Full paper/Mémoire

l-Proline-catalysed one-pot synthesis of tetrahydrobenzo[c]acridin$8(7 \mathrm{H})$-ones at room temperature

Mohammad Reza Poor Heravi *, Parinaz Aghamohammadi
Payame Noor University, Department of Chemistry, 19395-4697, Tehran, Iran

ARTICLE INFO

Article history:

Received 1 November 2011
Accepted after revision 2 December 2011
Available online 4 January 2012

Keywords:

l-Proline
Oregano catalyst
Dimedone
Acridine
Multicomponent reactions

Abstract

Only $10 \mathrm{~mol} \%$ of t -Proline in ethanol proved to be a very efficient catalyst for the one-pot synthesis of a wide variety of highly substituted tetrahydrobenzo[c]acridin-8(7H)-ones at room temperature. The key advantages of this process are high yields, cost effectiveness of the catalyst, easy work-up and the products can be directly recrystallized from hot ethanol.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Recently, multicomponent reactions (MCRs) have been considered as a superior synthetic strategy [1]. The MCRs are very flexible, atom economic in nature, and proceed through a sequence of reaction equilibria, yielding the target product [2]. Moreover, these transformations combine classical concerns such as efficiency, selectivity, molecular complexity and diversity $[3,4]$. The acridine derivatives have been known first to be used as pigments and dyes since the 19th century [5]. A range of acridines continue to be used today for the treatment of actuelekaemia (amsacrine) [6], as anticancer agents (ledakrin) [7]. To date, ranges of acridine have been reported with a range of chemical and physical properties. Their utility in the pharmaceutical industry has also been reported [8]. A number of methods have been developed for the synthesis of acridine compounds containing 1,4-dihydropyridines, from dimedone, aldehyde and different anilines or ammonium acetate via traditional

[^0]heating in organic solvents [9], in water catalyzed by TEBAC [10], under microwave irradiation [11], and using ionic liquids are emerging as effective solvents for green processes. In recent years L-Proline has drawn much interest in different organic reactions due to its experimental simpilicity in water and organic solvents, l-Proline has shown considerable catalytic efficiency in different transformations such as enamine based direct catalytic asymmetric aldol condensation [12], α-amination reaction [13], Mannich reaction [14], Diels-Alder reaction [15], Knoevenagel reaction [16], Micheal condensation [17], and as excellent promoter for the copper-catalyzed coupling reaction [18], as well as in solvent-free Biginelli reaction [19], in unsymmetric Hantzsch reaction [20], for the selective synthesis of 2-aryl-1-arylmethyl-1H-benzimidazoles from wide range of substituted o-phenylenediamines and aldehydes [21], proline catalysis has emerged recently as an efficient means of generating functionalized cyclohexanes ad spirane products via Barbas three-component cycloaddition [22]; proline has also been used as catalyst for two-carbon homologation and in various MCRs in one-pot [23]. The developing of new MCRs and improving known MCRs are an area of considerable current interest. Herein, we report a simple and facile multicomponent one-pot
synthesis of substituted tetrahydrobenzo[c]acridin-8(7H)ones in high yields, using l-Proline ($15 \mathrm{~mol} \%$) as an organocatalyst. Most of the above reported synthetic methods for the synthesis of substituted tetrahydrobenzo[-c]acridin- $8(7 \mathrm{H})$-ones suffer from one or more drawbacks, such as a hazardous reaction condition, complex workup and purification, strong acidic condition [24], high temperature [25,26], use of toxic metal catalyst [27], poor yields, occurrence of side reactions and expensive reagents. Therefore, the development of a mild generalized method to overcome these shortcomings still remains an ongoing challenge for the synthesis of highly substituted tetrahydrobenzo[c]acridin-8(7H)-ones for organic chemists.

2. Results and discussion

We report herein, for the first time, a simple, mild, and expeditious synthesis of highly substituted tetrahydro-benzo[c]acridin-8(7H)-ones in excellent yields employing t-Proline ($15 \mathrm{~mol} \%$) as an organocatalyst at room temperature (Scheme 1).

In order to standardize the reaction, salicylaldehyde (1 mmol), α-naphthylamine (1 mmol), 5,5 -dimethylcyclo-hexane-1,3-dione(dimedone) (1 mmol) were dissolved in ethanol and stirred at room temperature for 30 min . in the absence of the catalyst which led to very poor yields (only $5-6 \%$, as obtained in crude ${ }^{1} \mathrm{H}$ NMR) of the substituted tetrahydrobenzo[c]acridin-8(7H)-ones. We also tried different solvents under similar reaction conditions but no appreciable increment in product yield was observed. Then it was thought worthwhile to study the reaction I in the presence of an organocatalyst like L-Proline. Use of $15 \mathrm{~mol} \%$ of the catalyst produced maximum yield (95\%). A further increase of the catalyst concentration does not increase the yield. On the contrary, the reaction slows down on adding more than $15 \mathrm{~mol} \%$ of catalyst. The standard reaction was also studied in the presence of glycine ($15 \mathrm{~mol} \%$), when the desired product was obtained after 72 h in only 10% isolated yield. This lower yield could be attributed firstly to the comparatively poor solubility of glycine in ethanol and

Table 1
Multicomponent reaction of salicylaldehyde, α-naphthylamine and 5,5-dimethylcyclohexane-1,3-dione(dimedone) in the presence of different solvents and different catalyst percentages ${ }^{\text {a }}$.

