Full paper/Mémoire

A clean, three-component and one-pot cyclo-condensation to pyrimidine-fused heterocycles

Ayoob Bazgir ${ }^{\text {a,* }}$, Maryam Moammadi Khanaposhtani ${ }^{\text {a }}$, Ramin Ghahremanzadeh ${ }^{\text {a }}$, Ali Abolhasani Soorki ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Shahid Beheshti University, G.C, P.O. Box 19396-4716, Tehran, Iran
${ }^{\mathrm{b}}$ Research Institute of Petroleum, Academic Center of Education, Culture \& Research, Shahid Beheshti University, G.C, Tehran, Iran

Received 17 March 2009; accepted after revision 10 June 2009
Available online 30 October 2009

Abstract

A simple, clean and three-component one-pot cyclo-condensation reaction of barbituric acids, aromatic aldehydes and 6 -aminouracils or 1 H -pyrazol-5-amines for the synthesis of pyrido[2,3-d:6,5-d]dipyrimidines and pyrazolo[4', ${ }^{\prime}$ ':5,6]pyrido[2,3-d]pyrimidines in refluxing water is reported. This protocol includes some important aspects, such as the use of water as a "green" reaction medium, high atom economy and mild reaction conditions. Reaction of 6 -amino-uracils with ninhydrine resulted in the formation of tetrahydroindeno $\left[2^{\prime}, 1^{\prime}: 4,5\right]$ pyrorolo[$[2,3$-d $]$ pyrimidine-triones. These products were evaluated in vitro for their antibacterial activities. Most of the compounds have a narrow to good spectrum antimicrobial activity. To cite this article: A. Bazgir et al., C. R. Chimie 12 (2009).

© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
Keywords: Uracil; Aldehyde; Pyridopyrimidine; Barbituric acid; Ninhydrin

1. Introduction

The importance of fused pyrimidines, common source for the development of new potential therapeutic agents [1,2], is well known. Among them, the pyridopyrimidine scaffold and their oxo and thioxo derivatives is a wellknown pharmacophore in drug design and it is associated with a wide range of biological properties [3-7]. Pyrido[3,2-d]-pyrimidines have been described as tyrosine kinase inhibitors and as dihydrofolate reductase inhibitors [8,9]. Pyrido[2,3-d]pyrimidines possess dihydrofolate reductase inhibiting and antitumour activity

[^0][10]. Similarly, in recent years, considerable attention has been focused on the development of new methodology to synthesize many kinds of pyrazolopyrimidine ring system [11]. Indeed, these compounds are, by now widely recognized as important organic materials showing interesting biological activities [12]. Considering the important biological properties of fused pyrimidines, a number of methods have been reported for the synthesis of these heterocycles [13-20].

One of the powerful tools used to combine economic aspects with the environmental concerns is performing organic reactions in water; this strategy consists of two or more synthetic steps, which are carried out in water as a cheap, nontoxic, environmentally friendly solvent, in a one-step reaction, without isolation of any intermediate thus reducing time, saving money, energy
and raw materials $[21,22]$. The development and implementation of processes using water as solvent may serve as one avenue for lowering both the environmental impact of the chemical industry and the hundred billion dollar costs associated with environmental regulation compliance [23]. Moreover, multicomponent condensation reactions due to their productivity, simple procedures, convergence and facile execution are one of the important strategies in combinatorial chemistry [24,25]. As a result, one-pot multicomponent reactions in organic chemistry have expanded rapidly $[26,27]$.

Due to the biological activity of fused pyrimidines, and our interest in the synthesis of heterocyclic compounds especially pyrimidine derivatives [28-42], herein, we report a clean and efficient method for the preparation of pyrimidine-fused heterocycles in water.

2. Results and discussion

It was found that a mixture of 1,3-dimethyl-6-aminouracil 1a, benzaldehyde 2a and barbituric acid 3a in the presence of catalytic p-toluene sulfonic acid (p-TSA) as an inexpensive and readily available catalyst afforded 1,3-dimethyl-5-phenyl-9,10-dihydropyrido[2,3-d:6,5-d]dipyrimidine-2, $4,6,8(1 \mathrm{H}, 3 \mathrm{H}, 5 \mathrm{H}, 7 \mathrm{H})$-tetraone $\mathbf{4 a}$ in 86% yield in refluxing water for 4 h (Scheme 1).

Then, to delineate this approach, particularly in regard to library construction, this methodology was
evaluated by using different barbituric acids, aldehydes and 6 -amino-uracils. Three uracils $\mathbf{1 a - c}$, four substituted aromatic aldehyds 2a-d and three barbituric acids 3a-c were chosen for the library validation (Scheme 2). Corresponding pyrido[2,3-d:6,5-d]dipyrimidine derivatives 4a-l were synthesized by the one-pot, threecomponent condensation in good yields at refluxing water in the presence of p-TSA for 4 h . The reaction can be represented as in Table 1.

