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Abstract
The basic rules of thermodynamics are applied to phase equilibria to describe the variations of solubility induced by changes in
salinity and temperature in the case of a solid compound that separates pure (no solid solution). Even though the one or the other of
these effects has been the subject of numerous investigations, those about the conjunction of both parameters are scarce and
(almost) empirical despite the increase in the frequency of occurrence of practical cases, especially in biology and in the envi-
ronment. This thermodynamic survey includes a rigorous treatment accompanied with possible approximations allowing one to get
a prediction tool from a limited number of experimental parameters. The systems of concentration variables and reference states in
current use are taken into account. To cite this article: M. Privat, C. R. Chimie 12 (2009).
� 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
Résumé
Cette présentation utilise les règles de base de la thermodynamique des équilibres de phase pour décrire l’évolution de la
solubilité d’un solide en fonction à la fois de la température et de la salinité, dans le cas où le solide se sépare de la solution sous
forme pure. Si de nombreuse études ont été faites sur l’effet de l’un ou l’autre de ces facteurs, leur effet conjugué a été rarement
traité et le plus souvent de façon empirique malgré l’occurrence de plus en plus fréquente de cas pratiques dans des domaines aussi
divers que la biologie ou l’environnement. Cette étude thermodynamique comporte un traitement rigoureux et indique les
approximations possibles pour obtenir des formules utilisables comme outil prédictif à partir d’un nombre réduit de paramètres
expérimentaux. Les différents systèmes de variables de composition et d’états de référence sont pris en compte. Pour citer cet
article : M. Privat, C. R. Chimie 12 (2009).
� 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

The solubility behaviours of a large variety of
compounds are of key importance in many natural
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processes or in fields of activities by humans. For some
time, attention has been focused on the solubility of
gases such as carbon dioxide or dioxygen in freshwaters
as well as in salted ones, e.g. human blood [1,2]. The
dissolution and re-precipitation of solid compounds, e.g.
calcium carbonate (calcite, aragonite, .), between
rocks and water [3,4] or between bones and biological
fluids [5e7] are of great concern in geology as well as in
pathological sciences. Attention has been recently
focused on the physical outcome of cargos accidentally
spilled because of shipwreck or other sea event [8e12].
It is, indeed, worth wondering about their fate: indeed, in
the event of dissolution of a certain part of a given cargo,
which will be this part and in which amount? Is this
amount dependent upon temperature and/or water
salinity? What is its time evolution?

The literature contains many descriptions of the solu-
bility phenomenon plus others about the effects of either
salinity [13e20] (this in a rather phenomenological way)
or temperature [1,2,21]. However, to our knowledge, until
now no rigorous and synthetic study of the combination of
both effects has been reported in the literature. Moreover,
most of the people in charge of field measurements have
no background in thermodynamics, though they need
a precise knowledge of the basic rules that would allow
them to correctly use literature data and make the
possible, and sometimes necessary, approximations.

Concerning the present and preliminary study, focus
will be on only the dissolution/precipitation of solids in
more or less salted water and in the simple case where
the solid separates pure (no solid solution). Indeed, this
simplification of the question under study is not only
helpful, but also relevant because it corresponds to
many practical cases. The rules governing the behav-
iour of the dissolution/separation of partially soluble
liquid compounds are fundamentally the same, but the
formalism is more complicated because the composi-
tion of the phase that separates at the solubility limit
varies with salinity and/or temperature. This case study
will be presented later in another report.

About the restricted case mentioned previously and
on condition of knowing the solubility at a single sal-
inityetemperature couple, our aim is to propose a way
to calculate the solubility of a solid at any salinity and
temperature from some other physical properties of the
system. Several possible approximations will be also
proposed.

2. Fundamental law of phase equilibria

Let us consider a liquid solvent, A1, and
a compound, A2. At a given temperature, the
equilibrium between the pure solid state of A2 and its
state in solution in A1 can be written as expressed in
Eq. (1) [21,2] on condition to consider A1 as a simple
liquid solvent or a liquid mixture, e.g. water and salt:

A2ðcÞ ¼ A2ð[; salÞ ð1Þ

where c is the solid (crystal) state, [ is the liquid state
and ‘‘sal’’ is the salinity. One should note that, in the
following, ‘‘sal’’ will be usually expressed either as the
mole fraction, x3 (for the basic thermodynamic treat-
ment) or in mol L�1; moreover, the dissolved salt will
be assumed to never reach its own solubility limit, and
the pressure will be set at a value such that the only
phase equilibrium to be considered will be that
described by Eq. (1). So, the system under study will in
fact consist of three components (solvent 1, dissolved
salt 3 and compound 2 at its solubility limit). There will
be only 2 phases ([ and c), and on condition to set the
pressure at, for example, 1 bar, the temperature will be
the only intensive state variable. Then, the system
variance will be:

