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Abstract
We review recent studies, experimental and theoretical, of the nonlinear magnetic response of Mn12 single-molecule magnets.
Compared with the linear ac susceptibility, which has become the standard tool to ascertain whether a molecular cluster possesses
magnetic memory (i.e. whether it behaves as a ‘‘single-molecule magnet’’), the nonlinear susceptibility provides additional
information on the relaxation process at a little cost in terms of experimental time and complexity. The nonlinear dynamic
susceptibility depends not only on the relaxation times, as the linear susceptibility does, but also on how sensitive the relaxation
process is to external magnetic fields. We show that the presence of spin quantum tunneling, and its strong dependence on external
bias that detune the tunneling levels, gives rise to a very large contribution to the nonlinear response of Mn12 clusters. Just like
tunneling itself, this ‘‘quantum nonlinearity’’ can be ‘‘switched off and on’’ by external magnetic fields. By studying the orien-
tational dependence of the nonlinear susceptibility, we estimate a bound for the decoherence time due to the coupling to the phonon
bath. We find that, for tunneling via thermally activated states of Mn12 acetate, decoherence is not limited by the lifetime of the
excited states, but by a much shorter timescale of order 10�11 s. To cite this article: F. Luis et al., C. R. Chimie 11 (2008).
� 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Molecular chemistry provides a ‘‘bottom-up’’
approach to produce new magnetic materials with
interest for basic science as well as with promising
applications [1e3]. From these materials, the ever-
growing family of single-molecule magnets (SMMs)
[3e5] stands out for its appeal to the research on the
foundations of Quantum Physics. Single-molecule
magnets are metal-organic clusters made of a magnetic
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core surrounded by a shell of organic ligands. One of
the most studied SMM is Mn12 [6], whose core
contains eight Mn3þ and four Mn4þ ions strongly
coupled by oxygen ions giving rise to a spin S¼ 10.
SMM are neutral entities that form molecular crystals
bound by weak van der Waals interactions. Their basic
magnetic properties (ground-state spin and magnetic
anisotropy) are, however, characteristic of the isolated
clusters. Indeed, they appear to be preserved in solu-
tion [7e9] even when they are deposited onto solid
substrates [10e12]. In this respect, SMM can be seen
as a close analogue to magnetic nanoparticles, with the
advantageous difference of being monodisperse in size.
by Elsevier Masson SAS. All rights reserved.

mailto:fluis@unizar.es
http://france.elsevier.com/direct/CRAS2C


1214 F. Luis et al. / C. R. Chimie 11 (2008) 1213e1226
The analogy was strengthened by the discovery, made
in 1994 by Sessoli and co-workers [13], that Mn12

SMM shows magnetic hysteresis, i.e. magnetic
memory, at liquid helium temperatures. The magnetic
hysteresis does not result from long-range magnetic
order induced by intermolecular interactions. Instead,
it is the signature of the superparamagnetic blocking or
freezing of the molecular spins by the anisotropy
energy barriers that hinder, and therefore, slow-down,
the spin-flip (see Fig. 1). These clusters are, therefore,
potential candidates to store information at the
molecular level. Achieving this technological goal
requires, however, that memory be preserved above
room temperature, which in its turn depends on our
understanding of the basic principles that rule the
magnetic relaxation in these materials. Hysteresis in
SMM turns out to be rather unconventional though.

In the case of macroscopic magnets, hysteresis can
be fully understood in terms of classical physical laws,
which describe the dynamics of domain walls [14]. The
same applies to nanosized magnetic particles [15] as
well, at least at not too low temperatures (but see e.g.
Ref. [16] for an exception to this statement). The
hysteresis and, in general, the spin dynamics of SMM
reveal by contrast signatures of fascinating quantum
phenomena, which result from their very small size and
the discreteness of their magnetic energy level scheme.
In this respect, these systems are ideally suited to
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Fig. 1. Semi-classical picture of the spin reversal. At finite temperatures,
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the spin is able to make after being excited, thus providing a method to dete
investigate the fuzzy borderline between the classical
and quantum worlds [17,18]. In 1996, it was found that
the magnetization reversal of Mn12 clusters becomes
faster at magnetic fields where magnetic states with
opposite spin orientation (i.e. spin-up and spin-down
states) become degenerate in energy [19e21]. At these
fields, the possibility of crossing the energy barrier by
quantum tunneling (QT) provides a kind of short-cut to
the magnetic relaxation process [22e25].

In the last decade, a great variety of experimental
and theoretical tools have been applied to study
quantum tunneling in SMM [3]. The dynamical or
frequency-dependent magnetic susceptibility c(u)
deserves to be mentioned, since it has become
a conventional characterization technique in Chemistry
laboratories. In fact, the onset of a cusp in the imagi-
nary component c00 represents the fingerprint of the
SMM behaviour [3]. It is for this reason rather
surprising that the nonlinear component of c has been
virtually ignored in this research field, more so if one
considers the relevance of this technique in the study of
other magnetic materials, such as classical or quantum
spin glasses [26e29] and magnetic nanoparticles
[30e33] where important dynamical effects are also
observed.