The results were good in terms of yields and product purity in the presence of p-TSA, while without p -TSA and over long period of time (12 h) the yields of products were low $(<40 \%)$. When this reaction was carried out with an aliphatic aldehyde such as propionaldehyde or butanaldehyde in same conditions (water/p-TSA), TLC and ${ }^{1} \mathrm{H}$ NMR spectra of the reaction mixture showed a combination of starting materials and numerous products, the yield of the expected product was very poor.

The nature of these compounds as 1:1:1 adducts was apparent from their mass spectra, which displayed, in each case, the molecular ion peak at appropriate m / z values. Compounds 4 are stable solids whose structures are fully supported by IR, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy, mass spectrometry, and elemental analysis.

A possible mechanism for the formation of 4 is proposed in Scheme 3. It is reasonable to assume that $\mathbf{4}$ results from initial formation of a heterodiene 5 by standard Knoevenagel condensation of the barbituric

Scheme 1.

Scheme 2.

Table 1
Synthesis of pyrido[2,3-d:6,5-d]dipyrimidines 4a-l.
Entry Compound $\mathbf{1}$ (Ar Product $\mathbf{4}$

2
1a
$4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4} \mathbf{2 b} \quad \mathbf{3 a}$

87

Table 1 (Continued)

Entry	Compound 1	Ar	Compound 3	Product 4	Yield (\%) ${ }^{\text {a }}$
7	1a	4- $\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4} \mathbf{2 c}$	3b		84
8		$\mathrm{C}_{6} \mathrm{H}_{5} \mathbf{2 a}$	3b	$4 a$	81
9	1b	$-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4} \mathbf{2 b}$	3b	4b	83
10	1b	$4-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4} \mathbf{2 c}$	3b	4c	85
11	1b	$4-\mathrm{MeO}-\mathrm{C}_{6} \mathrm{H}_{4} \mathbf{2 d}$	3b	4d	77
12	1b	$\mathrm{C}_{6} \mathrm{H}_{5} \mathbf{2 a}$	 c	 h	80
13	1b	$4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4} \mathbf{2 b}$	3c		81
14	 1c	$\mathrm{C}_{6} \mathrm{H}_{5} \mathbf{2 a}$	3a	4h	84
15	1c	$4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4} \mathbf{2} \mathbf{b}$	3b	4i	86
16	1c	$\mathrm{C}_{6} \mathrm{H}_{5} \mathbf{2 a}$	3b		81
17	1c	$4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4} \mathbf{2 b}$	3b		88
18	1a	$\mathrm{C}_{6} \mathrm{H}_{5} \mathbf{2 a}$	3c	4j	85
19	1a	$4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4} \mathbf{2 b}$	3c	4k	87

[^1]

Scheme 3.

7

Scheme 4.
acid 3 and aldehyde 2. Then, the subsequent Michaeltype addition of the 6 -amino-uracil 1 to the heterodyne 5, followed by cyclization affords the corresponding products 4 (Scheme 3).

Very recently, we reported the synthesis of pyrazolo $\left[4^{\prime}, 3^{\prime}: 5,6\right]$ pyrido[2,3- $\left.d\right]$ pyrimidine-diones under sol-vent-free conditions [43]. Finally, to further explore the potential of this clean protocol for pyridopyrimidines synthesis, we investigated reaction involving 1 H -pyrazol-5-amines 6, barbituric acids $\mathbf{3}$ and aromatic aldehyde 2 and obtained pyrazolo[$\left.4^{\prime}, 3^{\prime}: 5,6\right]$ pyrido[2,3-d]pyrimidine-dione derivatives 7a-l in good yields for 3 h (Scheme 4, Table 2).

To further explore the potential of this protocol for pyrimidine-fused heterocyles synthesis, we investigated reaction of 6-amino-uracils $\mathbf{1}$ with ninhydrine $\mathbf{8}$ and

Table 2
Synthesis of 1H-pyrazolo[4',3':5,6]pyrido[2,3-d]pyrimidinones 7.

Product 7	Ar	X	Y	Yield ${ }^{\text {a }}$ (\%)
a	$\mathrm{C}_{6} \mathrm{H}_{5}$	H	O	81
b	$4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}$	H	O	82
c	$4-\mathrm{Br}-\mathrm{C}_{6} \mathrm{H}_{4}$	H	O	80
d	$\mathrm{C}_{6} \mathrm{H}_{5}$	NO_{2}	O	79
e	$4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}$	NO_{2}	O	86
f	$4-\mathrm{Br}-\mathrm{C}_{6} \mathrm{H}_{4}$	NO_{2}	O	81
g	$\mathrm{C}_{6} \mathrm{H}_{5}$	H	S	89
h	$4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}$	H	S	83
i	$4-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}$	H	S	80
j	$\mathrm{C}_{6} \mathrm{H}_{5}$	NO_{2}	S	85
k	$4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}$	NO_{2}	S	83
1	4- $\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}$	NO_{2}	S	84

[^2]

Scheme 5.

