

Available online at www.sciencedirect.com

C. R. Chimie 12 (2009) 1102-1108

Mémoire / Full paper

Considération sur l'ordre des acidités successives du diacide 7-para carboxy anilino 4-nitrobenzofurazane

Malika Mokhtari^{a,*}, Jean Claude Hallé^b, Marie-José Pouet^b

^a Laboratoire de chimie inorganique et environnement, Université Abou Bakr Belkaid, 13000 Tlemcen, Algeria ^b Laboratoire SIRCOB, bâtiment Lavoisier, Université de Versailles, 45, avenue des Etats Unis, 78035 Versailles Cedex, France

> Reçu le 7 juillet 2008; accepté après révision le 30 septembre 2008 Disponible sur internet le 18 novembre 2008

Résume

La constante de première acidité du 7-para carboxy anilino-4-nitrobenzofurazane noté **4H,COOH**, dans le diméthylsulfoxyde a été estimée par un dosage RMN.

Le diacide **4H,COOH** a été préparé par simple réaction de substitution nucléophile aromatique (S_NAr) et le sel monopotassique a été précipité par ajout de chloroforme à une solution de **4H,COOH** dans Me₂SO, après salification d'une fonction acide par un équivalent de bicarbonate de potassium solide.

Dans un premier temps, un titrage RMN ¹H des deux acidités de **4H,COOH** a été réalisé dans Me₂SO-d₆ par la base forte tertiobutylate de potassium.

Dans un deuxième temps, nous avons montré que l'ionisation NH/N⁻ s'effectue complètement avant celle de la fonction COOH.

Nous avons pu estimer la constante de première acidité de **4H,COOH** à 7,5 dans le diméthylsulfoxyde en utilisant le 9-cyano fluorène comme référence interne. *Pour citer cet article : M. Mokhtari et al., C. R. Chimie 12 (2009)*.

© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Abstract

On the dissociation constants of successive acidities of the diacid 7-para carboxy anilino-4-nitrobenzofurazane. The first dissociation constant of the 7-para carboxy anilino-4-nitrobenzofurazane noted **4H,COOH**, in dimethylsulfoxyde was estimated using an NMR method. Diacid **4H,COOH** was prepared by simple reaction of aromatic nucleophilic substitution (S_NAr) and monopotassium salt and was precipitated by chloroform addition to a solution of **4H,COOH** in Me₂SO, after neutralisation of an acid function by one equivalent of solid potassium bicarbonate. Initially, a titration NMR ¹H of two acidities of **4H,COOH** was carried out in Me₂SO-d₆ by the strong base potassium tert-butoxide. After, we showed that ionization NH/N⁻ is carried out completely before that of function COOH. We could estimate the first dissociation constant (7.5) of **4H,COOH** in dimethylsulfoxyde by using the 9-cyano fluorene as a reference compound. *To cite this article: M. Mokhtari et al., C. R. Chimie 12 (2009).*

© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

* Auteur correspondant.

Adresse e-mail: mokhtarimalika@yahoo.fr (M. Mokhtari).

^{1631-0748/\$ -} see front matter © 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crci.2008.09.013

Mots-clés : nitrobenzofurazanes ; inversion d'acidité ; RMN ; diméthylsulfoxyde

Keywords: Nitrobenzofurazans; Inversion of acidity; NMR; Dimethylsulfoxyde

1. Introduction

Depuis trente ans, il est bien établi que si les solvants dipolaires aprotiques, et notamment le diméthylsulfoxyde, sont de piètres solvatants des anions à charge localisée, ce sont en revanche d'excellents solvants de gros anions polarisables et ce d'autant plus que leur charge est dispersée par effet mésomère [1-4]. Ainsi, contrairement aux acides carboxyliques dont l'acidité décroît progressivement lorsque l'on passe de l'eau au Me2SO [4,5] (le pKa de l'acide benzoique par exemple passe ainsi de 4,20 dans l'eau à 11,1 dans le Me₂SO [4]), l'acidité des polynitro diphénylamines augmente régulièrement [6]. C'est ainsi que le pKa de la trinitro diphénylamine passe de 10,50 dans l'eau [7] à 7,97 dans 95 % en volume (83,1 % en fraction molaire) de Me₂SO [6]. Une telle situation n'est pas sans incidence sur l'ordre des acidités successives d'acides 2,4,6-trinitro diphénylamine carboxyliques. En effet, si l'acidité de la fonction carboxylique de ces diacides est bien la plus forte dans les milieux riches en eau (chemin 1 du Schéma 1 avec $R \equiv$ groupement picryle), on constate un rapprochement progressif de ces acidités successives lorsque le milieu s'enrichit en Me₂SO de sorte que dans les milieux de teneur voisine de 80 - 85% en volume de Me₂SO, on observe la coexistence des deux monoanions : carboxylate I₁ et amidure I₂ (i.e. $K_T \approx 1$) [8].