Furthermore, it was expected that the nonlinear
susceptibility could provide unique information on
some aspects of the magnetic relaxation process of
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SMM that remain rather obscure. In 1996, Garcı́a-
Palacios and Svedlindh [34] predicted that the
nonlinear dynamical susceptibility of classical super-
paramagnets, such as magnetic nanoparticles, can
become very large for some frequencies and, in sharp
contrast to the linear susceptibility, quite sensitive to
the coupling of spins to their environment (lattice
vibrations, conduction electrons, nuclear spins, etc.,
usually referred to as the ‘‘bath’’). One, therefore,
hopes that the same information might be extracted
from this quantity also in the case of super-
paramagnets, such as SMM, showing quantum
dynamics. For these materials, the coupling to the bath
acts as the main source of decoherence [17,35e37]
(see Fig. 1 for a qualitative explanation of this term),
an effect that not only limits the observation of
quantum phenomena to microscopic bodies but also
constitutes the main limitation to their applications (for
e.g. quantum information processing) [38e40].

The present work reviews some of the work that the
authors have recently done on the nonlinear magnetic
response of SMM [41e43]. The basic concepts behind
the nonlinear susceptibility and experimental tech-
niques required to measure it are described in Section 2.
A major result, described in Section 3, is that the
nonlinear susceptibility is dominated by a very large
contribution, hitherto unforeseen, with no analogue in
classical Physics. This contribution is associated with
the extreme sensitivity of QT to external magnetic
fields, which detune energetically the initial and final
states. Therefore, whereas the ac linear susceptibility
senses one of the aspects of QT: the fact that it gives rise
to faster relaxation than classical mechanisms, the
nonlinear response senses, in addition, another one: its
fragility to environmental perturbations. In Section 4,
we discuss how experiments performed varying the
orientation of the crystal axis with respect to the applied
magnetic field provide the first estimate of the deco-
herence time for thermally assisted tunneling. In the
final Section 5, we list some of the main points and
conclusions of this work.

2. Definition and experimental determination of
the nonlinear susceptibility: field-dependent linear
susceptibility and its harmonics

2.1. Definition of the nonlinear susceptibilities

For sufficiently weak applied static magnetic fields
H, the magnetization of any material is approximately
proportional to H, i.e. M z c1H. This is the definition
of the so-called linear regime and c1 (usually referred
to as simply c) is the linear susceptibility for H¼ 0. As
the field strength is increased, the magnetization curve
deviates from its initial linear dependence as it grad-
ually tends to saturation. To account for this deviation,
one must then introduce new terms, containing higher-
order powers of H:

M ¼ c1ð0ÞHþ c3ð0ÞH3 þ c5ð0ÞH5þ. ð1Þ

The new coefficients, c3, c5, . are called nonlinear
susceptibilities, again for H¼ 0. Since M� c1H, the
third-order nonlinear susceptibility must be negative.
The absence of even-order terms simply reflects the
fact that M must change its sign when the applied
magnetic field is reversed. Obviously, c2, c4, . do not
need to be zero, and in fact they are not, for magnetic
fields other than zero. Eq. (1) is then generalized as
follows:

MðHÞ ¼MðH0Þ þ c1ðH0ÞðH�H0Þ þ c2ðH0Þ
ðH�H0Þ2þc3ðH0ÞðH�H0Þ3þc4ðH0Þ
ðH�H0Þ4þc5ðH0ÞðH�H0Þ5þ. ð2Þ

It is clear from Eq. (2), that c2, c3, . can be
extracted from the second, third, . derivatives of the
magnetization evaluated at H¼H0.

A second typical nonlinear effect is connected with
the response to oscillating magnetic fields h¼ h0

cos(ut). If, in Eq. (2) we simply replace H by
H0þ h0 cos(ut), the magnetization contains then terms
proportional to the harmonics of the ground frequency
u (i.e. terms that oscillate in time with frequency 2u,
3u, etc.).

MðH; tÞ ¼MðH0Þ þ c1ðH0Þh0cosðutÞ
þ c2ðH0Þh2

0cos2ðutÞ þ c3ðH0Þh3
0cos3ðutÞ

þ c4ðH0Þh4
0cos4ðutÞ þ c5ðH0Þh5

0cos5ðutÞ
þ. ð3aÞ

Keeping for each harmonic the lowest order powers
of h0, this leads to:

MðH; tÞ ¼
�

MðH0Þ þ
1

2
c2ðH0Þh2

0

�
þ c1ðH0Þh0cosðutÞ

þ 1

2
c2ðH0Þh2

0cosð2utÞ þ 1

4
c3ðH0Þh3

0cosð3utÞ

þ 1

8
c4ðH0Þh4

0cosð4utÞ

þ 1

16
c5ðH0Þh5

0cosð5utÞ þ. ð3bÞ
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Since they contain powers of the amplitude h0, these
terms are very small under the usual experimental
conditions available at commercial magnetometers.
However, as we shall see below, they can be detected if
the corresponding nonlinear susceptibilities become
sufficiently large.