Table 3
MIC $(\mu \mathrm{g} / \mathrm{ml})$ values of products 4 .

	Products												Standard	
	4a	4b	4c	4d	4 e	4f	4 g	4h	4 i	4 j	4k	41	Tetracycline	Gentamicin
Bacillus subtilis	64	32	32	64	32	8	32	16	8	16	16	16	4	a
Bacillus pumilus	18	14	a	16	a	16	a	32	16	16	16	32	8	a
Micrococcus luteus	32	32	a	128	a	32	a	16	8	16	16	a	4	a
Staphylococcus aureus	a	128	a	a	a	16	a	32	16	16	8	32	4	a
Staphylococcus epidermidis	64	32	64	16	a	8	256	32	16	16	16	16	<2	a
Sterptococcus mutans	64	32	64	64	256	8	32	16	4	8	4	32	2	a
Escherichia coli	16	4	8	4	4	8	16	32	16	16	16	8	a	4
Enterococcus faecalis	2	<2	<2	<2	<2	<2	4	6	4	4	4	2	8	a
Pseudomonas aeruginosa	12	8	8	4	8	4	8	2	<2	2	<2	2	a	8

${ }^{\text {a }}$ Not active.

Table 4
MIC $(\mu \mathrm{g} / \mathrm{ml})$ values of products 9 .

Compounds	Microorganisms								
	B. subtilis	B. pumilus	M. luteus	S. aureus	S. epidermidis	S. mutans	E. coli	E. faecalis	P. aeruginosa
9 a	8	4	14	24	12	18	2	2	4
9b	12	8	24	32	16	24	4	2	6
9c	6	4	12	16	8	14	2	2	4

obtained tetrahydroindeno[$\left.2^{\prime}, 1^{\prime}: 4,5\right]$ pyrorolo[2,3-d]pyr-imidine-trione derivatives 9a-c in good yields (Scheme 5).

Finally, compounds 4 and 9 were screened for antimicrobial activity. The microorganisms used in this study were Escherichia coli ATCC 25922, Pseudomonas aeruginusa ATCC 85327, (Gram-negative bacteria), Enterococcus faecalis ATCC 29737, Bacillus subtilis ATCC 465, Bacillus pumilus PTCC 1114, Micrococcus luteus PTCC 1110, Staphylococcus aureus ATCC 25923, Staphylococcus epidermidis ATCC 12228, Sterptococcus mutans PTCC 1601 (Grampositive bacteria). The minimum inhibitory concentration (MIC) of the synthesized compounds determined by microdilution method [44] and compared to two commercial antibiotics (Tables 3 and 4).

Most of the compounds have a narrow to good spectrum antimicrobial activity. All of the compounds were found to be more active than Tetracycline against E. Faecalis ($<2--6 \mu \mathrm{~g} / \mathrm{ml}$), E. coli $(4-32 \mu \mathrm{~g} / \mathrm{ml})$ and P. aeruginosa ($<2-16 \mu \mathrm{~g} / \mathrm{ml}$). Almost all of the compounds were found to be more active than Gentamicin against all tested strains. The products $\mathbf{4 a}, \mathbf{4 c - e}$ and $\mathbf{~} \mathbf{g}$ do not have antibiotic activity against S. aureus. Although, all of the compounds were found to be less active than Tetracycline against the B. subtilis, B. pumilus, M. luteus, S. aureus, S. epidermidis, S. mutans. 5-Aryl-8-thioxo-9,10-dihydropyrido[2,3-d:6,5-d]dipyr-imidine-2,4,6($1 \mathrm{H}, 3 \mathrm{H}, 5 \mathrm{H}, 7 \mathrm{H})$-triones 4 h - l were more active than the corresponding ones of the series $\mathbf{4 a - g}$, reinforcing the pharmacophoric contribution of thiocarbonyl moiety relative to carbonyl moiety to the
mechanism of action against the all of the tested bacteria except E. faecalis and E. coli. The compounds 7a-c have a good spectrum antimicrobial activity against all tested strains.

3. Conclusions

In conclusion, we have described an efficient, clean and simple method for the preparation of pyrido[2,3$\mathrm{d}: 6,5-\mathrm{d}]$ dipyrimidines, pyrazolo[4', $\left.3^{\prime}: 5,6\right]$ pyrido[2,3d]pyrimidine and indeno[2', $\left.1^{\prime}: 4,5\right]$ pyrorolo[2,3-d]pyrimidine derivatives via a cyclo-condensation reaction in water. This protocol includes some important aspects like the use of water as a "green" reaction medium, high atom economy and mild reaction conditions.