Entry	Catalyst (mol \%)	Solvent	Time (h)	Yield ${ }^{\text {b }}$ (\%)
1	-	EtOH	72	5-6
2	-	MeOH	72	5-6
3	-	CHCl_{3}	72	Trace
4	-	$\mathrm{CH}_{3} \mathrm{CN}$	72	Trace
5	-	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	72	Trace
6	-	1,4-Dioxane	72	Trace
7	-	$\mathrm{H}_{2} \mathrm{O}$	72	N.R. ${ }^{\text {c }}$
8	5	EtOH	8	55
9	10	EtOH	4	75
10	15	EtOH	1	95
11	20	EtOH	1	85
12	15	MeOH	12	75
13	15	CHCl_{3}	12	35
14	15	$\mathrm{CH}_{3} \mathrm{CN}$	12	25
15	15	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	12	20
16	15	1,4-Dioxane	12	30
17	15	$\mathrm{H}_{2} \mathrm{O}$	48	N. $\mathrm{R}^{\text {c }}$

${ }^{\text {a }}$ 5,5-dimethylcyclohexane-1,3-dione(dimedone)/aldehyde/ α-naphthylamine(1:1:1).
${ }^{\mathrm{b}}$ Isolated yield
${ }^{\text {c }}$ No reaction.
secondly to the reaction passing via imine with lower reactivity rather than iminium ion with s-Proline with much higher reactivity (via mechanism). The detailed results of changing catalyst (L-Proline) concentration and solvents are given in Table 1.

We next examined a wide variety of aldehydes (both aromatic and aliphatic) with various substituents to establish the catalytic importance of l-Proline for this reaction. A wide range of ortho-, meta- and para-substituted aromatic aldehydes undergo this one-pot multicomponent synthesis with dimedone and α-naphthylamine to afford substituted tetrahydroben-zo[c]acridin-8(7H)-ones in good yields. In all cases, we observed the almost same performance towards this cyclocondensation to give the desired product ($\mathbf{4 a} \mathbf{a} \mathbf{m}$) (Table 2). Aliphatic aldehydes gave the corresponding

$$
\begin{gathered}
\mathrm{R}: \mathrm{C}_{6} \mathrm{H}_{5}, p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}, p-\mathrm{OCH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}, o-\mathrm{OHC}_{6} \mathrm{H}_{4}, p-\mathrm{ClC}_{6} \mathrm{H}_{4}, p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}, \\
o-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}, p-\mathrm{FC}_{6} \mathrm{H}_{4}, o-\mathrm{FC}_{6} \mathrm{H}_{4}, p-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{H}, \mathrm{Me}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}
\end{gathered}
$$

Scheme 1. l-Proline catalysed synthesis of substituted tetrahydrobenzo[c]acridin-8(7H)-ones.

Table 2
Synthesis of highly tetrahydrobenzo[c]acridin-8(7H)-ones (4a-m) at room temperature using l-Proline ($15 \mathrm{~mol} \%$) as an organocatalyst ${ }^{\text {a }}$.

Entry	R	Time (h)	Product	Yield ${ }^{\text {b }}$ (\%)	$\mathrm{Mp}\left({ }^{\circ} \mathrm{C}\right)$	
					Found	Reported
1	$\mathrm{C}_{6} \mathrm{H}_{5}$	1	4a	95	257-258	258-259 [28,29]
2	$4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	2	4b	91	212-214	-
3	$4-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}$	2	4c	92	206-207	-
4	$2-\mathrm{OHC}_{6} \mathrm{H}_{4}$	2	4d	92	221-223	220-222 [30]
5	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	1	4e	97	289-290	290-292 [28,29]
6	$4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	0.5	4f	95	281-283	281-283 [31]
7	$2-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	0.5	4g	93	228-229	-
8	$4-\mathrm{FC}_{6} \mathrm{H}_{4}$	0.5	4h	95	218-219	-
9	$2-\mathrm{FC}_{6} \mathrm{H}_{4}$	0.5	4i	96	231-233	-
10	$4-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	0.5	4j	97	276-277	-
11	H	4	4k	88	187-189	-
12	Me	4	41	87	191-192	-
13	$\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	5	4m	89	195-197	-

${ }^{\text {a }} 5,5$-dimethylcyclohexane-1,3-dione(dimedone)/aldehyde/ α-naphthylamine (1:1:1).
${ }^{\mathrm{b}}$ Isolated yield.