The previous discussion assumes that the spins are
in thermal equilibrium. However, the definitions of the
nonlinear susceptibilities can be extended to the case
when time-dependent phenomena are important. The
coefficients cn depend then not only on temperature
and magnetic field but also on frequency. It is also
necessary to distinguish between the real cn

0 and the
imaginary cn

00 components of the nonlinear suscepti-
bilities. As we shall see in the following sub-section,
the experimental methods used to determine these
dynamical nonlinear susceptibilities are almost direct
applications of the two definitions Eqs. (2) and (3).

2.2. Experimental determination of the nonlinear
susceptibilities

In our experiments, we applied two well-known
methods to determine the nonlinear susceptibilities as
a function of temperature, frequency, and magnetic
field. These methods are described next.

2.2.1. Field-dependent linear susceptibility
For sufficiently small values of h0, and according to

Eq. (3), the magnetic response to an oscillating
magnetic field provides an experimental determination
of the first derivative of the magnetization. In partic-
ular, for H0¼ 0 and applying Eq. (1) (or Eq. (2)), we
can write

ch
dM

dH
¼ c1ð0Þ þ 3c3H2þ 5c5H4 þ. ð4Þ

This expression can be generalized to the real c0 and
imaginary c00 components of the experimental
susceptibility with coefficients cn

0 and cn
00, respec-

tively. By measuring e.g. with a SQUID magnetometer,
the dependence of c near H¼ 0, it is possible to extract
the nonlinear frequency-dependent susceptibilities at
zero field. The method is illustrated by the left-hand
side plot in Fig. 2, which shows how at sufficiently low
fields the decrease of c with increasing H follows
approximately a parabola, in agreement with Eq. (4).

2.2.2. Harmonics
This is by far the most broadly applied method to

determine the nonlinear response of magnetic systems.
The method is based on measuring the harmonics
m2(2u), m3(3u), m4(4u), etc. of the response to
a strong oscillating magnetic field. This can be done on
either ‘‘old-fashioned’’ hand-made susceptometers or
by using, as it was our case, a commercial PPMS
physical measuring platform. From Eq. (3b), it follows
that the amplitudes of the different harmonics are
m2(2u)¼ (1/2)c2(2u) h0

2, m3(3u)¼ (1/4)c3(3u)h0
3, and

so on. Therefore, the analysis of harmonics provides
a direct determination of the nonlinear susceptibilities.

Two words of caution are, however, to be mentioned
here. First, usually the excitation signal also contains an
harmonic ‘‘contaminations’’. If, for instance, the excita-
tion coil generates a field h0[(1� d)cos(ut)þ d cos(2ut)],
with d� 1, the response m2(2u) will contain an
‘‘spurious’’ term c1(u)h0d cos(2ut). In order to determine
those signals arising solely from the sample, it is, there-
fore, necessary to measure m2 as a function of the
amplitude h0 and to get from these data the term that is
proportional to h0

2. The same applies to higher-order
harmonics as well. An example of this experimental
method is shown on the right-hand side of Fig. 2. This
method also eliminates the contributions that higher-order
susceptibilities of the sample might have on the lower
order harmonic responses (compare the exact Eq. (3a)
with the approximation (3b)).

The second aspect that should be mentioned is that
the coefficients c2(2u), c3(3u), etc. that define the
nonlinear susceptibilities measured by this method are
not, in general, equal to c2(u), c3(u) obtained from the
field-dependent linear susceptibility. They only coin-
cide under conditions of thermal equilibrium but not
when they depend on frequency. Nevertheless, the two
can be easily calculated and the physical information
they provide is very similar [42,43].

3. What is new? Quantum nonlinearity in
single-molecule magnets

3.1. Linear ac susceptibility and resonant spin
tunneling

As said in Section 1, the linear ac susceptibility c1

has become a standard characterization technique in
the field of molecular magnetism [3]. Here, we shall
just recall the most fundamental aspects that charac-
terize the linear response of SMM in order to help the
reader in recognizing the new ingredients that are
brought about by the study of the nonlinear
components.

