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Abstract
In a previous paper on the Keesom effect, we presented a procedure for the evaluation of the average potential energy of
interaction between two dipoles of strength m a distance R apart in the limit of small temperature T. The resulting expansion in terms
of the dimensionless T-dependent parameter a¼�m2/R3kT was then proved by us to be an asymptotic one. Here we reformulate our
method in a simplified form, extending it to include the quantum effects which must be taken into account in the low-temperature
regime. The resulting formulae show explicitly the transition from the quantum regime to the classical one as a function of
temperature. To cite this article: M. Battezzati, V. Magnasco, C. R. Chimie 12 (2009).
� 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

In 1921 Keesom [1] pointed out that two molecules
having permanent dipoles mA and mB and whose
separation is R attract each other at temperature T
according to the well-known formula [2]

E6 ¼�
2m2

Am2
B

3kT

1

R6
¼�C6ðKeesomÞ

R6
ð1Þ

where k is the Boltzmann constant. This formula,
which was derived well before London’s work on the
attraction between induced dipoles [3e7], shows
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a dependence of the interaction on R�6 with a C6

coefficient which depends on T, decreasing in impor-
tance with increasing temperature. However, the
Keesom formula looses its validity at low temperatures
and for molecules having large values of m, i.e. for
large values of the modulus of the dimensionless T-
dependent factor

a¼�mAmB

R3kT
: ð2Þ

Corrections to the Keesom C6 coefficients for several
molecular systems at room temperature were derived by
us [8] using the complete series expansion for the angle-
dependent exponential function occurring in the Kee-
som integral K(a)

KðaÞ ¼
Z
U

dU exp½aFðUÞ� ð3Þ
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with

FðUÞ ¼ sin qA sin qB cos f� 2 cos qA cos qB ¼�
VðUÞ
akT

ð30Þ

where U¼ (qA, qB, f) is the angle describing the mutual
orientations of dipoles mA and mB, dU the (internal)
configurational weight, and V(U) the potential of
interaction of the two dipoles.

In the same paper [8], we extended the calculation
to the evaluation of Keesom coefficients up to the R�10

term for small values of the parameter a.
For large values of a, which include the low-

temperature regime, an asymptotic series expansion in
(�a)�n was also derived by us [9], the leading terms
giving for the Keesom integral the simple formula

KNðaÞw
4p

3

exp½�2a�
a2

�
1� 2

3a

�
: ð4Þ

The resulting expansion in terms of the inverse of the
interaction parameter a was then proved by us [10] to be
an asymptotic representation, being subsequently
rederived by Abbott [11] using standard integral tables
[12] and the Laplace expansion theorem for asymptotic
integrals.

We propose here to extend our method of calcula-
tion, reformulated in a considerably simplified form by
using a modified coordinate transformation, to include
the quantum effects, which must be taken into account
in the low-temperature regime. The resulting formulae
show the transition from the quantum regime to the
classical one as a function of temperature. Our new
approach takes as a starting point the oscillations of the
dipoles around their equilibrium positions [9] by
expanding the interaction potential in powers of the
deviation angles from the axis joining the centres of
attraction. The measure for the calculation of averages
is taken that of the harmonic oscillator, corrected for
the curvature, all the resulting integrals being over
gaussian functions. The quantum density matrix for
this model [13a] can be constructed so that the aver-
ages in the quantum regimes are straightforward.
Taking into account the leading non-linear terms in the
potential energy necessitates evaluation to first order of
the perturbed density matrix, which could be obtained
by many-body theoretical techniques [13a,14].
2. The coordinate system

We introduce the coordinate system x, h, z defined
as follows: let z denote the axis originating in O, which
is the location of the point-like dipole A, and pointing
from A to B. Dipole A is situated in the plane (Az),
containing the z axis, and similarly it is defined the
plane (Bz). Let f denote the angle between the planes
(Az) and (Bz), rotating from A toward B. Further we
consider the plane orthogonal to the z-axis in the point
O, which is the location of dipole A, and introduce
a pair of mutually orthogonal axis x and h inside this
plane, so as to make the coordinate system (x, h, z)
right-handed. Then qA and qB are the polar angles of
the corresponding dipoles measured with respect to the
z-axis. Then are defined, in analogy with Ref. [9], the
components of the vectors�

qA ¼ q
ðxÞ
A ;q

ðhÞ
A

qB ¼ q
ðxÞ
B ;q

ðhÞ
B

ð5Þ

from the angles qA and qB, so as to make Eq. (33) of
Ref. [9] satisfied, for all values of the variables in the
interval (0, p), viz.8<:qA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q
ðxÞ2
A þ q