4. Experimental

4.1. Materials and techniques

Melting points were taken on an Electrothermal 9100 apparatus and left uncorrected. IR spectra were obtained on a Shimadzu IR-470 spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a BRUKER DRX-300 AVANCE spectrometer at 300.13 and 75.47 MHz . NMR spectra were obtained on solutions in DMSO using TMS as internal standard. All of the chemicals were purchased from Fluka, Merck and Aldrich and used without purification.

4.2. Typical procedure

4.2.1. 1,3-dimethyl-5-phenyl-9,10-dihydropyrido[2,3-d:6,5-d]dipyrimidine-2,4,6,8(1H,3H,5H,7H)-tetraone (4a)

A mixture of 1,3-dimethyl-6-amino-uracil (1 mmol), benzaldehyde (1 mmol), barbituric acid $(1 \mathrm{mmol})$ and p TSA (0.1 g) in refluxing water (5 ml) was stirred for 4 h (the progress of reaction was monitored by TLC). After completion of reaction, the reaction mixture was filtered and the precipitate washed with water and then EtOH to afford the pure product 4 a as a white powder (86%). $\mathrm{MP}>350^{\circ} \mathrm{C}$; $\quad \mathrm{IR}(\mathrm{KBr}) \quad v=3322, ~ 2998, ~ 1709$, $1695 \mathrm{~cm}^{-1}$. MS, m / z (\%): $353\left(\mathrm{M}^{+}\right) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta=3.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.42(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.77(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 7.09-7.26(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-\mathrm{Ar})$, 8.94 (bs, 1H, NH), 10.11 (bs, $1 \mathrm{H}, \mathrm{NH}$), 10.89 (s, 1H, $\mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=28.1,30.1$, $34.5,90.0,90.1,126.6,128.2,143.8,146.2,149.9$, 150.8, 160.8, 162.8. Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{4}$: C, 57.79; H, 4.28; N, 19.82\%. Found: C, 57.74; H, 4.24; N, 19.86%.
4.2.2. 1,3-dimethyl-5-(4-chlorophenyl)-9,10-dihydropyrido[2,3-d:6,5-d]dipyrimidine-2,4,6,8(1H,3H,5H,7H)-tetraone (4b)

White powder; m.p. $>350{ }^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}) v=3332$, 3147, 2977, $1698 \mathrm{~cm}^{-1} . \mathrm{MS}, \mathrm{m} / \mathrm{z}(\%): 387\left(\mathrm{M}^{+}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=3.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $3.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.75(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 7.05-7.33(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{H}-\mathrm{Ar}), 8.95$ (bs, $1 \mathrm{H}, \mathrm{NH}$), 10.12 (bs, 2H, 2NH), 10.92 (s, 1H, NH). Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{ClN}_{5} \mathrm{O}_{4}$: C, 52.65; H, 3.64; N, 18.06\%. Found: C, $52.71 ; \mathrm{H}, 3.59$; N, 18.00%.

Due to very low solubility of the product $4 b$, we can not report the ${ }^{13} \mathrm{C}$ NMR data for this product.

4.2.3. 1,3-dimethyl-5-(4-nitrophenyl)-9,10-

 dihydropyrido[2,3-d:6,5-d]dipyrimidine-2,4,6,8(1H,3H,5H,7H)-tetraone (4c)
White powder; m.p. $>350{ }^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}) v=3460$, 2931, $1694 \mathrm{~cm}^{-1} . \mathrm{MS}, \mathrm{m} / z(\%): 398\left(\mathrm{M}^{+}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=3.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.42$ (s, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 7.56\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=9.2 \mathrm{~Hz}\right.$, $\mathrm{H} — \mathrm{Ar}), 8.07\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H H}=9.1 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}\right), 9.04$ (bs, $1 \mathrm{H}, \mathrm{NH}$), 10.11 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), 10.93 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=28.1,30.2,35.2,88.7$, 88.9, 123.4, 128.3, 129.6, 146.4, 149.8, 150.8, 153.7, 154.9, 160.8, 162.8. Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{6} \mathrm{O}_{6}$: C, 51.26; H, 3.54; N, 21.10\%. Found: C, 51.30; H, 3.59; N, 21.04%.
4.2.4. 1,3-dimethyl-5-(4-metoxyphenyl)-9,10-dihydropyrido[2,3-d:6,5-d]dipyrimidine-2,4,6,8(1H,3H,5H,7H)-tetraone (4d)

White powder; m.p. $>350^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}) v=3260$, $3013,1714,1670,1609 \mathrm{~cm}^{-1} . \mathrm{MS}, m / z(\%): 383\left(\mathrm{M}^{+}\right)$. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta=3.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $3.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.67\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.76(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH})$, 6.67-7.08 (m, 4H, H—Ar), 8.93 (bs, 1H, NH), 10.11 (bs, 1H, NH), 10.90 (s, 1H, NH). ${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}): $\delta=28.1,30.1,34.4,55.2, .89 .9,89.9$, 114.7, 120.3, 129.2, 143.8, 147.7, 149.9, 150.8, 159.2, 160.9, 162.9. Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{5}$: C, 56.39; H, 4.47; N, 18.27\%. Found: C, 56.45; H, 4.51; N, 18.22%.