V ¼ nþ 1� 4 ¼ 3þ 1� 2 ¼ 2 ð2Þ

which means two independent state variables, chosen
here as salinity and temperature. Fixing one of them
leads to a representation of the equilibrium expressed in
(1) as a single line in a partial phase diagram where the
composition of the liquid phase is shown versus the kept
other variable. Let us denote sal1 and T1 the values of
salinity and temperature at the start, and sal2 and T2, the
values at the end. To pass from (sal1 and T1) to (sal2 and
T2) one can follow, at first, the coexistence curve at
constant T1 up to sal2, then, pass along the coexistence
curve at constant sal2 to go from T1 to T2. The ther-
modynamic condition for the phase equilibrium (1) is
then:

m2ðcÞ ¼ m2ð[; salÞ: ð3Þ

In explicit form, it is written as:

g�;c2 ðTÞ ¼ g�;[2 ðTÞ þ RT ln½f2ðT; sal; x2Þx2ðT; salÞ� ð4Þ

where g’s are molar Gibbs free energies.
In Eq. (4), the superscript * reads for ‘‘pure’’; the

corresponding free energy then depends on both the
temperature and pressure. But since at a pressure close
to the atmospheric one, the dependence is weak, it
allows one to omit the term, P, which should be
enclosed in the brackets. More specifically, this is also
consistent with the hypothesis of a constant pressure.
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About f2, it is the activity coefficient defined with
respect to a reference state chosen as the pure
component, 2 (x2¼ 1); f2 tends to 1 when x2 tends to 1.
It is worth noting that, on condition the pressure be
close to 1 bar and the reference state be the pure
component, the symbol * can be replaced by the
symbol of the standard state,0.

Another reference state like, for instance, the ideal
solution corresponding to the infinitely dilute solution
may be chosen in solution. Then, Eq. (4) becomes:

g�;c2 ðTÞ¼ gqx;[
2 ðTÞþRT ln

�
gx

2ðT;sal;x2Þx2ðT;salÞ
�
ð40Þ

where g2
x is the activity coefficient with respect to the

ideal state, with the constraint g2
x tending to 1 when x2

tends to 0. gqx;[
2 is the corresponding standard form.

But, if the composition variable is molarity, Eq. (1)
becomes:

g�;c2 ðTÞ ¼ gqc;[
2 ðTÞ þRT ln

�
gc

2ðT; sal; c2Þc2ðT; salÞ
�
ð5Þ

where g2
c is then the activity coefficient with respect to the

ideal state, with the constraint g2
c tending to 1 as c2 tends

to 0. This form of writing the chemical potential is useful
when the Setchenov rule is used to express the salinity
dependence of the activity coefficient of compound 2. On
the other hand, when the investigations deal with the
influence of temperature, Eqs. (4) and (40) have to be
preferred because the definition of x2 implies no addi-
tional effect by temperature conversely to c2. As usual,
the choice of the expression for m2 is only a question of
convenience.

When Eq. (4) is used, the solubility appears as
a mole fraction, whereas with Eq. (5) it appears as
a molarity. Once obtained, any of these values can be
easily converted into the other one.

One should also note that comparing Eqs. (4) and
(40) leads to:

RT ln
�
gx

2=f2

�
¼ g�;[2 � gqx;[

2 ð6Þ

3. Evolution of solubility with salinity, at constant
temperature. Role of the Setchenov equation

3.1. Form of the phase diagram

Addition of salt to a three-component mixture
(water, solute and salt respectively denoted 1, 2 and 3)
at a constant temperature, T, induces changes in the
concentrations of all of the three components of the
system, x1, x2, and x3, respectively. So, from a general
point of view, it is a rule to represent the phase
equilibrium line in a triangular diagram such as that in
Fig. 1a. The pure solid phase, 2, is in equilibrium with
every saturated solutions; so as shown in Fig. 1a, all of
the solideliquid tie lines converge at the point (x2¼ 1,
x1¼ x3¼ 0). The dotted area corresponds to the case
where, in practice, the system undergoes a maximum
salinity value, denoted salmax in this figure: for
example, the maximum salinity for the sea-water or
biological fluids like blood corresponds to a mole
fraction around 0.01. The values in the dotted area may
correspond to various situations such as those observed
in an estuary. Fig. 1b displays the ordinary representa-
tion (solubilityesalinity) denoted (sol, sal), which is
right according to thermodynamics, but less friendly
user for fundamental analyses. However, this kind of
drawing is the most common representation of experi-
mental data. In most of the cases, molarities are used
instead of mole fractions, but the latter are mentioned in
Fig. 1b as possible options in order to facilitate
comparisons of Fig. 1a and b. The dotted area on Fig. 1b
indicates the area where the salinity can be the highest
depending on the specificity of the medium under study
(e.g. sea-water). Fig. 1a and b constitutes not only
a useful visual summary of the effects by the thermo-
dynamic variables on solubility, but also a reminder of
the definitions used in the equations below.

3.2. Equation of the equilibrium line using the mole
fraction scale

Equation (4) gives the most straightforward way to
get the solubility under the form of a mole fraction:

x2ðT; salÞ ¼ ½1=f2ðT; sal; x2Þ�exp
���

g�;c2 ðTÞ
� g�;[2 ðTÞ

�
=RT

��
ð7Þ

x2ðT; salÞ ¼ ½1=f2ðT; sal; x2Þ�

exp
��
�
�
Dfusg

�
2ðTÞ

�
=RT

��
ð8Þ

where Dfusg2
* is the free energy of fusion of the pure

component 2.
In pure solvent, Eq. (8) becomes:

x0
2ðT; sal¼ 0Þ ¼

�
1=f 0

2

�
T; sal¼ 0; x0

2

��
exp
��
�
�
Dfusg

�
2ðTÞ

�
=RT

��
ð9Þ

where x2
0 is the solubility in pure solvent.