ðhÞ2
A

q
qB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q
ðxÞ2
B þ q

ðhÞ2
B

q ð6Þ

and moreover

cos f¼ q
ðxÞ
A q

ðxÞ
B þ q

ðhÞ
A q

ðhÞ
B

qAqB

ð7Þ

therefore obviously�
q
ðxÞ
A ¼ qA cos 4A

q
ðxÞ
B ¼ qB cos 4B

;

�
q
ðhÞ
A ¼ qA sin 4A

q
ðhÞ
B ¼ qB sin 4B

ð8Þ

f¼ 4B �4A: ð80Þ

The postulated variable transformation is canonical;
therefore it conserves the measure in phase space. It
would therefore be possible to compute the phase space
measure in the transformed variables, in order to eval-
uate the Keesom integral. However, we compute the
configurational measure in the three dimensional
Euclidean space of each dipole, which is proportional to
the solid angle spanned by it, after factorizing out the
integral over Euclidean momenta. In the linear
approximation, for small qA and qB, there follows

d4A dU¼ dq
ðxÞ
A dq

ðhÞ
A dq

ðxÞ
B dq

ðhÞ
B ¼ qAqB dqA dqB df d4A

ð9Þ

where d4A accounts for the rotational symmetry as
a whole around the z-axis.

By comparison of Eq. (9) with Eq. (3) it results
that
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d4A dU¼ sin qA sin qB dqA dqB df d4A

¼ sin qA sin qB

qAqB

dq
ðxÞ
A dq

ðhÞ
A dq

ðxÞ
B dq

ðhÞ
B ð10Þ

where, on account of symmetry, the reduced domain of
variation may be considered:�

0 � qA � p
2

0 � qB � p:
ð100Þ

3. The average potential energy in the classical
regime

In the classical regime the kinetic energy can be
factorized in the evaluation of the thermodynamic
potential, yielding a constant factor independent of the
hVðUÞi ¼

R
U

dUVðUÞexpfaFðUÞg

KðaÞ ¼
2
R p=2

0
dqA sin qA

R p

0
dqB sin qB

R 2p

0
d4VðUÞexpfaFðUÞg

KðaÞ ð14Þ
configuration. The potential energy function may be
expanded yielding to second order

FðUÞ¼q
ðxÞ2
A þq

ðhÞ2
A þq

ðxÞ2
B þq

ðhÞ2
B þq

ðxÞ
A q

ðxÞ
B þq

ðhÞ
A q

ðhÞ
B �2:

ð11Þ
hVðUÞiw� akT expf�2ag
4pKðaÞ

Z þN

�N

daðxÞ
Z þN

�N

daðhÞ
Z þN

�N

dbðxÞ

�
�

1� 1

12

�
a2þ b2

�	
exp

�
3

4
aa2þ 1

4
ab2



�
�
� 2þ 3

4
a2 þ

�akT expf�2ag
4pKðaÞ

Z þN

�N

daðxÞ
Z þN

�N

daðhÞ
Z þN

�N

dbðxÞ
Z þN

�N

�
�
� 1

16
a4� 1

48
b4� 1

12
ja�bj2

	

�a2kT expf�2ag
4pKðaÞ

Z þN

�N

daðxÞ
Z þN

�N

daðhÞ
Z þN

�N

dbðxÞ
Z þN

�N

�
�
� 1

16
a4� 1

48
b4� 1

12
ja�bj2

	
�
�
� 2þ 3

4
a2 þ 1

4
b2

	
þ

¼�akT

�
� 2� 2

a
þ 2

3a2

�
þO

�
1

a2

�

This potential function may be diagonalized by the
linear orthogonal coordinate transformation�

a¼ qAþ qB

b¼�qAþ qB
ð12Þ

The resulting potential function expanded to fourth
order leads to

FðUÞ¼3

4
a2þ1

4
b2� 1

16
a4� 1

48
b4� 1

12
ja�bj2�2þh:o:t:

ð13Þ

The Boltzmann average potential energy is therefore
obtained through Eqs. (9) and (10) as
Z þN

�N

dbðhÞ

1

4
b2

	

dbðhÞ exp

�
3

4
aa2þ 1

4
ab2




dbðhÞ exp

�
3

4
aa2þ 1

4
ab2



h:o:t

ð15
where the factor 2 accounts for the equivalent config-
urations with reversed dipoles.