4.2.5. 5-phenyl-9,10-dihydropyrido[2,3-d:6,5-d]dipyrimidine-2,4,6,8(1H,3H,5H,7H)-tetraone (4e)

White powder; m.p. $>350{ }^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}) v=3235$, 3089, 1705, $1663 \mathrm{~cm}^{-1} . \mathrm{MS}, \mathrm{m} / \mathrm{z}(\%): 325\left(\mathrm{M}^{+}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=4.73$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}$), $7.01-7.22$ (m, 5H, H—Ar), $9.95(\mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{NH}), 10.99(\mathrm{~s}$, $2 \mathrm{H}, 2 \mathrm{NH}$). Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}_{4}$: C, 55.39 ; H , 3.41 , N, 21.53\%. Found: C, 55.34; H, 3.45; N, 21.47%.

Due to very low solubility of the product 4 e , we can not report the ${ }^{13} \mathrm{C}$ NMR data for this product.
4.2.6. 5-(4-chlorophenyl)-9,10-dihydropyrido[2,3-d:6,5-d]dipyrimidine-2,4,6,8(1H,3H,5H,7H)tetraone (4f)

White powder; m.p. $>350^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}) v=3265$, $3147,3019,1719,1714,1681 \mathrm{~cm}^{-1} . \mathrm{MS}, m / z(\%): 359$ $\left(\mathrm{M}^{+}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta=4.65(\mathrm{~s}, 1 \mathrm{H}$, CH), 7.21-7.24 (m, 4H, H—Ar), 10.84 (s, 2H, 2NH), 11.15 (s, 2H, 2NH). ${ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}): $\delta=33.3,89.1,128.1,130.0,131.0,144.0,145.3,150.2$, 162.9. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{ClN}_{5} \mathrm{O}_{4}: \mathrm{C}, 50.08 ; \mathrm{H}$, $2.80 ;$ N, 19.47%. Found: C, $50.14 ;$ H, $2.85 ;$ N, 19.40%.

4.2.7. 5-(4-nitrophenyl)-9,10-dihydropyrido[2,3-

 d:6,5-d]dipyrimidine-2,4,6,8(1H,3H,5H,7H)tetraone (4 g)White powder; m.p. $>350^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}) v=3238$, 3029, 1724, $1675 \mathrm{~cm}^{-1}$. MS, $m / z(\%): 370\left(\mathrm{M}^{+}\right) .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta=4.76(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 7.51$ (d, $\left.2 \mathrm{H}, \quad{ }^{3} J_{H H}=9.1 \mathrm{~Hz}, \quad \mathrm{H}-\mathrm{Ar}\right), 8.07(\mathrm{~d}, \quad 2 \mathrm{H}$, $\left.{ }^{3} J_{H H}=9.2 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}\right), 10.86(\mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{NH}), 11.19(\mathrm{~s}$, $2 \mathrm{H}, 2 \mathrm{NH}$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=34.3$, $88.5,128.5,129.5,131.5,144.3,146.3,150.3,162.9$. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{O}_{6}$: C, 48.66; H, 2.72; N , 22.70%. Found: C, 48.71 ; H, 2.68; N, 22.75\%.
4.2.8. 1,3-dimethyl-5-phenyl-8-thioxo-9,10-dihydropyrido[2,3-d:6,5-d]dipyrimidine-2,4,6(1H,3H,5H,7H)-trione (4 h)

Cream powder; m.p. $>350{ }^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}) v=3217$, $3189,1705,1687 \mathrm{~cm}^{-1} . \mathrm{MS}, \mathrm{m} / \mathrm{z}(\%): 369\left(\mathrm{M}^{+}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=3.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 3.42 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), 4.68 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}$), 7.09-7.29 (m, 5H, $\mathrm{H}-\mathrm{Ar}), 8.96$ (bs, 1H, NH), 11.80 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), 12.34 (s , $1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=28.1$, $30.1,34.6,89.7,94.3,126.8,128.2,128.3,143.7,145.6$, 150.8, 160.3, 160.8, 173.8. Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 55.27 ; \mathrm{H}, 4.09 ; \mathrm{N}, 18.96 \%$. Found: C, $55.33 ; \mathrm{H}, 4.04 ; \mathrm{N}, 18.90 \%$.