A typical measurement of c1 as a function of
frequency u is shown in Fig. 3. As u increases, a steep
drop, or ‘‘blocking’’, of the real susceptibility



Fig. 2. Two experimental methods to determine the nonlinear dynamical response of SMMs. Left-hand figure: real component of the magnetic ac

susceptibility of a single crystal of Mn12Ac, normalized by its zero-field value, measured at T¼ 5 K under a dc longitudinal magnetic field and at

several frequencies. Solid lines represent least-squares fits to polynomials, from which the nonlinear susceptibility c3(H¼ 0,u) is estimated. The

parabolic approximation c z c1þ 3c3H2, which holds at sufficiently low fields, is shown by dashed lines. The figure on the right-hand side shows

the amplitude of the second m2(2u) and third m3(3u) harmonics of the magnetic response of a sample of oriented Mn12Ac crystals, normalized by

the amplitude h0 of the ac excitation magnetic field. Solid lines are least-square fits to second order polynomials. The nonlinear susceptibilities

c2(2u) and c3(3u) are obtained from the slope of m2(2u)/h0 vs h0 and from the quadratic coefficient of m3(3u)/h0 vs h0, respectively.
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component c1
0 takes place, accompanied by the onset

of a nonzero imaginary component c1
00. This behaviour

can be approximated by the well-known Debye’s laws.

c01 ¼ cSþ cT�cS

1þðutÞ2

c001 ¼ ut
cT�cS

1þðutÞ2
ð5Þ

where cS is the high-frequency or adiabatic suscepti-
bility limit, cT is the equilibrium susceptibility and t is
the spin-lattice relaxation time. In the case of high-spin,
strongly anisotropic molecular nanomagnets, t is
Fig. 3. Magnetic susceptibility measured along the anisotropy axis of

a single crystal of Mn12 acetate. Results are shown at zero bias

(circles) and at H¼ 300 Oe (squares). Solid symbols correspond to the

real component c0 and open symbols to the imaginary component c00.
Lines are least-square fits to Debye’s laws [Eq. (5)].
determined by the timescale (or the reciprocal relaxa-
tion rate) required to flip a molecular spin, thus crossing
the anisotropy barrier of Fig. 1. The maximum slope of
c1
0 vs u and the maximum of c1

00 correspond to the
condition ut¼ 1. In this way, a fit of the experimental
data enables an accurate determination of the relaxation
time as a function of external parameters, such as
temperature and magnetic field. It is perhaps worth
mentioning here that this method, i.e. measuring c vs u

at fixed T and H, is the correct way of determining t.
Indeed, it is easy to see from Eq. (5) that the maximum
of c00 measured as a function of temperature (as it is
very often done) does not correspond with the condition
ut¼ 1, simply because the equilibrium susceptibility
also depends on T. Fortunately, the difference between t

values found by the two methods is usually negligibly
small [44].

In a real sample, and despite the large uniformity in
cluster size and stoichiometry that characterizes
molecular crystals, there is always a certain distribu-
tion of relaxation times t. Sources of these distribu-
tions are the dipolar interactions between the
molecules [23] and the presence of crystalline defects
[45] or disorder in the orientations of interstitial
molecules [46]. In this context, an important advantage
of ac susceptibility methods over other techniques, like
time-dependent magnetization experiments, is that the
magnetization of the sample remains stable and equals
its thermal equilibrium value. This eliminates the
influence of time-dependent demagnetizing fields,
which usually lead to stretched exponential decays [47]
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and, therefore, contribute to broaden the distribution of
relaxation times. Still, the susceptibility actually
measured in the laboratory often deviates slightly from
the pure Debye’s laws given by Eq. (5). Therefore,
when we refer to values of t derived from this tech-
nique, we obviously mean averages over the clusters in
a sample. By contrast, the theoretical description of the
observed phenomena will mainly consider the situation
of each of the clusters. Although the effect of the
distribution can be easily introduced in any calculation,
it adds little to understand the qualitative features
observed, while adding a great deal of mathematical
complexity. For this reason, we prefer to keep the
discussion that follows to a simple level. In addition,
samples of Mn12 contain always a fraction of the
so-called ‘‘fast-relaxing’’ molecules [48], whose
relaxation times are much shorter than those charac-
teristic of the ‘‘standard’’ Mn12 clusters. In the
temperature and frequency ranges of our experiments,
these clusters contribute with their equilibrium
susceptibilities (i.e. a flat response in c0 and c00 ¼ 0, at
least for frequencies below 600 Hz). The possibility of
studying separately each type of molecule for a given
crystal is another valuable feature of frequency-
dependent susceptibility experiments. The experiments
shown below refer only to the dynamical behaviour of
the standard Mn12 clusters.

As it is already well-known, the variation of t vs H
(see Fig. 4) shows signatures of resonant spin
Fig. 4. Magnetic relaxation time t of Mn12 obtained from ac

susceptibility measurements performed at T¼ 8 K. The solid line

shows the behaviour expected for a classical spin [15]. The inset

shows a close-up of the low-field region.
tunneling [19e21]. Instead of a decrease of t with
increasing H, as predicted by classical laws of
Physics, t shows a series of minima centred at H¼ 0
and the other crossing fields for which quantum
tunneling is allowed by the degeneracy of spin-up and
spin-down states. Yet, we want to stress the fact that
the overall shape of the c vs u curves are qualita-
tively the same in the quantum (H near 0) and clas-
sical limits (large H). The existence of QT is reflected
only in the shift of this curve towards lower
frequencies as H increases from zero. We shall next
see that a very different situation arises in the case of
the nonlinear response.