Pour des teneurs plus riches en Me_2SO (voir dans Me_2SO pur), c'est donc le chemin 2 qui prédomine pour devenir très vite unique [8].

Schéma 1.

Comme nous avons montré que le groupement 4-nitrobenzofurazanyle (NBD) est un peu plus délocalisant que le groupement picryle (Pic) [9], une telle inversion d'acidité, induite par la composition du milieu, doit également caractériser des structures de type : NBD-NH-Ph-COOH. On peut en effet estimer que l'acidité NH/N⁻ (K₂ du Schéma 1) du diacide 7-para carboxy anilino-4-nitrobenzofurazane, noté **4H,COOH** doit être très

proche de celle de son ester méthylique (hypothèse d'Ebert [10]), dont nous avons mesuré le pK_a (\equiv 7,05) [9] dans le mélange eau - Me₂SO étudié (20 - 80% en volume). Quant à l'acidité COOH/COO⁻ de **4H,COOH** (K₁ du Schéma 1), elle doit être très légèrement inférieure au COOH de l'acide 2,4,6-trinitro diphénylamine 4'-carboxylique si l'on se réfère aux effets électroattracteurs comparatifs des groupements NBD et Pic ; celle-ci a été estimée à $pK_1 = 7,20$ [8] dans ce même milieu. On peut donc en conclure que le point d'inversion pour les deux acidités de **4H,COOH** (i.e. pour lequel $pK_1 = pK_2$, $K_T = 1$) se situerait pour une teneur en Me₂SO légèrement inférieure à 80% en volume.

2. Résultats et discussions

Le diacide **4H,COOH** a été préparé dans des conditions proches de celles ayant permis l'obtention de l'ester méthylique [9] et le sel monopotassique a été précipité par ajout de chloroforme à une solution de **4H,COOH** dans Me₂SO, après salification d'une fonction acide par un équivalent de bicarbonate de potassium solide.

La première remarque concerne la quasi-identité des paramètres RMN ¹H et ¹³C du diacide **4H,COOH** et de son ester méthylique (Tableaux 1 et 2); l'hypothèse d'Ebert concernant la très faible influence de la méthylation sur la structure du diacide est donc ici pleinement justifiée [10]. Concernant le monoanion, on doit noter l'important effet de solvant, quand on passe Tableau 1

composé	solvant	$\delta_{ m H_5}$	$\delta_{ m H_6}$	$\delta_{\mathrm{H}_{2'6'}}$	$\delta_{\mathrm{H_{3'5'}}}$	$\delta_{ m NH}$	${}^{3}J_{56}$	${}^{3}J_{2'3'}$
4H,COOH	Me ₂ SO-d ₆	8,56	6,99	7,56	8,03	11,13	8,7	8,6
4H,COOMe	Me ₂ SO-d ₆	8,57	7,01	7,63	8,05	11,16	8,8	8,7
4 ⁻ ,COOH	Me ₂ SO-d ₆	7,81	5,75	6,99	7,96		10,0	8,2
4 ⁻ ,COOMe	Me ₂ SO-d ₆	7,80	5,69	7,00	7,94		9,9	8,2
4H,COO ⁻	D ₂ O	7,60	6,16	6,95	7,73		10,2	8,6
4 ⁻ ,COO ⁻	Me ₂ SO-d ₆	7,68	5,73	6,75	7,82		10,2	8,2

Comparaison des paramètres RMN ¹H du diacide **4H,COOH** et son sel monopotassique à ceux de l'ester méthylique correspondant.(solvant : Me₂SO). T = 23 °C.

de D₂O au Me₂SO-d₆, qui ne peut s'expliquer que par une modification structurale du sel. Sous forme carboxylate dans D₂O (**4H,COO**⁻; i.e. I₁), il est entièrement tautomérisé en amidure (**4**⁻,**COOH**; i.e. I₂) dans Me₂SO-d₆, comme en témoigne l'identité entre les paramètres RMN ¹H et ¹³C et ceux de l'anion (**4**⁻,**COOMe**) issu de l'ester (à part $\delta_{C_{4'}}$, cf. Tableaux 1 et 2). A cet égard, un titrage RMN ¹H des deux acidités de **4H,COOH** a été réalisé dans Me₂SO-d₆ par la base forte tertiobutylate de potassium (Tableau 3 et Fig. 1).