4.2.9. 1,3-dimethyl-5-(4-chlorophenyl)-8-thioxo-

 9,10-dihydropyrido[2,3-d:6,5-d]dipyrimidine-2,4,6(1H,3H,5H,7H)-trione (4i)Cream powder; m.p. $>350^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}) v=3226$, 1706, $1678 \mathrm{~cm}^{-1} . \mathrm{MS}, m / z(\%): 403\left(\mathrm{M}^{+}\right) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta=3.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.40(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.78(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 7.23-7.28(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-\mathrm{Ar})$. 9.08 (bs, 1H, NH), 11.47 (s, 1H, NH), 12.34 (s, 1H, NH) Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{ClN}_{5} \mathrm{O}_{3} \mathrm{~S}$: C, 50.56; H, 3.49; N, 17.34%. Found: C, $50.60 ;$ H, $4.34 ;$ N, 17.27%.

Due to very low solubility of the products $4 j-1$, we can not report the 13C NMR data for these products.

4.2.10. 5-phenyl-8-thioxo-9,10-dihydropyrido[2,3-d: 6,5-d]dipyrimidine-2,4,6(1H,3H,5H,7H)-trione (4j)

Yellow powder; m.p. $296^{\circ} \mathrm{C}$ dec.; IR (KBr) $v=3276,3045,1703,1678 \mathrm{~cm}^{-1} . \mathrm{MS}, \mathrm{m} / \mathrm{z}(\%): 341$ $\left(\mathrm{M}^{+}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=4.80(\mathrm{~s}, 1 \mathrm{H}$, CH), 7.19-7.21 (m, 5H, H—Ar), 9.04 (bs, $1 \mathrm{H}, \mathrm{NH}$), 9.75 (bs, 1H, NH), 10.78 (s, 1H, NH), 12.45 (bs, 1 H , NH). Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{~S}$: C, 52.78; H, 3.25; N, 20.52\%. Found: C, 52.83; H, 3.29; N, 20.60\%.
4.2.11. 5-(4-chlorophenyl)-8-thioxo-9,10-dihydropyrido[2,3-d:6,5-d]dipyrimidine-
2,4,6(1H,3H,5H,7H)-trione (4k)
Yellow powder; m.p. $298{ }^{\circ} \mathrm{C}$ dec.; IR (KBr) $v=3273,3056,1719,1658 \mathrm{~cm}^{-1} . \mathrm{MS}, m / z(\%): 375$ $\left(\mathrm{M}^{+}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=4.62(\mathrm{~s}, 1 \mathrm{H}$, CH), 720-7.22 (m, 4H, H—Ar), 9.03 (bs, 1H, NH), 9.77 (bs, 1H, NH), 10.76 (s, 1H, NH), 11.77 (bs, 1H, NH). Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{ClN}_{5} \mathrm{O}_{3} \mathrm{~S}$: C, 47.94; H, 2.68; N, 18.64\%. Found: C, 47.88; H, 2.63; N, 18.70%.
4.2.12. 5-(4-nitrrophenyl)-8-thioxo-9,10-dihydropyrido[2,3-d:6,5-d]dipyrimidine-
2,4,6(1H,3H,5H,7H)-trione (4l)
Yellow powder; m.p. $290^{\circ} \mathrm{C}$ dec.; IR (KBr) $v=3280,3069,1713,1690 \mathrm{~cm}^{-1} . \mathrm{MS}, \mathrm{m} / z(\%): 386$ $\left(\mathrm{M}^{+}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=4.78(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{CH}), 7.53\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H H}=9.4 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}\right), 8.08(\mathrm{~d}, 2 \mathrm{H}$, $\left.{ }^{3} J_{H H}=9.3 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}\right), 10.91(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 11.61$ (bs, $1 \mathrm{H}, \mathrm{NH}), 12.30$ (s, 1H, NH), 12.33 (bs, 1H, NH). Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{O}_{5} \mathrm{~S}: \mathrm{C}, 46.63$; $\mathrm{H}, 2.61$; $\mathrm{N}, 21.75 \%$. Found: C, 46.69; H, 2.66; N, 21.82\%.

Products 7a-l are known compounds [37] and we don't report any characterization data for these compounds.