3.2. Nonlinear response of SMM: a new quantum
phenomenon associated with QT

In order to better understand what makes the
nonlinear response of SMM like Mn12 so singular, it is
convenient to recall first how classical super-
paramagnets behave. Fig. 5(a) compares the variation
with temperature of the linear c1(u) and nonlinear
c3(u) susceptibilities of Co nanoparticles, with average
diameter 1.4 nm (i.e. containing about 280 Co atoms
each), self-organized in a matrix of alumina [49].
The linear component shows the familiar frequency-
dependent blocking phenomenon we have discussed
already, but now as a function of temperature. As can
be seen in the lower panel of the same Fig. 5, the
behaviour of the nonlinear counterpart is qualitatively
similar: at high temperatures c3

0 attains its equilibrium
limit, whereas below the blocking temperature it
progressively tends to zero. As with the linear response,
the blocking is marked also by the onset of a nonzero
imaginary component c3

00. The only noticeable differ-
ences between the two are the reversed sign of c3 with
respect to c1 and the sharper peak shown by the
nonlinear susceptibility, which reflects the stronger
temperature dependence of the equilibrium c3T f m4/
kB(T� q)3, as compared to c1T f m2/kB(T� q). The
main fact we would like to stress here is that, for these
classical superparamagnetic nanoparticles, both c1

0 and
c3
0 lie always below (in absolute values and within

experimental uncertainties) their respective equilibrium
limits.

Let us now turn our attention to SMM. In Fig. 5(b),
we show the same c1(u) and c3(u) for Mn12 acetate as
a function of temperature. As expected from the
discussion following Eq. (5), the linear susceptibility
differs very little with respect to that of classical
superparamagnets. The blocking transition is just nar-
rower on account of the very narrow distribution of
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relaxation times characteristic of SMM crystals. By
contrast, the behaviour of the nonlinear susceptibility
is markedly different. Near the blocking temperature
(i.e. when t z 1/u), the two components c3

0(u) and
c3
00(u) attain very high values, crossing well above the

equilibrium curve (dotted line). Clearly, an additional
contribution, absent in the nanoparticles, becomes
dominant in the case of SMM. We argue next that this
contribution is directly associated with the existence of
quantum tunneling of the spins.

To understand the origin of this additional
nonlinearity of SMM, it is better to discuss data
measured at fixed temperature, as a function of
frequency, as we did for the linear susceptibility.
These data are shown in the top panel of Fig. 6. The
applied ac and dc magnetic fields were parallel to the
anisotropy axis. We see that an enormous nonlinear
response (about 65 times larger than c3T) shows up in
the neighbourhood of ut¼ 1. This contribution is
furthermore unexpected in the framework of classical
Physics. Indeed, classical predictions, shown in the
bottom panel of Fig. 6, behave very differently, c3

0

decreasing monotonically from zc3T for ut� 1, to
zero for ut [ 1. Interestingly, a nearly identical
result is obtained when the experiments are performed
on a powdered sample, provided of course that these
results are normalized by the appropriate equilibrium
limit [41].

What causes this enormous nonlinear response? To
answer this question, we need to introduce a basic
theoretical background for the nonlinear dynamical
susceptibility. Appropriate expressions for c3(u) and
c3(3u) can in fact be derived from the Debye equations
that describe the linear response. We skip the details of
the calculation (that can be found in Refs. [42,50]) and
give just its final result. It looks as follows:

c3ðuÞ ¼ c3TðJ¼ 0Þ
h cos4J

1þ iut
� iut

2ð1þ iutÞ2�
gkcos4Jþ gtcos2Jsin2J

�i

c3ð3uÞ ¼ c3TðJ¼ 0Þh cos4J

1þ 3iut
� 3iut

2ð1þ iutÞð1þ 3iutÞ�
gkcos4Jþ gtcos2Jsin2J

�i

ð6Þ

where J is the angle that the applied magnetic fields (ac
and dc) make with the anisotropy axis and gjj and gt are
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second derivatives of the relaxation time with respect to
the parallel Hz and perpendicular Ht components of H.
In more detail

gjj ¼
�1

tðH¼ 0Þ

�
kBT

gmBS

�2
v2t

vH2
z

gt ¼
�1

tðH ¼ 0Þ

�
kBT

gmBS

�2
v2t

vH2
t

ð7Þ

We see then that the magnitude of c3 not only
depends on t, as the linear susceptibility does, but also
on the magnitude and sign of its derivatives with
respect to H. In other words, the nonlinear response
senses how much the relaxation process is affected by
the application of external magnetic fields. It is
convenient to recall here that Eq. (6) applies only to the
nonlinear susceptibility measured at zero field (i.e. for
H0¼ 0 in Eqs. (2) and (3a,b) that define the nonlinear
susceptibilities).
Let us consider next what Eq. (6) gives for clas-
sical and quantum spins. For simplicity sake, we
shall consider first a magnetic field parallel to the
anisotropy axis, i.e. J¼ 0. The effect of transverse
magnetic fields will be considered with some detail
in the following Section 4. For classical spins, v2t/
vHz