Then the ratio between Eqs. (9) and (8) leads to:�
x0

2ðT; sal¼ 0Þ
�
=½x2ðT; salÞ�

¼
�
f2ðT; sal; x2Þ=f 0

2

�
T; sal¼ 0; x0

2

��
ð10Þ
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Fig. 1. (a) Solubility line at constant temperature for a component 2 separating as pure solid from a mixture with water (component 1) and salt

(component 3), in a triangular representation. Tie lines with the pure component 2 are shown as well as the area where salted water may be found

in the environment; salmax is the mean salinity of the sea-water as well as of biological tissues such as the blood. The variation of solubility when

salinity x3 is raised corresponds to a ‘‘salting-out’’ (it decreases). (b) The same solubility line in an orthogonal representation.
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The empirical Setchenov equation is written as:

log10

�
x0

2ðT; sal¼ 0Þ
�
=½x2ðT; salÞ� ¼ KS

x xsalt ð11Þ

where Kx
S is the so-called Setchenov constant if mole

fractions are used, and xsalt is the mole fraction of salt in
the solution (sal). All Setchenov constants depend on
the natures of salt 3 and solute 2. Moreover, Eq. (10)
indicates that

KS
x xsalt ¼ log10

�
f2ðT; sal; x2Þ=f 0

2

�
T; sal ¼ 0; x0

2

��
ð110Þ

which gives a thermodynamic sense to the Setchenov
constant.

Equation (10) clearly shows that the solubility ratio
directly depends on the activity coefficients, which in
turn depend on the concentration of component 2,
salinity and temperature. Relation (10) can be
expressed in a different way by using the same method
as previously from equation (40) at first for salted
solutions and then for solutions in pure solvent. On
condition of denoting as Dfusg2

qx the standard free
energy in the present state of reference, one gets:

x2ðT; salÞ ¼
�
1=gx

2ðT; sal; x2Þ
�

exp
��
�
�
Dfusg

qx
2 ðTÞ

�
=RT

��
ð12Þ

x0
2ðT; sal¼ 0Þ ¼

�
1=gx

2

�
T; sal¼ 0; x0

2

��
exp
��
�
�
Dfusg

qx
2 ðTÞ

�
=RT

��
ð120Þ�

x0
2ðT; sal¼ 0Þ

�
=½x2ðT; salÞ�

¼
�
gc

2ðT; sal; x2Þ=gc0
2

�
T; sal¼ 0; x0

2

��
ð13Þ
log10

�
x0

2ðT; sal¼ 0Þ
�
=½x2ðT; salÞ�

¼ log10

�
gx

2ðT; sal; x2Þ=gx0
2

�
T; sal¼ 0; x0

2

��
¼ Ks

xxsalt

ð14Þ

The interest of these relations is that, in dilute
solutions, the activity coefficients tend to 1; this is
often the case for saturated solutions when the salt is
missing. It ensues that g2

x0 w 1; this is why the solu-
bility ratio is often described as the activity coefficient
of solute 2 in a saline solution and why the Setchenov
relation may be considered as an empirical expression
of this activity coefficient.

However, few data about this dependence have been
obtained within this scale of compositions (x2), and the
use of molarity may appear as offering more user-
friendly relationships and corresponds, in fact, to richer
series of experimental data [5,8e11]. When some of
them are expressed in g L�1, they are easily converted
into molarities.

3.3. Equation of the equilibrium line using
the molarity scale

Use of Eq. (5) as a basis and application of a treat-
ment similar to the one in Eqs. (12)e(14) lead to the
following expression of Setchenov relationship in
mol L�1:

log10

�
c0

2ðT; sal¼ 0Þ
�
=½c2ðT; salÞ�

¼ log10

�
gc

2ðT; sal; c2Þ=gc0
2

�
T; sal¼ 0; c0

2

��
¼ KS

c csalt

ð15Þ
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where Kc
S is the Setchenov constant in this scale of

composition.
In dilute solutions, as these activity coefficients tend

to 1, a common approximation is g2
c0 w 1. Then, the

solubility ratio gives the activity coefficient in saline
solution, and the Setchenov equation provides one with
its empirical expression (see Section 3.2).

When the mixture under study consists of electro-
lytes, it is worth recalling that relation (15) becomes [1]:

log10

�
c0

2ðT; sal¼ 0Þ
�
=½c2ðT; salÞ� ¼ KS0

c I ð16Þ

where KS0
c is the sum of individual salt-effect parameters

for each salt and I is the ionic force, here expressed from
molarities.

3.4. Possible approximations and practical use of
these relations

Equations (14) and (15) can be replaced with Eqs.
(140) and (150). At this stage, Eqs. (11) and (140) are alike:

log10

�
x0

2ðT; sal¼ 0Þ
�
=½x2ðT; salÞ� ¼ KS

x xsalt ð140Þ

log10

�
c0

2ðT; sal¼ 0Þ
�
=½c2ðT; salÞ� ¼ KS

c csalt ð150Þ

They show that determining solubility in pure
solvent and at several salinity values allows one to
determine Kz

S and then to get, by interpolation, solu-
bility values at other salinities.

Eqs. (14) and (15), by the use of Eq. (10), write as
well:

log10

�
gx

2ðT; sal; x2Þ=gx0
2

�
T; sal¼ 0; x0

2

��
¼ KS

x xsalt

ð1400Þ

log10

�
gc

2ðT; sal; c2Þ=gc0
2

�
T; sal¼ 0; c0

2

��
¼ KS

c csalt

ð1500Þ

On condition the following approximation, g2
x0 w 1

or g2
c0 w 1, be valid and Eq. (5) be taken into account,

Eqs. (14) and (15) can be rewritten as:

KS
x xsalt ¼ log10

�
gx

2ðT; sal; x2Þ
�

¼ ð1=2:303Þ
�

ln½1=x2ðT; salÞ�
�
�
Dfusg

qx
2 ðTÞ

�
=RT

�
ð14%Þ

KS
c csalt ¼ log10

�
gc

2ðT; sal; c2Þ
�

¼ ð1=2:303Þ
�

ln½1=c2ðT; salÞ�
�
�
Dfusg

qc
2 ðTÞ

�
=RT

�
ð15%Þ

These equations show that, when the solubility of
the solid in pure solvent is small enough, Kz

S depends
only on the temperature. This result, which was
found experimentally in [9], of course depends on
the nature of the salt and solute under study
[9,15,22,23].