4.2.13. 4b,9b-dihydroxy-1,3-dimethyl-1,4b,9b,10-

tetrahydroindeno[2', 1 ':4,5]pyrorolo[2,3-
d]pyrimidine-2,4,5(3H)-trione (9a)
White powder (92%); m.p. $278-280^{\circ} \mathrm{C}$; IR (KBr) $v=3407,3234,1728,1679,1633 \mathrm{~cm}^{-1} . \mathrm{MS}, \mathrm{m} / \mathrm{z}(\%):$ $315\left(\mathrm{M}^{+}\right)$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=3.01(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 5.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 6.79$ $(\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 7.53-7.91(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 9.28(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}): $\delta=30.8,31.1$, 83.6, 83.9, 92.9, 123.2, 125.6, 130.6, 134.7, 136.1, 149.8, 151.7, 153.8, 157.8, 197.7. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{5}$: C, $57.14 ; \mathrm{H}, 4.16 ; \mathrm{N}, 13.33 \%$. Found: C, 57.19; H, 4.20; N, 13.27%.
4.2.14. $4 b, 9 b$-dihydroxy- $1,4 b, 9 b, 10$ tetrahydroindeno[2', 1':4,5]pyrorolo[2,3-d]pyrimidin-2,4,5(3H)-trione (9b)

White powder (88%); m.p. $>330{ }^{\circ} \mathrm{C}$ dec.; IR (KBr) $v=3219,2862,1716,1698 \mathrm{~cm}^{-1} . \mathrm{MS}, \mathrm{m} / \mathrm{z}(\%): 287$ $\left(\mathrm{M}^{+}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=5.84(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{OH}), 6.59(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.53-7.97(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 8.72$ (s, 1H, NH), $10.07(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), .11 .16(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=82.8,83.6,93.0,123.1$, $125.8,130.5,134.6,135.9,149.9,151.7,154.5,159.6$, 197.9. Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{5}$: C, 54.36; H, 3.16; N, 14.63%. Found: C, $54.40 ;$ H, $3.11 ;$ N, 14.70%.
4.2.15. 4b,9b-dihydroxy-2-thioxo-1,2,3,4b,9b,10-hexahydroindeno[2',1':4,5]pyrorolo[2,3-
dJpyrimidine-4,5-dione (9c)
White powder (85%); m.p. $>350^{\circ} \mathrm{C}$; IR (KBr) $v=3285,3166,2902,1715,1658 \mathrm{~cm}^{-1} . \mathrm{MS}, m / z(\%):$ $303\left(\mathrm{M}^{+}\right)$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=5.97(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{OH}), 6.67(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.27-8.03(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-\mathrm{Ar})$, $8.54(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 11.55(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 12.49(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=82.7,87.8,92.9$, 123.2, 126.1, 130.6, 134.6, 136.1, 149.9, 153.3, 157.3, 176.1, 197.6. Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 51.48$; H , 2.99 ; N, 13.85\%. Found: C, 51.42; H, 2.95; N, 13.77%.

Acknowledgements

We gratefully acknowledge financial support from the Research Council of Shahid Beheshti University.