2 is small and <0 (see the solid line in Fig. 4)
because the magnetic field decreases the energy
barrier separating spin-up and spin-down states. The
variation of c3 with frequency, shown in the bottom
panel of Fig. 6, resembles then very much the curves
obtained for the linear susceptibility. This is in
agreement with the observations made for magnetic
nanoparticles, for which a classical model seems
appropriate indeed. For quantum spins, like that of
SMM, the possibility of tunneling has to be taken
into account. It leads to minima of the relaxation
time t near the crossing fields, in particular at
H0¼ 0, as shown by Fig. 4. For this reason, v2t/vHz

2

becomes >0. But in addition, it can be very large,
since the external field detunes very effectively the
two states between which quantum tunneling takes
place. In other words, for magnetic fields of equal
magnitude the changes in the relaxation rates are
much larger for quantum spins than for classical
spins. To make this argument quantitative: the
experimental nonlinear response can be accounted
for reasonably well (see the solid lines in Fig. 6(a))
by simply making gjjz�260 in Eq. (6). This has to
be compared with the classical prediction that gives
[50] gjj ¼ 1. The enormous sensitivity of tunneling
probabilities to the energy tuning of states is, there-
fore, at the origin of the large nonlinear response of
SMM. It is a pure quantum mechanical phenomenon,
without classical analogue.

A simple way of checking the validity of this
interpretation is by exploring how c3 depends on Hz.
Indeed, for sufficiently large bias, tunneling processes
are suppressed and, therefore, a classical situation
must be recovered. It is obviously necessary to revert
to the method of measuring the harmonics c3(3u) of
the magnetic signal (cf Section 2.2) since the depen-
dence on the magnetic field can no longer be used to
derive the nonlinear susceptibility. The disadvantage
of this method is that the third-harmonic signals
measured are rather small, yet as seen in Fig. 7,
measurable. Near Hz¼ 0, c3(3u) is much larger than
the equilibrium c3T, showing the existence of the
quantum contribution described in the preceding
paragraph. With increasing Hz, the blocking of
tunneling paths leads to an equally rapid decrease of
c3, which becomes smaller than our detection limit
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for Hz> 500 Oe, in agreement with the classical
predictions.

Obviously, the quantum nonlinear contribution must
be recovered back when the magnetic field brings new
magnetic states into degeneracy thus making tunneling
possible again. To investigate experimentally this
‘‘switching-on and off’’ of the quantum nonlinearity, it
is better to use the second harmonic c2(2u), which is
considerably larger than c3(3u). This quantity is dis-
played in the lower panel of Fig. 8. The data neatly
show how, at every crossing magnetic field, Hn¼ 0, H1,
2H1, with H1 z 4100 Oe (marked by vertical dotted
lines in Fig. 8), quantum tunneling becomes a ‘‘source’’
of magnetic harmonics [43].

Concluding this section, the experiments show the
existence of a purely quantum nonlinearity in SMM.
This nonlinear phenomenon is associated with the
strong sensitivity of quantum tunneling to the appli-
cation of external magnetic bias fields. Its existence
reflects also the subtle way in which the nonlinear
susceptibility depends on the relaxation rates, very
different to the case of the linear response. The
nonlinear susceptibility depends not only on t but also
on its derivatives with respect to the applied magnetic
fields. This quantity provides, therefore, a privileged
tool to ascertain the existence of quantum tunneling in
complex materials, like magnetic nanoparticles, where
the distribution of sizes usually hinders a direct
experimental determination of the relaxation times. As
we shall see in the next section, the nonlinear response
of SMM also contains information on how much the
environment perturbs the quantum (and classical) spin
dynamics.
4. Experimental determination of decoherence for
thermally assisted tunneling

The term decoherence refers to the perturbation
exerted by the ‘‘rest of the world’’ on the evolution with
time that the state of quantum system would follow
where it isolated [17,35e37]. For the particular case of
an SMM flipping its spin via thermally activated QT, the
situation is illustrated schematically in Fig. 1. Using
a simple semi-classical picture, once the spin attains an
excited magnetic state (say approximately þm) its
dynamics would consist of the combination of two
processes. The first, a classical precession around the
anisotropy axis, is caused by the torque exerted on
the spin by the effective magnetic field associated with
the magnetic anisotropy, when the two are not parallel
to each other (i.e. for states other than m¼�S). This is
a very fast oscillation with a period tL¼ 2p-/
gmBHK z 3 to 4� 10�12 s, where HK is the anisotropy
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field. The second is the slower quantum tunneling
coherent oscillation between the degenerate þm and
�m states, with a period tT¼ -/Dm, where Dm is the
tunnel splitting of the excited doublet. These processes
are perturbed by the interaction with microscopic
degrees of freedom, like phonons, giving rise eventually
to the decay towards one of the two ground states, either
þS or eS, for timescales longer than the lifetime t0 of
the excited states1.