Expanding in inverse powers of a, and by keeping
terms up to O(1/a3) while neglecting the exponentially
damped terms arising from the upper limits of integration,
Eq. (14) yields, through the change of variables (12)
Þ
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where, up to O(1/a3):
KðaÞw� akT expf�2ag
4p

Z þN

�N

daðxÞ
Z þN

�N

daðhÞ
Z þN

�N

dbðxÞ
Z þN

�N

dbðhÞ
�

1� 1

12

�
a2 þ b2

�	
�exp

�
3

4
aa2 þ 1

4
ab2� 3

48
aa4� 1

48
ab4� 1

12
aja�bj2�2a



þO

�
1

a4

�

¼�akT

4p
� expf� 2ag

Z þN

�N

daðxÞ
Z þN

�N

daðhÞ
Z þN

�N

dbðxÞ
Z þN

�N

dbðhÞ
�

1� 1

12

�
a2þ b2

�
� 1

16
aa4 � 1

48
ab4

� 1

12
aja�bj2

	
� exp

�
3

4
aa2 þ 1

4
ab2



þO

�
1

a4

�
¼ expf�2ag

a2

4p

3

�
1� 2

3a

�
þO

�
1

a4

�
: ð150Þ
This result coincides with that obtained by us in Ref. [9]
by a more laborious procedure.

4. Quantum evaluation of the Keesom integral

In the limit of a very small temperature the average
in Eq. (14) should be evaluated using quantum statis-
tics [13]�bVðUÞ� ¼ tr

�bVðUÞbrðUÞ�
trhbrðUÞi ð16Þ

wherebrðUÞ is the quantum statistical operator, or density
matrix, at the temperature T. Eq. (16) must be used in the
place of Eq. (14) when the temperature is comparable or
smaller than the energy differences between the lowest
levels of the oscillators. In this case, only a few of the
lowest levels are effectively occupied, so that the
displacements of the coordinates from the equilibrium
positions are small in the mean. The velocity v of a bead
placed in the extremity of a dipole (A or B) oscillating
around its equilibrium position along the z-axis is

v2 ¼ s2


_q
2þ sin2 q _42

�
ð17Þ

_q¼ d

dt
jqj ð170Þ

s being the distance from the centre of oscillation of the
dipole. For small q the kinetic energy of that extremity
is written

1

2
mv2y

1

2
ms2


_q

2 þ q2 _42
�
¼ 1

2
I

�
_q
ðxÞ2 þ _q

ðhÞ2
�

ð18Þ

where I¼ms2 is a moment of inertia. The rhs of
Eq. (18) is a notation of more general validity because it
includes an arbitrary linear distribution of masses in the
system [15]. Consequently, the system of coupled
dipoles behaves like an assembly of four coupled
harmonic oscillators, whose average potential energy
would amount classically to 2kT, being independent of
the frequencies of oscillation (see Eq. (15)).

It is then possible to write the total energy operator
of the system, putting IA¼ IB¼ I, mA¼ mB¼ m

bH0ðU;RÞ¼
1

2
I


_q
ðxÞ2

A þ _q
ðhÞ2

A þ _q
ðxÞ2

B þ _q
ðhÞ2

B

�
þm2

R3


q
ðxÞ2
A

þq
ðhÞ2
A þq

ðxÞ2
B þq

ðhÞ2
B þq

ðxÞ
A q

ðxÞ
B þq

ðhÞ
A q

ðhÞ
B �2

�
ð19Þ

where U denotes here the complete configuration space of
the system, including rotational symmetry as a whole. This
Hamiltonian can be diagonalized by the variable trans-
formation (12), so as to give the separable Hamiltonian

bH0ðU;RÞ¼
1

4
I


_aðxÞ
2

þ _aðhÞ
2

þ _b
ðxÞ2þ _b

ðhÞ2�þ3

4

m2

R3


aðxÞ

2

þaðhÞ
2
�
þ1

4

m2

R3


bðxÞ

2

þbðhÞ
2
�
�2

m2

R3

ð20Þ

where the oscillation frequencies are(
u2

a ¼
3m2

R3I

u2
b ¼

m2

R3I
:

ð21Þ

According to the Gibbs canonical distribution, at
equilibrium with temperature T, the density matrix in
the coordinate representation has elements

rðU;U0Þ ¼
X

n

X
n0

�
n

����exp

�
�
bH
kT



n0
�

jnðUÞj�n0 ðU0Þ

ð22Þ
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where, if bH is diagonal in the {n} basis,�
n
��bHn0