References

[1] D.J. Brown, in: A.R. Katritzky, C.W. Rees (Eds.), Comprehensive Heterocyclic Chemistry, 13, Pergamon Press, Oxford, 1984, p. 57.
[2] H. Wamhoff, J. Dzenis, K. Hirota, Adv. Heterocycl. Chem. 55 (1992) 129.
[3] L. Prakash, M. Shaihla, R.L. Mital, Pharmazie 44 (1989) 490.
[4] A. Monge, V. Martinez-Merino, C. Sanmartin, F.J. Fernandez, M.C. Ochoa, C. Bellver, P. Artigas, E. Fernandez-Alvarez, Eur. J. Med. Chem 24 (1989) 209.
[5] R.A. Lazarus, S.J. Benkovic, S. Kaufman, J. Biol. Chem 258 (1983) 10960.
[6] C.J. Blankley, L.R. Bennett, R.W. Fleming, R.D. Smith, D.K. Tessman, H.R. Kaplan, J. Med. Chem. 26 (1983) 403.
[7] R. Alajarine, J. Alvbarez-Builla, J.J. Vaquero, C. Sunkel, J. Fau, P. Statkow, J. Sanz, Tetrahedron: Asymmetry 4 (1993) 617.
[8] J.B. Smaill, B.D. Palmer, G.R. Rewcastle, W.A. Denny, D.J. McNamara, E.M. Dobrusin, A.J. Bridges, H. Zhou, H.D. Hollis Showalter, R.T. Winters, W.R. Leopold, D.W. Fry, J.M. Nelson, V. Slintak, W.L. Elliott, B.J. Roberts, P.W. Vincent, S.J. Patmore, J. Med. Chem 42 (1999) 1803.
[9] A. Gangjee, Y. Zhu, S.F. Queener, J. Med. Chem 41 (1998) 4533.
[10] A. Gangjee, O. Adair, S.F. Queener, J. Med. Chem 42 (1999) 2447.
[11] M.H. Elnagdi, N. Al-awadi, A.N. Erian, in: A.R. Katritzky, C.W. Rees, E.F.V. Scriven (Eds.), first ed., Compensative Heterocyclic Chemistry II, 7, Pergamon Press, Oxford, 1996 p. 431.
[12] M.H. Elnagdi, M.R.H. Elmoghayar, G.F. Elgemeie, Adv. Heterocycl. Chem. 41 (1984) 319.
[13] K. Hirota, J. Huang, H. Sajiki, Y. Maki, Heterocycles 24 (1986) 2293.
[14] R. Niess, R.K. Robins, J. Heterocycl. Chem. 7 (1970) 243.
[15] K. Hirota, H. Kitade, H. Sajiki, Y. Maki, Synthesis (1984) 589.
[16] M. Gohain, D. Prajapati, B.J. Gogoi, J.S. Sandhu, Synlett (2004) 1179.
[17] J. Quiroga, C. Cisneros, B. Insuasty, R. Abonia, J. Heterocycl. Chem. 43 (2006) 299.
[18] A. Agarwal, P.M.S. Chauhan, Tetrahedron Lett. 46 (2005) 1345.
[19] S. Tu, L. Cao, Y. Zhang, Q. Shao, D. Zhou, C. Li, Ultrason. Sonochem. 156 (2008) 217.
[20] D. Parajapati, A. Thakur, J. Tetrahedron Lett. 46 (2005) 1433.
[21] M.A. Mironov, QSAR Comb. Sci. 25 (2006) 423.
[22] A. Dömling, Chem. Rev. 106 (2006) 17.
[23] M. Lancaster, Green Chemistry: An Introductory Text, Royal Society of Chemistry, Cambridge, 2002.
[24] R.E. Dolle, B.L. Bourdonnec, G.A. Morales, K.J. Moriarty, J.M. Salvino, J. Comb. Chem. 8 (2006) 597.
[25] A. Ganesan, Comb. Chem. 7 (2002) 47.
[26] L.F. Tietze, A. Modi, Med. Res. Rev. 20 (2000) 304.
[27] I. Ugi, S. Heck, Comb. Chem. High Throughput Screen 4 (2001) 1.
[28] A. Bazgir, M. Seyyedhamzeh, Z. Yasaei, P. Mirzaei, Tetrahedron Lett. 48 (2007) 8790.
[29] M. Sayyafi, M. Seyyedhamzeh, H.R. Khavasi, A. Bazgir, Tetrahedron 64 (2008) 2375.
[30] M. Dabiri, H. Arvin-Nezhad, H.R. Khavasi, A. Bazgir, J. Heterocycl. Chem. 44 (2007) 1009.
[31] M. Dabiri, S.C. Azimi, H. Arvin-Nezhad, A. Bazgir, Heterocycles 75 (2008) 87.
[32] M. Dabiri, A.S. Delbari, A. Bazgir, Synlett (2007) 821.
[33] M. Dabiri, H. Arvin-Nezhad, H.R. Khavasi, A. Bazgir, Tetrahedron 63 (2007) 1770.
[34] M. Dabiri, A.S. Delbari, A. Bazgir, Heterocycles 71 (2007) 543.
[35] R. Ghahremanzadeh, G.I. Shakibaei, A. Bazgir, Synlett (2008) 1129.
[36] S. Ahadi, H.R. Khavasi, A. Bazgir, Chem. Pharm. Bull. 56 (2008) 1328.
[37] M. Sayyafi, A. Abolhasani Sooreki, A. Bazgir, Chem. Pharm. Bull. 56 (2008) 1289.
[38] G.I. Shakibaei, H.R. Khavasi, P. Mirzaei, A. Bazgir, J. Heterocycl. Chem. 45 (2008) 1481.
[39] M. Dabiri, S.C. Azimi, H.R. Khavasi, A. Bazgir, Tetrahedron 64 (2008) 7307.
[40] A. Bazgir, Z. Noroozi Tisseh, P. Mirzaei, Tetrahedron Lett. 49 (2008) 5165.
[41] R. Ghahremanzadeh, S. Ahadi, M. Sayyafi, A. Bazgir, Tetrahedron Lett. 49 (2008) 4479.
[42] Z. Noroozi Tisseh, S.C. Azimi, P. Mirzaei, A. Bazgir, Dyes Pigm. 79 (2008) 273.
[43] A. Bazgir, M. Mohammadi Khanaposhtani, A. Abolhasani Soorki, Bioorg. Med. Chem. Lett. 18 (2008) 5800.
[44] NCCLS, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria, which Grows Aerobically, fifth ed., Approved Standard M7-A5, NCCLS, Villanova, PA, 2000.

[^0]: * Corresponding author.

 E-mail address: a_bazgir@sbu.ac.ir (A. Bazgir).

[^1]: ${ }^{\text {a }}$ Isolated yields.

[^2]: ${ }^{a}$ Isolated yields.