The decoherence time tF sets the timescale in
which these two dynamical processes are destroyed by
the environment. If tF exceeds the period of tunneling
tT then the spin undergoes some (approximately tF/
tT) coherent tunnel oscillations before decaying to the
ground state. Obviously, t0 provides an upper bound to
tF, but it is also possible that tF� t0. It is curious that
different models proposed to describe the thermally
assisted tunneling of SMM do not agree on the ques-
tion of whether these quantum oscillations actually
take place or not2. And, remarkably, that the relaxation
time t for the overall process depends little on the ratio
tF/t0: what actually determines t is the fact that the
spin has, just before decaying, nearly equal probabili-
ties of pointing up or down. For the same reason,
experiments that determine t, for e.g. the frequency-
dependent linear susceptibility, do not provide much
information on tF. For clarity sake, let us emphasize
that what we discuss here is the possibility that the spin
undergoes coherent dynamics once it has reached an
excited state with a very fast tunneling rate and just
before it decays back to the ground state, and not the
coherence of the spin reversal as a whole, which, being
a phonon mediated relaxation process, is obviously
incoherent.

As we argue next, and in contrast with the linear
susceptibility, the nonlinear response turns out to be
much more dependent on the behaviour of the spin
during the intermediate steps of the relaxation process.
Starting from the LandaueLifshitz equation, which
describes the evolution with time of the magnetization
of classical superparamagnets, Garcı́a-Palacios and
Svedlindh showed that the nonlinear susceptibility
1 Notice that we refer here to the lifetime of the excited states

through which tunneling takes place and not to the pre-factor of the

Arrhenius law that describes the variation of t with temperature. At

sufficiently high temperatures, as those considered in the present

work, the two are of the same order of magnitude. For a detailed

definition of the pre-factor and its relationship with the lifetimes of

excited levels. See e.g. Ref. [42].
2 More specifically, in Ref. [23] it is rigorously shown that

‘‘coherent’’ oscillations do not occur even in the most favourable

situation of tT being much shorter than t0.
strongly depends on the magnitude of the parameter l

that measures the damping of the Larmor precession
by the environment [34,50,51]. This dependence is
shown in Fig. 9 for the case of anisotropic axes
oriented at random. A very large classical contribution
to the dynamical nonlinear susceptibility is expected
for underdamped (l< 0.1) spins. It should be empha-
sized that this contribution has the sign reversed with
respect to the quantum contribution discussed in the
previous section: the quantum c3

0/c3T> 0, whereas the
classical c3

0/c3T< 0, because quantum tunneling
changes the sign of gjj with respect to the classical
situation. The difference between the two can be
appreciated by comparing the classical predictions for
randomly oriented axes with experiments performed
on a powdered sample of Mn12 clusters. The enormous
quantum contribution fully dominates the experimental
data near ut¼ 1, overshadowing the classical term
that contains the information we seek on damping and
decoherence.

Fortunately, it is still possible to separate the
quantum and classical contributions by varying
the angle J between the applied magnetic field and the
anisotropy axis. As we have seen in the previous
section, the quantum contribution to c3 arises from the
strong dependence of tunneling on external bias, which
leads to a very large gjj (remember Eqs. (6) and (7)). On
the other hand, it is gt that depends on the damping
parameter [51]. As a result, the quantum contribution is
maximum at J¼ 0 (it is actually proportional to
cos4J) whereas the classical contribution peaks at
around J¼ p/4, as the results of numerical simulations
show (see Fig. 10). Therefore, if the latter contribution
was important in SMM, we would expect to see
a change in the sign of c3

0 with increasing J.
Experimental results measured on a single crystal of

Mn12 acetate are shown in Fig. 11. Increasing the angle
J leads indeed to a rapid decrease of the maximum
c3
0/c3(J¼ 0). Yet, no change of sign is apparent. In

fact, the data are proportional to cos4J within the
experimental uncertainties. The lack of any measurable
classical contribution to c3 is also supported by the fact
that results obtained on powder samples are virtually
identical to those measured on a single crystal for
J¼ 0 (compare Figs. 6 and 9). This provides an upper
bound for the maximum jgtj or, equivalently, a lower
bound for l> 0.01.