�
¼ 3ndn;n0 ð23Þ

then

rðU;U0Þ ¼
X

n

exp
n
� 3n

kT

o
jnðUÞj�nðU0Þ: ð24Þ

Expression (24) may be evaluated for a linear harmonic
oscillator whose frequency is u0, and the energy levels

3n ¼ Zu0

�
nþ 1

2

�
n¼ 0;1;2;. ð25Þ

thus obtaining [13a] the normalized diagonal density
elements

r0

�
aðxÞ;aðxÞ

�
¼
�

Iua

2pZ
tanh

Zua

2kT

�1
2

� exp

�
� aðxÞ

2 Iua

2Z
tanh

Zua

2kT



ð26Þ

and the similar expressions for the remaining variables
appearing in Eq. (20). There follows that
r0ðU;UÞ ¼ r0

�
aðxÞ;aðxÞ

�
r0

�
aðhÞ;aðhÞ

�
r0

�
bðxÞ;bðxÞ

�
r0

�
bðhÞ;bðhÞ

�
¼
�

Iua

2pZ
tanh

Zua

2kT

�
exp

�
� a2Iua

2Z
tanh

Zua

2kT



�
�

Iub

2pZ
tanh

Zub

2kT

�
exp

�
� b2Iub

2Z
tanh

Zub

2kT



:

ð27Þ
It is therefore possible to replace Eq. (15) by�bVðUÞ�
0
wexpf�2ag

Z þN

�N

daðxÞ
Z þN

�N

daðhÞ
Z þN

�N

dbðxÞ

�
Z þN

�N

dbðhÞ�r0ðU;UÞ�ð�akTÞ
�
�2þ3

4
a2þ1

4
b2

�
:

ð28Þ

Therefore�bVðUÞ�
0
w

1

2
Zua coth

Zua

2kT
þ 1

2
Zub coth

Zub

2kT
þ 2akT:

ð29Þ

In the limiting case T / N, or equivalently Z/0,
the coth terms in Eq. (29) may be expanded into
powers of Z and yield, when combined with Eq.
(15), the leading terms of the low temperature
expansion with quantum corrections for Z2jaj=3I
small
�bVðUÞ�w2akTþ2kTþ
Z2


u2
aþu2

b

�
12kT

�2kT

3a
þO

�
1

a2

�
ð30Þ

where the average non-linear terms were evaluated
classically because they become important at the higher
temperatures [13b].

The opposite limiting case T / 0 can be handled
easily, though the resulting formula is not an
analytic function of T in this limit, and yields
obviously

�bVðUÞ�
0
w2akTþ 1

2
ZðuaþubÞ þ Zua exp

�
� Zua

kT




þZub exp

�
� Zub

kT



þ/ ð31Þ

In order to proceed further with quantum effects, it is
required to evaluate the non-linear terms of the
Hamiltonian function, which are both kinetic and
potential energy terms, and the quantum corrections to
the diagonal elements of the density matrix in the
coordinate representation. In order to evaluate these to
first order in the perturbation bW, it is sufficient to
calculate
rð1ÞðU;UÞ ¼
X

n

�
n

����exp

�
�
bH0þ bW

kT



�
����n�jnðUÞj�nðUÞy

X
n

�
n

����exp

�
�
bH0

kT



�
�

1�
bW
kT

�����n�jnðUÞj�nðUÞ ð32Þ

because the changes in the eigenvectors jn > and the
corresponding eigenfunctions j�nðUÞ would contribute
to second order only. The necessary first order correc-
tions to the density matrix can be evaluated from Eq.
(32). Calculation of the quantum corrections to the third
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term of the asymptotic expansion (Eq. (15)) is in
progress.

5. Conclusions

In this paper we studied the small oscillations of two
dipoles which are coupled through electromagnetic inter-
action, both classically and quantum mechanically. In the
low-temperature regime in which the dipoles perform
small oscillations around their equilibrium positions it is
convenient to introduce a coordinate system which
reduces, in the limit of small oscillations, to a system of
four coupled harmonic oscillators, whose density matrix
can be evaluated exactly in the quantum as well as in the
classical regime. The position of each dipole is represented
by the distance of the vertex of the arrow from a pole of the
sphere, measured over the spherical surface, and then
referred to an orthogonal coordinate system inside the
plane tangent to the sphere in the same pole. The average of
successive terms of this series expansion yields, as it was
proved in Ref. [10], an asymptotic expansion of the aver-
aged interacting potential in inverse powers of the param-
eter a.