To avoid experiments one may be tempted to use
the thermodynamic data reported in the available
Tables, which sometimes give also the standard free
energy of fusion. Another way is to transform these
data from:

�Dfusg
qx
2 ðTÞ ¼ g�c2 ðTÞ � gq[

2 ðTÞ

¼
�
g�c2 ðTÞ � gov

2 ðTÞ
�
þ
�
gov

2 ðTÞ � gq[
2 ðTÞ

�
¼�Dsubg�2ðTÞ �RT ln H2ðTÞ ð17Þ

where Dsubg2
*(T) is the sublimation free energy of pure

component 2, and H2(T) is the Henry constant of this
component, H2(T)¼ p2/x2

[, in a very dilute solution of
the solvent under study (p2 is the partial vapour
pressure, which can be determined from the concen-
tration of vapour). The availability of new analytical
techniques allows the determination of this constant
with the precision required by certain applications
[23e25]. The tables of thermodynamic data contain
many Dfusg2*, Dfusg2

qx and Dfusg2
qc as well as Henry’s

constants. Finally, the solubilities can be expressed as:

x2ðT; salÞ ¼ exp
�
� 2:303KS

x xsalt �Dfusg
qx
2 ðTÞ=RT

�
ð140000Þ

c2ðT; salÞ ¼ exp
�
� 2:303KS

c csalt �Dfusg
qc
2 ðTÞ=RT

�
ð150000Þ
4. Evolution of solubility with temperature, at
constant salinity

4.1. Basic treatment

This part of fundamental thermodynamics about the
solubility of solid compounds is quite classical; it is
particularly simple when none of the concentration
variables, e.g. mole fraction and molality, structurally
depends on the temperature.

On condition to use the same approximations as in
Section 3, namely: (i) P set at a constant value and (ii)
the solid phase containing only component 2, and on
condition to also set salinity at a constant value while
varying the temperature, the variance is again 1. In the
phase diagram, the equilibrium is described by a line,
and its equation can be found from Eq. (4).
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From relation (8) written as follows:

ln½f2ðT; sal; x2Þx2ðT; salÞ� ¼ g�;c2 ðTÞ � g�;[2 ðTÞ
¼ �Dfusg

�
2ðTÞ=RT ð18Þ

one may take the derivative with respect to the
temperature on both sides of the equation. Application
of the GibbseHelmholtz equation to the term repre-
sentative of fusion free energy leads to:

ðv=vTÞfln½f2ðT;sal;x2Þx2ðT;salÞ�g¼Dfush
�
2=RT2 ð19Þ

Integrating between temperatures T1 and T2 leads to:

lnff2½T2; sal; x2ðT2Þ�x2ðT2; salÞg
� lnff2½T1; sal; x2ðT1Þ�x2ðT1; salÞg

¼
Z T2

T1

�
Dfush

�
2=RT2

�
dT ð20Þ

The calculation of solubility data at any tempera-
ture, T2, from data at T1 requires to evaluate the activity
coefficients from:

f2ðT2; x1; x2; x3Þ ¼ f2ðT1; x1; x2; x3Þ

� exp

"Z T2

T1

Hex
2 ðT; x1; x2x3Þ

#
dT ð200Þ

where Hex
2 ðT; x1; x2; x3Þ is the partial molar excess

enthalpy of component 2 (note that x3 h sal).
Now, from Eq. (40) one can write that:

ln
�
gx

2ðT; sal; x2Þx2ðT; salÞ
�
¼ g�;c2 ðTÞ � gqx;[

2 ðTÞ
¼ �Dfusg

qx
2 ðTÞ=RT ð21Þ

and so

ðv=vTÞ
�

ln
�
gx

2ðT; sal; x2Þx2ðT; salÞ
��
¼ Dfush

qx
2 ðTÞ=RT2

and by integration

ln
�

gx
2½T2; sal; x2ðT2Þ�x2ðT2; salÞ

�
� ln

�
gx

2½T1; sal; x2ðT1Þ�x2ðT1; salÞ
�

¼
Z T2

T1

�
Dfush

qx
2 =RT2

�
dT ð22Þ

Similarly, from Eq. (5), one gets:

ðv=vTÞ
�

ln
�
gc

2ðT; sal; c2Þc2ðT; salÞ
��
¼ Dfush

qc
2 =RT2

ð23Þ
This equation contains some subtle temperature
effects issued from the simple effect of temperature on
molarity, i.e. with no change in the solution content.