What these results tell us with respect to decoher-
ence? In a pure classical picture of magnetic relaxa-
tion, the Larmor precession is limited by the lifetime t0

of the excited magnetic states. Under these conditions,
and for the parameters (temperature and activation
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energy) applicable to Mn12, l z 0.04 tL/t0. We esti-
mate [41,51] t0 z 3� 10�8 s from the pre-factor of
the Arrhenius law, whereas tL z 3e4� 10�12 s. This
would then lead to l z 4� 10�6 and, therefore, to
a huge classical nonlinear response that we do not
observe. The experiments indicate that the effective
l is not determined by t0 but by another timescale tF

that is much shorter than it. In fact, if we make
l z 0.04 tL/tF and use the lower bound for l> 0.01
estimated from the experiments, we get tF< 10�11 s.
In other words, decoherence proceeds much faster than
the decay towards lower energy states.
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longer than the tunneling times. It is worth mentioning
that decoherence rates of order tT (thus in agreement
with our estimate) were predicted in the model of
Ref. [23]. The fast decoherence of tunneling via ther-
mally populated states follows in fact rather generally
from the application of Heisenberg’s uncertainty
principle. For a more rigorous and detailed description
of these issues we direct the reader to Refs. [23,42].

5. Conclusions

We have given a short overview of nonlinear
magnetic phenomena found in SMM. Compared with
the linear ac susceptibility, which has become the
standard tool to investigate SMM behaviour, the
nonlinear response offers additional information on
how the relaxation times are affected by applied
magnetic fields and, in this way, about the nature of the
relaxation process. In particular, the existence of
quantum tunneling and its strong sensitivity to external
bias, gives rise to an enormous contribution to the
dynamical c3(u), which has no classical analogue.
This new quantum phenomenon, quantum nonlinearity,
should not be restricted to SMM, but it could be
observable in other systems, like magnetic clusters or
nanoparticles, relaxing via QT. In this way, the
measurement of c3(u) provides a relatively simple and
unambiguous method to determine whether quantum
tunneling plays a role in the magnetic relaxation of
these materials, for which standard relaxation experi-
ments do not always provide a definite answer [53].

In addition, we have shown that the nonlinear
response provides also some information, albeit indi-
rect, on decoherence times. In fact, we have derived the
first, to the best of our knowledge, estimate for the
decoherence time tF for thermally activated spin
tunneling. Our data suggest that tF is several orders of
magnitude shorter than the lifetime of the tunneling
states. Compared with other techniques usually
employed to directly measure tF, like spin-echo
experiments with ESR [40], the nonlinear suscepti-
bility has the advantage of its simplicity and of directly
providing information on those states that contribute
most to the relaxation process at zero field. Notice that,
for H0¼ 0, the excited states involved in the thermally
activated tunneling process of Mn12 have m� 4 (i.e.
far from the ground-state doublet with m¼�10) and
have energies of about 60e65 K (equivalent to
1.3 THz) above the ground state [20,21]. This means
that the direct application of spin-echo experiments to
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this case can be very problematic if feasible at all. In
this respect, the nonlinear susceptibility technique
provides a poor man’s tool to investigate decoherence
phenomena in SMM at zero field.

The results described in this paper certainly do not
exhaust the interesting possibilities offered by the
study of nonlinear magnetic phenomena in SMM and
other related magnetic materials. The evolution with
the cluster size of the nonlinear susceptibility can be
very useful to investigate the transition between the
quantum and classical worlds [54]. As the number of
atoms per cluster increases, the magnetic levels
become more and more closely packed in energy.
When they begin to overlap, the quantum nonlinear
susceptibility should tend to vanish. The advantage of
this technique is that it provides information for
monodispersed clusters as well as for nanoparticles
with a distribution of sizes. The same transition
between the quantum and the classical limits can be
observed by increasing the ‘‘damping’’ of the spins, i.e.
the strength of the interaction between spins and the
‘‘bath’’. Experimentally, this can be achieved by
studying clusters having the same structure, spin, and
anisotropy but different surroundings: diverse crystal
structures, clusters embedded in conducting matrices,
etc. Taking into account the results described in
Section 4, it would also be of interest to investigate
diluted samples of SMM, for which the energy of
dipolar interactions might become smaller than the
homogeneous broadening of the spin levels. Under the
appropriate conditions (fast tunneling and weak dipolar
interactions), tunneling via lower lying excited states
should eventually give rise to even larger nonlinear
responses and enable the observation of the classical
contribution, overshadowed in Mn12 acetate by the
quantum contribution, and its dependence on damping.
Another interesting issue to be investigated is the
behaviour of the nonlinear susceptibility of SMM
crystals that undergo a phase transition to a long-range
ordered magnetic phase [55e58]. As we have shown in
Section 3, the dynamical nonlinear susceptibility can
become very large at finite temperatures. This behav-
iour can be erroneously interpreted as the onset of
a phase transition for e.g. a spin-glass phase. Our
results, therefore, highlight the importance of carefully
distinguishing dynamical effects from truly equilib-
rium phenomena. The information gained in model
systems like SMM, can then help understanding the
physical behaviour of more complex materials, such as
arrays of interacting nanoparticles [31,32] as well as
‘‘classical’’ or ‘‘quantum’’ spin glasses [27e29].
Finally, these phenomena might also be relevant for
applications of molecular nanomagnets in e.g.
magneto-optical devices or as magnetic field sensors,
for which the nonlinear effects can become important.
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