The model allows one to evaluate non-linear effects
which are due to the curvature of the configuration
space and to higher potential energy terms. Since these
affect mainly the higher quantum states, they can be
evaluated classically [13b].

Eq. (30) shows the effect of the lowering of the
temperature so as to make the quantum separation of
levels, though small, not negligible compared to
thermal fluctuations. The effect is a decrease of the
static interaction in the points of equilibrium by a term
which is written Z2jaj=3I (third term of Eq. (30), the
quantum correction to the second term of the equation)
and is proportional to the coefficient of the Laplace
operator in the Schroedinger equation in the angle
variables. This term can be interpreted as the effect of
quantum fluctuations around equilibrium, averaged at
the temperature T.

The condition for localization of quantum fluctua-
tions [3,16,17] is that the distance between rotatory and
oscillatory levels should be small toward the height of
the barrier between the two symmetrical wells of
potential energy, which is of the order of magnitude of
rarkT [9], which gives

Z2

I
<< jajkT: ð33Þ

Quantum corrections in Eqs. (29) and (30) are
becoming important when Zua is comparable to or
smaller than kT [18], which means that
Z2

I
z

kT

jaj: ð34Þ

Consequently, if this condition is satisfied inside some
temperature interval and jaj >> 1, the condition (33) is
automatically satisfied, though inequality (33) is actu-
ally independent of temperature.

Eq. (31) is expected to hold at very small temper-
atures and does not modify essentially the R-depen-
dence of the interaction energy, since the leading term
has the same R�3 dependence upon distance, like in the
high-temperature classical regime. It is, however,
noticeable that, quantum mechanically, also the oper-
ator kinetic energy of oscillation has a dependence
upon angular coordinates.
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Appendix. Extension to infinity of the integration
limits in Eqs. (15) and (150)

It is noticed first that the integration domain U may
be subdivided, owing to symmetries of the integrand,
in such a way (see Fig. 1 in Ref. [9]) that the integral in
Eq. (14) is performed over the region E defined by the
inequalities

qA þ qB � p; qA � 0; qB � 0:

After expansion of the integrand in powers of qA, qB as
shown in the main text, the domain of integration is
extended by adding the region E of the plane (qA, qB)
satisfying

qA þ qB � p; qA � 0; qB � 0:

The integral extended to the region E must therefore be
shown to be negligible. From Eq. (11) it is obtained

q2
A þ q2

Bþ qA$qB� 2� 1

2

�
q2

A þ q2
B

�
� 2:

Therefore, if a< 0,

exp
�

a
�
q2

Aþ q2
Bþ qA$qB� 2

��
� exp

�
� 2aþ 1

2
a
�
q2

Aþ q2
B

�




860 M. Battezzati, V. Magnasco / C. R. Chimie 12 (2009) 854e860
There follows the bound, for integer m, n,
Z Z
E

dqA dqBq2m
A q2n

B exp
�

a
�
q2

A þ q2
Bþ qA$qB� 2

��
sin qA sin qB

� 2mþn expf�2ag
Z Z

E

d

�
1

2
q2

A

�
d

�
1

2
q2

B

��
1

2
q2

A

�m�
1

2
q2

B

�n

exp

�
1

2
a
�
q2

A þ q2
B

�


¼ 2mþnexpf�2ag
jajmþnþ2

Z Z
E

dx dyxmyn expf�ðxþ yÞg:
From the inequalities stated above follows that in E

q2
Aþ q2

B �
1

2
p2;

and, therefore, x þ y � 1=4jajp2. Hence

2mþnexpf�2ag
jajmþnþ2

Z Z
E

dx dyxmyn expf�ðxþ yÞg

< 2mþnexpf�2ag
jajmþnþ2

Z N

1
4jajp2

dy yne�y

Z N

0

dx xme�x

þ2mþnexpf�2ag
jajmþnþ2

Z 1
4jajp

2

0

dy yne�y

Z N

1
4jajp2�y

dx xme�x

< C12mþnexpf�2ag
jajmþnþ2

�
1

4
jajp2

�n

exp

�
�
�

1

4
jajp2

�


þC22mþnexpf�2ag
jajmþnþ2 exp

�
�
�

1

4
jajp2

�

�

1

4
jajp2

�nþ1�
1

4
jajp2

�m

¼ C12mþn

�
1

4
p2

�nexp
�

a
�

1
4
p2� 2

��
jajmþ2

þC22mþn

�
1

4
p2

�mþnþ1exp
�

a
�

1
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where C1, C2 are suitable numerical constants, which
can be estimated by evaluating the integrals.
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