However, in short ranges of temperature, one can
write

ln
�

gc
2½T2; sal; c2ðT2Þ�c2ðT2; salÞ

�
� ln

�
gc

2½T1; sal; c2ðT1Þ�c2ðT1; salÞ
�

¼
Z T2

T1

�
Dfush

qc
2 =RT2

�
dT ð24Þ

4.2. Empirical treatments and common
approximations

When the interval of temperatures between T1 and
T2, (T2� T1), is small enough, a common approxi-
mation is to assume that Dfush2* is constant in Eq.
(20), which allows one to express the integral on the
right as:Z T2

T1

�
Dfush

�
2=RT2

�
dTw�

�
Dfush

�
2=R
�
ð1=T2� 1=T1Þ

ð25Þ

It is similar for Eq. (22):Z T2

T1

�
Dfush

qx
2 =RT2

�
dTw�

�
Dfush

qx
2 =R

�
ð1=T2� 1=T1Þ

ð26Þ

and Eq. (23)Z T2

T1

�
Dfush

qc
2 =RT2

�
dTw�

�
Dfush

qc
2 =R

�
ð1=T2� 1=T1Þ

ð27Þ

According to experiments [16,9,1,2], when the
Setchenov constant [Eqs. (14), (15), (140), (150),
(14’’), (15’’)], is independent of concentrations, it is
almost unaffected by temperature; this seems partic-
ularly true with metallic chlorides and between 25
and 40 �C [15,19]. Indeed the rare measurements of
a temperature effect on the Setchenov coefficient have
demonstrated a slight effect, but as they had been
performed in the molarity scale, the observed effect
may have been induced by the temperature-depen-
dency of the molarity. It is true that, in a mixture,
a massive presence of salts tends to dominate the
interactions. So, it would be worth considering to
what extent salt activity is temperature-dependent,
since, at each step of temperature, it affects the
activities of the other components.
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It ensues that a possible approximation is:

KS
x ðT2ÞwKS

x ðT1Þ ð28Þ

When the Setchenov approximation and Eq. (28) are
both valid, salinity has only a slight effect upon the way
the solubility of any compound is affected by tempera-
ture. Another way to reach the result is the following.

According to Eq. (11), when the salinity is weak
and the solutions are dilute, gx

2½T2; sal; x2ðT2Þ ¼�
gx

2½T1; sal; x2ðT1Þ ¼ 1� , and then the use of Eq. (22)
leads to:

lnfx2ðT2; salÞg� lnfx2ðT1; salÞg
¼ ln

��
x0

2ðT2; sal¼ 0Þ
��
� ln

��
x0

2ðT1; sal¼ 0Þ
��

¼
Z T2

T1

�
Dfush

qx
2 =RT2

�
dT

ð29Þ

Relation (29) means that the solubility varies with
temperature and at constant salinity, ‘‘sal’’¼ constant,
it varies as in the absence of salt (‘‘sal¼ 0’’).

5. A proposal to evaluate solubility from data
obtained at other salinity and temperature values

Fig. 2 exhibits the way one can pass from a solu-
bility value in the state 1 (sal1, T1) of the system to the
solubility value in the state 2 (sal2, T2). The large-
dashed line shows how one can, at first, follow the
coexistence line at T1 until reaching sal1

0hsal2

(state 10).
The equation representative of the whole path can

be written in either a rigorous way or in a simplified
formulation as shown below.

5.1. Rigorous equation

The evolution of the solubility of component 2, at
first along the path from state 1 to state 10, is then
described in the rigorous form by Eq. (10) or (11) in
the symmetrical system of reference, or by Eq. (15) in
the unsymmetrical system; one should note that Eqs.
(11) and (15) include Setchenov’s formula. Then, the
changes in solubility between state 10 and state 2 are
described by Eq. (20) or (22) in the symmetrical
system or the corresponding ones in the unsymmetrical
system.

By using Eq. (10) to pass from state 1 (T1, x2
1, sal1)

to state 10 (T1, x10

2 , sal10 ), i.e. along an isotherm, then
by using Eq. (20) along an ‘‘iso-salinity’’ path to go
from state 10 (T1, x10

2 , sal10 ) to state 2 (T2, x2
2, sal10 ) one
gets:

x2
2 ¼

�
f2
�
T1; x

1
2; sal1

�
=f2
�
T2; x

2
2; sal10

��
x1

2

� exp

"Z T2

T1

�
Dfush

�
2=RT2

�
dT

#
ð300Þ

Both f2 parameters can be estimated from Eq. (110)
written at T1 and at T2, respectively. So the ratio of
activity coefficients in Eq. (30) writes:

ln
�
f2

�
T1; sal1; x

1
2

�
f 0
2

�
T2; sal¼ 0; x0

2

�
=f2

�
T2; sal10 ; x

2
2

�
f 0
2

�
T1; sal¼ 0; x0

2

��
¼ 2:303

�
KS

x ðT1Þxsal�KS
x ðT2Þx

0

sal

�
ð31Þ

where xsal and x
0
sal are the molar fractions of salt in state

1 and in state 10, respectively.
Combining Eqs. (30) and (31) leads to a rigorous

equation expressed as:
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x2
2 ¼ x1

2

�
exp
�
KS

x ðT1ÞðxsalÞ �KS
x ðT2Þ

�
x
0

sal

���
�
f 0
2

�
T1; sal¼ 0; x0

2

�
=f 0

2

�
T2; sal¼ 0; x0

2

��

exp

"Z T2

T1

�
Dfush

�
2=RT2

�
dT

#
ð32Þ

By using the unsymmetrical reference system, this
equation becomes:

x2
2 ¼ x1

2

�
exp
�
KS

x ðT1ÞðxsalÞ �KS
x ðT2Þðx0salÞ

��
�
g0

2

�
T1; sal¼ 0; x0

2

�
=g0

2

�
T2; sal¼ 0; x0

2

��

exp

"Z T2

T1

�
Dfush

qx
2 =RT2

�
dT

#
ð33Þ

On condition of admitting the Setchenov relation-
ship, Eq. (33) rigorously describes the evolution of the
solubility limit of a pure solid further to changes in
temperature and salinity. In principle, this equation can
be used in both senses: the known terms are either x2

1,
x2

2 and Dfush2
qx plus, for example, Kx

S, (left member of
Eq. (33)), and then one gets information about g2

0, or
those on the right, and then the x2

2 value can be
calculated from x2

1 one. This second case is the one met
in accidental environmental events when practical
solutions have to be found from partial data or had
been previously included in codes written for deci-
sional tools; then these codes must contain a sufficient
amount of data to allow calculation. There is no doubt
that getting the detailed knowledge of the physical
characteristics (as contained in Eq. (33)) of any
chemical liable to be implicated in accidental events
remains impossible. So, it is worth using simplified
relationships, such as those presented in the next
paragraph, while being aware of their limitations
deduced from comparison with Eq. (33).