On retrouve bien après ajout d'un équivalent de tBuOK les paramètres RMN ¹H du sel isolé 4^- ,COOH et on peut constater que le passage au dianion 4^- ,COO⁻ produit moins de modifications des déplacements chimiques que la déprotonation préalable de la fonction amidure.

Compte tenu de la différence importante d'absorption UV - Visible des chromophores NBD-NH-R et NBD-N⁻-R, il est évident que l'influence du solvant sur le transfert protonique entre le site azoté de I₁ et le site carboxylate de I2 est facilement détectable par cette technique. Ainsi, les enregistrements UV - Visible du sel monopotassique de **4H,COOH** ($c = 6^{-5}$ $mol l^{-1}$), réalisés dans divers mélanges eau - Me₂SO (cf. Fig. 2), révèlent qu'à partir d'environ 40% de Me₂SO en volume, la bande d'absorption caractéristique de l'anion amidure N⁻ ($\lambda_{max} = 395$ nm) apparaît, montrant ainsi que l'anion I1 cède alors progressivement la place à l'anion I2, qui semble être la seule espèce dans Me₂SO pur. D'autre part, le tracé sigmoïdique de l'absorbance de 4⁻ relevé à 395 nm en fonction de la teneur en Me₂SO (cf. Fig. 3) montre un

point d'inflexion aux alentours de 70% de Me₂SO en volume qui doit être proche du milieu dans lequel les populations de I₁ et de I₂ sont identiques ($K_T = 1$ ou $pK_1 = pK_2$).

3. Estimation par RMN de la première acidité de 4H,COOH dans Me₂SO-d₆ pur

Dans la mesure où les déplacements chimiques de certains sites ($\delta_{\rm H}^i$ et δ_{13c}^i) du diacide, que l'on notera dorénavant **4H**₂ pour simplification, sont très sensibles à la déprotonation de la fonction amine (cf. Tableaux 1 et 2), la connaissance du δ_i moyenné, correspondant au mélange des deux espèces **4H**₂ et **4H**⁻ en échange rapide $\delta_m^i = P_{4H_2} \delta_{4H_2}^i + P_{4H}^i - \delta_{4H^-}^i$ permet de calculer les populations de ces deux espèces

$$(P_{4H_2} + P_{4H^-} = 1)$$

)

i.e. :

$$\mathrm{P}_{4\mathrm{H}_2} = rac{\delta^i_m - \delta^i_{4\mathrm{H}^-}}{\delta^i_{4\mathrm{H}_2} - \delta^i_{4\mathrm{H}^-}}$$

et

$$\mathbf{P}_{4\mathrm{H}^{-}} = \frac{\delta_{4\mathrm{H}_{2}}^{i} - \delta_{m}^{i}}{\delta_{4\mathrm{H}_{2}}^{i} - \delta_{4\mathrm{H}^{-}}^{i}} \tag{1}$$

Ainsi, dans Me_2SO-d_6 pur, où l'ionisation NH/N^- de **4H**₂ s'effectue complètement avant celle de la fonction COOH, la première constante d'acidité K_a de **4H**₂ (équation (2)) sera accessible pourvu que l'on dispose

Tableau 2

Comparaison des paramètres RMN ¹³C du diacide **4H,COOH** et son sel monopotassique à ceux de l'ester méthylique correspondant (solvant : Me_2SO-d_6). T = 23 °C.

