. [32]. Note also
that this scenario of stable ‘‘2D’’ jet where the area
reduction is killed by the confinement had been exper-
imentally shown by Dollet et al. [33] in a flow focusing
design. This results explain why coflow situations are
often encountered in microfluidic devices [13,34].

5.2. Non-squeezed jet in rectangular geometry

We now deal with situations where the jet is not
squeezed by the wall. The flow studied is a wetting jet
on the glass plate as observed in confocal experiments.
In our calculation we will only consider axisymmetric
perturbation of the radius of the jet. We assume that the
contact angle q between the internal and external
phases on the glass is constant. With this assumption
the center of the jet depends on the radius r and q as
depicted in Fig. 13.

To calculate the front velocity of the propagation we
need to calculate the variation of the internal flow rate
dQi and the external one dQe as a function of a small
variation of the radius (dr) and of the pressure in both
fluids (dPe and dPi):

dQe ¼
vQe

vVPe

vdPeþ
vQe

vVPi

vdPiþ
vQe

vr
vdr ð17Þ

dQi ¼
vQi

vVPe

vdPeþ
vQi

vVPi

vdPiþ
vQi

vr
vdr ð18Þ

where VPe and VPi are the pressure gradients in the
internal and external phases, respectively.

The flow rates are numerically calculated using the
Stokes equation in the geometry of Fig. 13. The
boundary condition used is no-slip at the wall and the
continuity of the velocity and of the shear stress at the
fluidefluid interface [35,36]. Calculations are made
using the scientific software Scilab developed by
INRIA. The numerical procedure used to calculate the
flow profile is described in precision elsewhere [37].
We used a Cartesian regular mesh whose size is
1 mm� 1 mm. To calculate the different terms of Eqs.
Fig. 14. Variation of the parameters made in the numerical simula-

tion. Each paramaters (r, Pe and Pi) are slightly varied by keeping the

others constant. Both flow rates (Qi and Qe) are numerically calcu-

lated in each situation. This allows calculating the partial derivative

of the flow rates with r, Pe and Pi in Eqs. (17) and (18).
(17) and (18) we calculate the flow rates for both fluids
for the different conditions described in Fig. 14. We
calculate then the flow rates at the transition between
the absolute and convective instabilities for different
pressure gradients.

6. Comparison with experimental data

The absolute/convective transition is calculated
taking into account the geometry of the channel, the
viscosity of both phases and the contact angle
q measured either by confocal microscopy pictures or
by the transmission picture (to precision on this
measure see Ref. [37]). Fig. 15 shows results with
0 2000
0

Qi (μL/h)

Q

0 1000
0

Qi (μL/h)

Fig. 16. Transition between droplets and parallel flows for two

different internal phases with SDS at 11 mPa s and 7 mPa s. Lines

correspond to the transition from absolute to convective instability

obtained by numerical simulation. Symbols are experimental tran-

sitions at G¼ 15 mN/m for hexadecane (A), silicone oil at

100 mPa s (C) and at 20 mPa s (;). To decrease the surface tension

towards G¼ 1 mN/m we added span 80 in hexadecane (>).
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silicone oil sytems. Lines are theoretical transitions
between absolute and convective and symbols (C and
B) are experimental transitions obtained for two
viscosities (100 mPa s and 50 mPa s) and two surface
tensions (G¼ 15 mN/m and G¼ 30 mN/m).

Results are in good agreement without any adjust-
able parameter and the theoretical transitions move in
the same way as the experimental ones. The same
conclusions are reached when the external phase is
hexadecane with (>) and without (A) Span 80 (see
Fig. 16). When the internal phase viscosity is changed
to 7 mPa s, good agreement is obtained with
hexadecane (A), silicone oil at 20 mPa s (;) and
100 mPa s (C).

7. Conclusion

In this work, using the lubrication approximation and
focusing on low Reynolds numbers, we have studied the
stability of a pressure-driven jet confined in a capillary.
Analyzing the transition from a continuous jet to
a dripping system in terms of a convective/absolute
transition, we find the jet remains continuous at high
capillary numbers and breaks down into droplets at
lower flow rates, i.e., pressure gradients. Analytical
formulas are provided in cylindrical capillaries for
a given system where viscosities and surface tension are
known. The influence of the various system and opera-
tion parameters has been highlighted. At the expense of
further approximations, we have explored other micro-
channel geometries, that are more relevant in the
microfluidics context given fabrication processes.
Microchannels of rectangular cross-section promote
droplets at strong confinement when contrasted with
their cylindrical counter-parts, most likely because
corners allow easier fluid transfer. The outlook deals
with the modelization of the volume of the droplets.
Numerical simulations using level set methods are
under way in order to address this problem.
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