One should, however, note that models able to
calculate activity coefficients are available [1,2,26] and
could be used in Eq. (33). Unfortunately, calculations
are too time-consuming whenever measures have to be
quickly taken because of an accidental event.

5.2. Dilute system, simplified Setchenov’s formulation

In the absence of salt, when the solubility is low at
both temperatures, g2

0 at both temperatures can be
approximated to 1. If, in addition, Kx

S is admitted to be
temperature-independent, Kx

S (T2) w Kx
S (T1)¼ Kx

S

If Dfush2
qx does not depend on temperature or if

(T2� T1) is small, the integral can be also
approximated, which leads to the following approxi-
mation of Eq. (33):

x2
2 ¼ x1

2

�
exp
�
KS

x

�
xsal� x

0

sal

���
exp
�
�Dfush

qx
2 ð1=T2� 1=T1Þ

�
ð34Þ

If the start of experiments, or calculation, is at null
salinity, then xsal¼ 0 and:

x2
2 ¼ x1

2

�
exp
�
KS

x ð�x0salÞ
��

exp
�
�Dfush

qx
2

�
1=T2� 1=Tf

��
ð35Þ

Expressions (34) and (35) are far simpler than Eq.
(33), and everyone knows exactly which approxima-
tions have been made to get them and, thus, when they
have to be used in a more elaborated form.

In many cases, particularly when slightly soluble
compounds are dissolving in the marine environment,
the mole numbers contained in 1 L of mixture are clearly
smaller for solutes than for water: n2, n3� n1 w (m1/
M1)¼ 1000/18¼ 55.5, and thus, n2 w c2 and n3 w c3,
which leads to rewriting Eq. (34) as:

c2
2 ¼ c1

2

�
exp
�
KS

x ð�c0sal=55:5Þ
��

exp
�
� Dfush

qx
2

�
1=T2 � 1=Tf

��
ð36Þ

Let us examine the Setchenov equation in molarity
and mole fraction scales; respectively, it gives:

log10

�
c=c0

�
¼ �KS

c csalt ð37Þ

log10

�
x=x0

�
¼�KS

x xsalt ð38Þ

and by using the same approximation as above, one
gets:

log10

�
x=x0

�
¼�KS

x csalt=55:5

¼ log10

�
ðc=55:5Þ=

�
c0=55:5

��
¼�KS

c csalt

that is:

KS
x=55:5 ¼ KS

c ð39Þ

Then Eq. (36) becomes:

c2
2 ¼ c1

2

�
exp
�
Ks

cð�c0salÞ
��

exp
�
�Dfush

qx
2

�
1=T2� 1=Tf

��
ð40Þ

It is worth noting that this expression uses molar-
ities in each term except the enthalpy of fusion, which
results from a rigorous analysis of temperature effects
made impossible when direct molarities are used in the
calculations.
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Obviously, when salt effect is used in extraction
processes, the salt concentrations are far too high to
allow the use of these approximations. But, in the case
of an accidental marine pollution by chemicals, Eq.
(35), and above all Eq. (40), can provide one with
a correct evaluation of the solubility under marine
conditions at the very temperature of sea-water despite
the dependency of this temperature on weather
conditions and the period of the day (daylight against
night). These formulae are worth using because the
amount of data to be known is small: only are required
the melting enthalpy at P¼ 1 bar, the melting
temperature, Tf, and the Setchenov constant, Kx

S or Kc
S.

The two first parameters are available in the Tables of
thermodynamics, and if the Setchenov constants have
not been measured, they can be calculated by incre-
mental methods [10,16,20,22].

6. Conclusion

By using the fundamentals of thermodynamics
about phase equilibria and the effect of salinity on the
solubility limit of any solute proposed by Setchenov
we established a relationship between the solubility at
a first state of salinity and temperature (sal1 and T1)
and the one in a second state (sal2 and T2). This
relation may use mole fractions in the symmetrical
system of reference (Eq. (32)) or in the unsymmet-
rical one (Eq. (33)). In dilute solutions including
mixtures in sea-water, and on condition the variation
of temperatures be small, these equations can be
simplified (relations (35) and (36), respectively) in
order to foresee realistic solubility values from only
a set of essential parameters: the melting enthalpy and
the melting temperature of the pure solute under
study, the Setchenov coefficient. A less rigorous
equation, namely Eq. (40), relies on the use of
molarities. Among these essential parameters the two
first one have to be found in Tables, whereas the third
one has to be measured or estimated from increments
found in literature. Some care has, however, to be
taken with respect to the conversion of data from
a system of concentrations to another one since
molarities are more difficult to use in studies where
temperature varies. Similarly, the reference systems
for activity coefficients have to be taken into account.
Then, the use of Henry’s constants plays a funda-
mental role. When chemicals are characterised by
unusual values of thermodynamic parameters, partic-
ularly high solubility values, coming back to the more
elaborated relations in order to study specific treat-
ments of the issue of concern is a must. The
formalism used in the present study cannot be directly
applied to any kind of solubility limit: in particular, it
is inapplicable for two reasons when the pure form of
the solute under study is liquid. Indeed, i) the phase
that separates when the solution is saturated is
a mixture, and ii) the parameter equivalent to the
enthalpy of fusion becomes a transfer coefficient, and
then it is less easily handled than the previous
enthalpy.
Appendix. Chemical potentials in several reference
systems