δ_{C_4}	δ_{C_5}	δ_{C_6}	δ_{C_7}	δ_{C_8}	δ_{C_9}	$\delta_{\mathrm{C}_{1'}}$	$\delta_{\mathrm{C}_{2'6'}}$	$\delta_{\mathrm{C}_{3'5'}}$	$\delta_{\mathrm{C}_{4'}}$	$\delta_{ m CO}$
124,5	137,3	103,5	140,7	145,3	144,1	142,3	122,4	130,9	127,5	166,7
124,8	137,2	103,7	140,6	145,4	144,1	142,8	122,3	130,8	126,2	165,6
111,4	133,6	103,4	150,1	148,7	146,7	155,3	120,7	130,7	125,6	167,4
111,2	133,8	103,5	150,6	149,0	146,9	156,6	121,0	130,8	123,9	166,3
	δ_{C_4} 124,5 124,8 111,4 111,2	$\begin{array}{c c} \delta_{C_4} & \delta_{C_5} \\ \hline 124,5 & 137,3 \\ 124,8 & 137,2 \\ 111,4 & 133,6 \\ 111,2 & 133,8 \end{array}$	$\begin{array}{c ccccc} \delta_{C_4} & \delta_{C_5} & \delta_{C_6} \\ \hline 124,5 & 137,3 & 103,5 \\ 124,8 & 137,2 & 103,7 \\ 111,4 & 133,6 & 103,4 \\ 111,2 & 133,8 & 103,5 \\ \end{array}$	$\begin{array}{c ccccc} \delta_{C_4} & \delta_{C_5} & \delta_{C_6} & \delta_{C_7} \\ \hline 124,5 & 137,3 & 103,5 & 140,7 \\ 124,8 & 137,2 & 103,7 & 140,6 \\ 111,4 & 133,6 & 103,4 & 150,1 \\ 111,2 & 133,8 & 103,5 & 150,6 \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Tableau 3 Valeurs des déplacements chimiques ¹H correspondants au titrage de **4H,COOH** (c \approx 0,08 M) par le tertiobutylate de potassium. T = 23 °C.

n _{eq} .(tBuOK)	$\delta_{ m H_5}$	$\delta_{ m H_6}$	$\delta_{\rm H_{2'6'}}$	$\delta_{3'5'}$
0	8,547	6,98 ₂	7,59 ₃	8,023
0,23	8,381	6,682	7,450	7,982
0,67	8,006	6,07 ₆	7,157	7,94 ₇
1	7,792	5,728	6,972	7,919
1,32	7,753	5,73 ₂	6,90 ₀	7,882
1,78	7,701	5,730	6,800	7,835
2	7,68 ₀	5,731	6,74 ₆	7,824

d'une référence acido-basique d'acidité voisine de celle à mesurer.

$$K_{a}^{4H_{2}} = \frac{P_{4H^{-}}}{P_{4H_{2}}} f_{4H^{-}} a_{HS^{+}} \operatorname{avec} \frac{P_{4H^{-}}}{P_{4H_{2}}} = \frac{\lfloor 4H^{-} \rfloor}{\lfloor 4H_{2} \rfloor}$$
(2)

Compte tenu des valeurs des constantes d'acidité des composés **4H** que nous avons mesurées dans le milieu eau - Me₂SO contenant 80% de Me₂SO en volume, et en particulier celle de l'ester méthylique de **4H₂** (pK_a = 7,05) [9], on peut s'attendre à ce que la première acidité de **4H₂** dans le Me₂SO pur se situe dans une zone de pH allant de 7 à 9. Parmi les couples acide/base sélectionnés pour recouvrir le large domaine acido - basique accessible du Me₂SO pur [4,11–14] (dont le produit d'autoprotolyse vaut $\approx 10^{-33}$) [11] on trouve l'acide 3,5-dinitrobenzoique : pK_a = 7,4 [4], le 9-cyano fluorène : pK_a = 8,3 [13] et le cation triéthylammonium : pK_a = 9,0 [4], 9,07 [14].

Dans la mesure où les signaux de l'acide 3,5-dinitrobenzoique (en mélange avec son sel) risquent d'interférer avec ceux de $4H_2/4H^-$ et que le couple Et_3NH^+/Et_3N semble être un peu élevé, nous avons opté pour le 9-cyano fluorène, noté **FIH**, qui présente le même processus d'ionisation i.e. :

Fig. 1. Titrage RMN ¹H des deux acidités de **4H,COOH** par le tertiobutylate de potassium dans Me₂SO-d₆. T = 23 °C.

$$FIH + S \rightleftharpoons HS + +FI$$

avec

$$K_{a}^{FLH} = \frac{[Fl^{-}]}{[FlH]} f_{Fl^{-}} a_{HS^{+}}$$
(3)

Opposant $4H^-K^+$ au 9-cyano fluorène dans Me₂SO, nous avons effectivement observé que les paramètres RMN de notre substrat benzofurazane étaient bien intermédiaires entre ceux de $4H^-$ et de $4H_2$ attestant ainsi de la réaction d'échange protonique entre ces deux entités dont la constante K (Éq. (4)), s'identifie au rapport des constantes d'acidité de FIH (Éq. (3)) et de $4H_2$ (Éq. (2)).

$$4\mathrm{H}^{-} + \mathrm{FlH} \stackrel{\mathrm{K}}{\Longrightarrow} 4\mathrm{H}_{2} + \mathrm{Fl}^{-} \tag{4}$$

$$K = \frac{[4H_2][Fl^-]}{[4H^-][FlH]} \frac{f_{Fl^-}}{f_{4H^-}}$$
(5)

Ainsi, la détermination de K permet d'accéder à $K_a^{4\text{H}_2}$ à partir de l'étalon 9-cyanofluorène $(K_a^{F/\text{H}} = 10^{-8.3} \text{ dans Me}_2\text{SO pur [13]})$:

$$K_a^{4H_2} = \frac{K_a^{FlH}}{K} \tag{6}$$

A noter que le choix d'un étalon s'ionisant en anion comme **4H**₂, simplifie la détermination de K (équation (5)) dans la mesure où, si les solutions restent diluées, les coefficients d'activités f_{Fl^-} et f_{4H^-} des espèces monoanioniques doivent être suffisamment proches pour simplifier l'Éq. (5).

$$\mathbf{K} = \frac{[4\mathbf{H}_2][\mathbf{F}\mathbf{I}^-]}{[4\mathbf{H}^-][\mathbf{F}\mathbf{I}\mathbf{H}]} \tag{7}$$

4. Détermination de la constante K

Si l'on désigne par c_o et $\tau . c_o$ les concentrations initiales respectives en **4H**⁻ et **FIH**, et par x leur concentration ayant réagi à l'équilibre, on a d'après (4) et (7)

$$K = \frac{x^2}{(c_0 - x)(\tau c_0 - x)}$$
(8)

Il ressort des Tableaux 1 et 2 que la déprotonation de **4H**₂ dans Me₂SO-d₆, modifie notablement les déplacements chimiques δ^i de C₄, C₇, C₁·, H₅, H₆ et à un degré moindre H₂·,₆·, de sorte que la détermination des déplacements chimiques δ^i_m du mélange de **4H**⁻ (à la concentration x) et de **4H**₂ permet d'accéder aux

Fig. 2. Ionisation de **4H,COOH** dans des milieux mixtes eau – Me₂SO, T = 25 °C ; $c = 6.10^{-5} \text{ mol } 1^{-1}$; $\lambda_{\text{mesure}} = 395 \text{ nm}$: (1) 2%, A = 0,157 ; (2) 20%, A = 0,192 ; (3) 40%, A = 0,221 ; (4) 60%, A = 0,308 ; (5) 70% , A = 0,388 (point d'inflection) ; (6) 80%, A = 0,481 ; (7) 90%, A = 0,542 ; (8) 100% de Me₂SO en volume, A = 0,554.

populations P_{4H_2} et P_{4H^-} (Éq. (1)) respectivement égales à x/c_0 et $c_0 - x/c_0$ ce qui nous conduit à la relation (9) :

$$\mathbf{K} = \frac{1}{\left(\frac{1}{P_{4H_2}} - 1\right)\left(\frac{\tau}{P_{4H_2}} - 1\right)} \tag{9}$$

dont la transformée logarithmique (10) :

$$\log\left(\frac{1}{P_{4H_2}} - 1\right) = pK - \log\left(\frac{\tau}{P_{4H_2}} - 1\right)$$
(10)

indique que le pK de l'équilibre (4) se déduit du tracé linéaire $\log(\frac{1}{P_{4H_2}} - 1) = f(\frac{\tau}{P_{4H_2}} - 1)$ de pente -1. Une solution de réserve de **4HK** (M = 338,3

Une solution de réserve de **4HK** (M = 338,3g mol⁻¹) a été préparée en dissolvant 0,1247 g de sel dans 3,5815 g de Me₂SO-d₆. Cette solution de réserve contient donc 9,946 × 10⁻⁵ mole de **4HK** par gramme

Fig. 3. Tracé de la variation de l'absorbance de 4⁻ en fonction de la teneur en Me₂SO (en volume) à la longueur d'onde $\lambda = 395$ nm. T = 25 °C.

de solution (compte tenu de la masse volumique du Me_2SO-d_6 égale à 1,19 g/cm³, cette solution est donc environ 0,12 mol l⁻¹).