The chemical potential, m, of any compound is an
intensive variable characteristic of the compound
defined as ‘‘the partial Gibbs free energy’’ of the
compound. If the compound is pure, it is simply the
molar free energy. The expression of the relationship
between a chemical potential and the other state vari-
ables, e.g. pressure, temperature, composition, is let to
the free choice of the scientists working about a given
system.

For a pure perfect gas at the temperature and pres-
sure, T and P, respectively, one demonstrates that:

m¼ govðTÞ þRT ln P=P0 ðA1Þ

where gov(T) is the standard molar free enthalpy of the
gas, i.e. at P0, P0 is the standard pressure (a constant set
at 1 bar according to the international conventions) and
results from the integral calculation leading to Eq. (A1).
In the few texts where P0 does not appear, it means that
the pressures are taken in bars (or in atm in old
documents).

In a mixture, let us denote this gas as 2, then the
chemical potential is written as:

m2 ¼ gov
2 ðTÞ þRT ln p2=P0 ðA2Þ

where p2 is the partial pressure of gas 2 in the mixture.
The expression of m2 in a liquid mixture can be

given on starting from the equilibrium conditions with
respect to diffusion between the liquid mixture and its
vapour, namely for component 2:

m[
2 ¼ mv

2 ðA3Þ

or

m[
2 ¼ gov

2 ðTÞ þ RT ln p2=P0 ðA4Þ

Quite formally, let us consider the liquid/vapour
equilibrium for the pure component 2 whose vapour
pressure is called P2*, then, Eq. (A3) can be rewritten
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Fig. A1. Variations of the partial pressures of two totally miscible

components 1 and 2, respectively denoted p1 and p2, at a given

temperature. The total vapour pressure is P¼ p1þ p2 where p1* and p2*

are the vapour pressures of components 1 and 2, respectively. The

pressures are represented versus the mole fraction of component 2 in the

liquid mixture. In dilute solutions (small x2), p1 and p2 both vary linearly

with x2; the straight line corresponding to p1 varies between p1* and zero

(Raoult’s law), p2 varies between zero and p2
qx (Henry’s law).
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as follows where the chemical potentials are equal to
molar Gibbs free energies:

g�[2 ðTÞ ¼ gov
2 ðTÞ þRT ln

�
P�2=P0

�
ðA5Þ

Combining Eqs. (A5) and (A4) leads to:

m[
2 ¼ g�[2 ðTÞ þRT ln

�
p2=P�2

�
ðA6Þ

p2 ¼
�
P�2
�
x[

2 ðA7Þ

Fig. A1, which displays the quite general behaviour
of partial vapour pressures above a mixture of two
liquids totally miscible, shows that when x2 is close to
1, i.e. close to the pure component 2, p2 linearly varies
along a straight line starting from P2* at x2¼ 1
(pure component 2) and ending at 0 for x2¼ 0 (pure
component 1). This line is named the Raoult line for
component 2, and the mixture behaviour is called
‘‘ideal’’. Along this line, one gets:

By using this relation in equation (A6) one gets the
expression of the chemical potential as a function of
the liquid mixture parameters in ideal solutions and
with a pure component 2 set as reference:

m[
2 ¼ g�[2 ðTÞ þRT ln

�
x[

2

�
ðA8Þ

When x2 values are clearly less than 1, the p2 curve
goes away from the Raoult line, and then the chemical
potentials are usually written as:

m[
2 ¼ g�[2 ðTÞ þRT ln

�
f x
2 x[

2

�
ðA9Þ

where f2
x is the activity coefficient in the pure compo-

nent reference system with molar fractions as compo-
sition parameters. The definition of f2

x by Eq. (A9) must
be completed by the limit condition f2

x / 1 as x2
[ / 1

since m2
[ must obey the Raoult law when x2

[ tends to 1
(Eq. (A7)).

Instead of using the behaviour close to the pure
component 2, one can use another linear behaviour of
p2(x2

[), namely the one in very dilute solutions, x2
[ / 0,

where, as shown by Fig. A1, one gets:

p2 ¼
�
Pqx

2 ðTÞ
�
x[

2 ¼ Hx
2½T�x[

2 ðA10Þ

One should note that this straight line is called
Henry’s straight line, H2

x being the Henry constant of
component 2 in the mixture where the molar fraction is
the composition variable.