A un prélèvement d'environ $0.5 - 0.6 \text{ cm}^3$ de cette solution de réserve, de masse m_{res} , on ajoute des masses croissantes m_{FLH} de 9-cyano fluorène solide $(M = 191,2 \text{ g mol}^{-1})$ dans le tube RMN. Les données numériques relatives aux quatre expériences réalisées, désignées par les entrées A, B, C et D sont réunies dans le Tableau 4 où apparaissent également les valeurs calculées du rapport τ défini précédemment.

A partir des δ_m^i on peut donc calculer les populations de la forme moléculaire **4H**₂ en mélange avec son anion **4H**⁻(Tableau 5). Les valeurs ainsi obtenues sont très homogènes bien qu'il soit nécessaire de noter que la moyenne de celles déduites des mesures faites en ¹³C, soient légèrement inférieures à la moyenne des P_{4H_2} provenant des mesures faites en ¹H (Tableau 6). L'application de l'Éq. (10) à ces valeurs permet l'estimation graphique (cf. Fig. 4) du pK de la réaction d'échange protonique (Éq. (4)). A cet égard, il est logique que la précision maximale soit obtenue pour les solutions C et D pour lesquelles les populations

Tableau 4	
Préparation et caractéristiques des solutions	de mesure RMN.

Entrée	m _{res} (g)	$10^5 n_{4HK}$ (mole)	m _{FlH} (g)	10 ⁵ n _{FlH} (mole)	$ au=rac{n_{ m EHH}}{n_{ m 4HK}}$
A	0,5834	5,802	0,0042	2,197	0,3787
В	0,5267	5,238	0,0135	7,060	1,348
С	0,5942	5,909	0,0344	17,989	3,044
D	0,6416	6,381	0,0505	26,408	4,139

Tableau 5

Valeurs des déplacements chimiques δ_m^i du mélange **4H**₂ / **4H**⁻ correspondant aux solutions A, B, C et D dont les caractéristiques sont indiquées dans le Tableau 4. Les valeurs calculées pour P_{4H_2} (Éq. (1)) sont indiquées entre parenthèses. $i \equiv C_4$, C_7 , C_1 , $; H_5$, H_6 ; $[4H_2] + [4H^-] = 0,12 \text{ mol } l^{-1}$ et T = 23 °C.

i	C_4	C ₇	$C_{1'}$	H ₅	H ₆
4H ⁻	111,34	150,10	155,34	7,808	5,74 ₈
А	113,40	148,59	153,36	7,94 ₇	5,962
	(0,156)	(0,161)	(0,151)	(0,186)	(0,173)
В	115,94	146,85	150,85	8,084	6,197
	(0,349)	(0.347)	(0,343)	(0,370)	(0,363)
С	117,53	145,68	149,27	8,176	6,350
	(0,469)	(0,472)	(0,464)	(0,493)	(0,487)
D	118,21	145,30	148,50	8,214	6,41 ₇
	(0,521)	(0,512)	(0,523)	(0,544)	(0,541)
4H ₂	124,54	140,73	142,26	8,555	6,985
$\delta^i_{4\mathrm{H}_2}-\delta^i_{4\mathrm{H}^-}$	13,20	-9,37	-13,08	0,747	1,237

Tableau 6

Calcul des populations de la forme moléculaire **4H**₂ moyenné à partir des $\delta'_C(a)$, $\delta'_H(b)$ et de l'ensemble (c). Application à l'Éq. (10).

Entrée	au	$P_{4H_2} \\$	$log(\frac{1}{P_{4H_2}}-1)$	$\log(\frac{\tau}{P_{4H_2}} - 1)$
A	0,3787	(a) 0,156	0,733	0,155
		(b) 0,180	0,659	0,043
		(c) 0,165	0,704	0,112
В	1,348	(a) 0,346	0,277	0,462
		(b) 0,366	0,239	0,429
		(c) 0,354	0,261	0,448
С	3,044	(a) 0,468	0,056	0,741
		(b) 0,490	0,0174	0,717
		(c) 0,477	0,040	0,731
D	4,139	(a) 0,519	-0,033	0,844
		(b) 0,542	-0,073	0,822
		(c) 0,528	-0,049	0,835

voisines des espèces $4H_2$ et $4H^-$ encadrent parfaitement le point d'ordonnée nulle (pour lequel $P_{4H_2} = P_{4H^-}$) qui correspond au pK. En revanche, l'écart important entre ces populations rend, en

Fig. 4. Estimation du pK de la réaction (4) à partir des mesures RMN ¹H et ¹³C. T = 23 °C.

solution A notamment, leur détermination beaucoup plus incertaine (cf. Fig. 4 et Tableau 6) et dans ce cas, il convient d'ajouter l'imprécision sur la pesée du 9-cyano fluorène introduit (Tableau 4).

Du pK (=0,8 ± 0,05) ainsi obtenu pour l'équilibre (4), on peut donc estimer la première acidité de **4H**₂ à $pK_a^{4H_2} \approx 7,5$ (± 0,05) dans le diméthylsulfoxyde si toutefois on admet que les constantes d'acidité, et notamment celle du 9-cyano fluorène (pK_a = 8,3 [13]) ne sont pas, ou peu, affectées par la deutération du Me₂SO. Cette valeur, est tout à fait compatible avec celle mesurée par spectroscopie (7,05) pour l'ester méthylique dans le mélange Me₂SO - H₂O de fraction molaire 0,51 en Me₂SO.

5. Partie expérimentale

5.1. Préparation des 7-anilino 4-nitrobenzofurazanes 4H,COOH et 4H,COOMe

La condensation des anilines para substituées (produits Aldrich) sur le 7-Chloro 4-nitrobenzofurazane NBD-Cl commercial (produit Fluka) a été réalisée en utilisant le protocole décrit par Ghosh [15].

4H,COOMe : Solide rouge ; Rdt 66% ; F 238 °C. Anal. Calc. : C, 53,51 ; H, 3,21 ; N, 17,83 ; Trouvé : C, 53,80 ; H, 3,31 ; N, 17,58 [9].

4H,COOH: Solide rouge; Rdt 60%; F 220 °C. Anal. Calc.: C,52,02; H,2,67; N,18,67%; Trouvé: C,52,15; H,2,73; N,18,52%.

5.2. Matériels

L'ionisation de **4H,COOH** a été suivie sur un spectrophotomètre UV-Visible HP8453.

Les enregistrements RMN ont été réalisés sur un spectromètre Bruker AC 300.

Références

- [1] A.J. Parker, Chem. Rev. 69 (1969) 1.
- [2] A.J. Parker, R. Alexander, J. Am. Chem. Soc. 90 (1968) 3313.
- [3] R. Alexander, E.C.F. Ko, A.J. Parker, A.J. Broxton, J. Am. Chem. Soc. 90 (1968) 5049.
- [4] I.M. Kolthoff, M.K. Chantooni Jr., J. Am. Chem. Soc. 93 (1971) 3843.
- [5] J.C. Hallé, R. Schaal, Anal. Chim. Acta 60 (1972) 197.
- [6] J.C. Hallé, F. Terrier, R. Schaal, Bull. Soc. Chim. Fr. (1973) 1225.

- [7] K. Bowden, A. Buckley, R. Stewart, J. Am. Chem. Soc. 88 (1966) 947.
- [8] J.C. Hallé, F. Terrier, R. Gaboriaud, Bull. Soc. Chim. Fr. (1973) 1231.
- [9] J.C. Hallé, M. Mokhtari, P. Soulié, M.J. Pouet, Can. J. Chem. 75 (1997) 1240.
- [10] L. Ebert, Z. Phys. Chem. 121 (1926) 385.
- [11] J. Courtot Coupez, M. Le Demezet, C.R. Acad. Sci. 266c (1968) 1438.
- [12] J. Courtot Coupez, M. Le Demezet, Bull. Soc. Chim. Fr. (1969) 1033.
- [13] W.S. Matthews, J.E. Bares, J.E. Bartness, F.G. Bordwell, F.J. Cornforth, G.E. Drucker, Z. Margolin, R.J. McCallum, C.J. MacCallum, N. Vanier, J. Am. Chem. Soc. 97 (1975) 7006.
- [14] M.R. Crampton, I.A. Robotham, J. Chem. Res. (S) (1997) 22.
- [15] P.B. Ghosh, J. Chem. Soc. (B) (1968) 334.