By combining Eqs. (A10) and (A6), one gets
another expression of m2 (which obviously keeps the
same value when T and x2 stay unchanged):

m[
2¼ g�[2 ðTÞþRT ln

��
Pqx

2

��
P�2
��
þ
�
RT ln

�
x[

2

��
ðA11Þ
m[
2 ¼ gqx[

2 ðTÞ þRT ln
�
x[

2

�
ðA12Þ

The parameter:

gq[
2 ðTÞ ¼ g�[2 ðTÞ þ RT ln

��
Pqx

2 ðTÞ
�
=
�
P�2ðTÞ

��
ðA13Þ

gq[
2 ðTÞ ¼ g�[2 ðTÞ þRT ln

��
Hx

2ðTÞ
�
=
�
P�2ðTÞ

��
ðA14Þ

is the standard molar free energy of component 2 in the
‘‘ideal solution’’ system of reference (this is the tradi-
tional term, where ‘‘ideal’’ refers to the linear behaviour
in mixtures diluted then with respect to component 2;
this name is especially valid when the pure solute 2 is
solid or sparingly soluble, so that the behaviour close to
x2

[ / 1 cannot be observed).
When x2 values move clearly away from zero, the p2

curve goes away from the Henry line, and then the
chemical potentials are usually expressed as:

m[
2 ¼ gqx[

2 ðTÞ þRT ln
�
gx

2x[
2

�
ðA15Þ

where g2
x is the activity coefficient in the ideal solution

reference system where molar fractions are used as
composition parameters. It is essential to add the limit
condition, g2

x / 1 as x2
[ / 0, to the definition of g2

x by
Eq. (A9) since m2

[ must obey Henry’s law (Eq. (A10))
when x2

[ tends to 0.
Another possible choice is to always use Henry’s

line on condition the molarity, c2, be the concentration
variable.
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c2 ¼ n2=V ¼ n2=
P

i vini ¼ x2=
P

i vixi ðA16Þ

In the case of two components, one gets:

c2 ¼ x2=ðv1x1þ v2x2Þwx2=v1 ðA17Þ

when x2 is small, and v1 is equal to 1 L, x2 w n2/n1¼ c2/
55.5 when water is the solvent. In this system of
concentrations, the standard state is taken as c2¼ 1,
which corresponds, on Fig. A1, to x2¼ 0.018; the cor-
responding partial pressure read from the Henry line is
P2

qc. On the graph, one can see that the slope of the
Henry straight line is:

Hx
2 ¼ Pqc

2 =0:018 ¼ Hc
2=0:018 ¼ Pqx

2 ðA19Þ

and thus:

p2 ¼
�
Pqc

2 =0:018
�
x[

2 ðA20Þ

In a system where water is the solvent, the mixing
of Eqs. (A6) and (A20) leads to:

m[
2 ¼ gqc[

2 ðTÞ þ RT ln c[
2 ðA21Þ

According to Eq. (A21), g2
qc[(T) is defined as:

gqc[
2 ðTÞ ¼ g�[2 ðTÞ þRT ln

�
Pqc

2 =P�2
�

¼ gqx[
2 ðTÞ þRT lnð0:018Þ ðA22Þ

Finally, out of the zone of linear variation of p2 with
x2, the chemical potential is usually expressed as:

m[
2 ¼ gqc[

2 ðTÞ þ RT ln gc
2 c[

2 ðA23Þ

where g2
c is the activity coefficient in a system of

reference of dilute solution (‘‘ideal solution’’) where
molarity is the composition variable and the standard
state is c2¼ 1.

In order Eq. (A21) remains valid over this range of
concentrations, the limit condition, g2

c / 1 as x2
[ / 0,

has to be added to the definition of g2
c given by Eq.

(A23).
In the use of tables of data, careful attention has to be

paid to the reference states to which the data under study
are related. The conversion of all data in a same system is
required to comply with consistent calculations; it
mainly relies on the use of Eqs. (A14) and (A22), or
maybe (A19), for the conversion of the free energy of
phase changes. Equations (A9), (A15) and (A23) all give
the expressions of chemical potentials in several cases.

From these equations, on condition to combine m2
[

and m2
c for example along a fusion line, one gets

successively:
m[
2� mc

2 ¼ g�[2 ðTÞ � g�c2 ðTÞ þRT ln
�
f x
2 x[

2

�
¼ Dfusg

�
2ðTÞ þRT ln

�
f x
2 x[

2

�
ðA90Þ

m[
2� mc

2 ¼ gqx[
2 ðTÞ � g�c2 ðTÞ þRT ln

�
gx

2x[
2

�
¼ Dfusg

qx
2 ðTÞ þRT ln

�
gx

2x[
2

�
ð150Þ

m[
2� mc

2 ¼ gqc[
2 ðTÞ � g�c2 ðTÞ þRT ln

�
gc

2c[
2

�
¼ Dfusg

qc
2 ðTÞ þRT ln

�
gc

2c[
2

�
ðA230Þ

But, by using Eqs. (A14) and (A15) can also be
written as:

m[
2� mc

2 ¼ Dfusg
�
2ðTÞ

�
þRT ln

��
Hx

2ðTÞ
�
=
�
P�2ðTÞ

��
þRT ln

�
gx

2x[
2

�
ðA1500Þ

Similarly, when water is the solvent, the use of Eq.
(A22) allows one to write Eq. (A230) as follows:

m[
2�mc

2¼Dfusg
�
2ðTÞ

�
þRT ln

��
0:018Hx

2

�
=P�2
�

þRT ln gx
2 c[

2 ðA2300Þ

Comparison between Eqs. (A150) and (A1500) on the
one hand, and Eqs. (A230) and (A2300) on the other
hand respectively leads to:

Dfusg
qx
2 ðTÞ ¼ Dfusg

�
2ðTÞ

�
þRT ln

��
Hx

2ðTÞ
�
=
�
P�2ðTÞ

��
ðA16%Þ

Dfusg
qc
2 ðTÞ ¼ Dfusg

�
2ðTÞ

�
þRT ln

��
0:018Hx

2

�
=P�2
�
ðA23%Þ

Equations (A16%) and (A23%) allow the conversion
sometimes necessary between free energies of fusion
measured under different conditions.
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