Scheme 2. A plausible mechanism for the formation of tetrahydrobenzo[c]acridin-8(7H)-ones, Pathway I-acid catalysis through intermolecular hydrogen bonding. Pathway II-iminium catalysis.
tetrahydrobenzo[c]acridin-8(7H)-ones in lower yield (25-35\%) than aromatic aldehydes (90-98\%). The reaction profile is very clean and no side products are formed. All the synthesized tetrahydrobenzo[c]acridin$8(7 \mathrm{H})$-ones have been characterized on the basis of elemental and spectral studies.

A plausible mechanism for the l-Proline catalyzed synthesis of highly substituted tetrahydrobenzo[c]acridin$8(7 \mathrm{H})$-ones has been proposed (Scheme 2) in which the reaction proceeds through two different pathways (Path-I and Path-II). Path-I involves the activation of aldehydic carbonyl oxygen by the acidic part of L -Proline through intermolecular H -bonding and subsequent condensation with 5,5-dimethylcyclohexane-1,3-dione(dimedone) to form the ene dione intermediate B. Path-II gives the same
intermediate B via iminum catalysis which condenses with the condensation product of amine and 5,5-dimethylcy-clohexane-1,3-dione(dimedone) to form the intermediate C which, on dehydration, gives the tetrahydrobenzo[c]a-cridin-8(7H)-ones (4a-m).

3. Conclusion

In conclusion, we have developed a simple and efficient one-pot multicomponent methodology for the synthesis of substituted tetrahydrobenzo[c]acridin$8(7 \mathrm{H})$-ones ($\mathbf{4 a - m}$) catalyzed by $15 \mathrm{~mol} \%$ t-Proline at room temperature. Simplicity of operation, high yields, easy work-up, purification of compounds by nonchromatography method (crystallization only) and wide
range of substrate applicability are the key advantages of this methodology.

4. Experimental

4.1. General

All reagents were purchased from Merck. Aldehydes were distilled before use. Melting points were determined using a Linkman HF591 heating stage, used in conjunction with a TC92 controller, and re-uncorrected. NMR spectra were recorded using either a Brucker DRX500 machine at room temperature. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{FNMR}$ spectra were measured using DMSO- d_{6} as solvent. CHN analyses were performed on Exeter Analytical Inc. 'Model C-400 CHN Analyzer'. Mass spectra were obtained using a Micro Mass LCT machine in ES or EI mode. Infrared spectra were measured on a Perkin Elmer Paragon 100 FT-IR spectrometer. All the reactions were monitored by TLC using 0.25 mm silica gel plates (Merck $60 \mathrm{~F}_{254}$) UV indicator.

4.2. General procedure for the synthesis of substituted tetrahydrobenzo[c]acridin-8(7H)-ones (4a-m)

In a 50 mL round bottom flask 5,5-dimethylcyclohe-xane-1,3-dione (1 mmol), aldehyde (1 mmol) and α naphthylamine (1 mmol) were stirred in the presence of $15 \mathrm{~mol} \%$ of L -Proline in ethanol (2 mL) at room temperature for the stipulated time (Table 2). The progress of the reaction was monitored by TLC. After completion of the reaction, the reaction mixture was diluted with water (5 mL) and extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$). The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and recrystallized from hot ethanol to afford the pure product.

4.3. Characterization data of some representative compounds

4.3.1. 10,10-Dimethyl-7-(p-tolyl)-9,10,11,12-
tetrahydrobenzo[c]acridin-8(7H)-one (4b)
0.334 g (91%); pale yellow solid; $\mathrm{mp} 212-214^{\circ} \mathrm{C}$. IR (KBr): 3323, 3077, 2985, 1655, 1589 ($\mathrm{C}=0$), 1523, 1446, $804 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 500 \mathrm{MHz}$): $1.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 1.26 (s, 3H, CH 3), 2.07-2.27 (dd, 2H, C9-H), 2.51-2.71 (dd, $\left.2 \mathrm{H}, \mathrm{C}_{11}-\mathrm{H}\right), 2.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 5.42\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{7}-\mathrm{H}\right), 7.11-8.10$ ($\mathrm{m}, 9 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $8.52\left(\mathrm{~d}, 1 \mathrm{H}, J=7.3, \mathrm{C}_{6}-\mathrm{H}\right), 9.40(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 125 \mathrm{MHz}$): $\delta 27.23,29.67,32.64,36.87$, 41.00, 50.56, 67.76, 87.98, 106.84, 119.85, 121.86, 122.72, 123.59, 124.05, 126.53, 128.19, 128.75, 128.92, 131.33, 133.05, 146.14, 152.87, 156.07, 194.01. MS (EI), m/z $(\%)=367\left(\mathrm{M}^{+}, 70\right), 276$ (95). HRMS (EI) Found: M^{+}, 367.1904. $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NO}$ requires $\mathrm{M}^{+}, 367.1908$. Anal Calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NO}: \mathrm{C}, 84.98$; $\mathrm{H}, 6.86$; $\mathrm{N}, 3.81$. Found: C, 90.05 ; H , 6.91; N, 3.65.
4.3.2. 7-(4-Methoxyphenyl)-10,10-dimethyl-9,10,11,12-tetrahydrobenzo[c]acridin-8(7H)-one (4c)
0.352 g (92%); white solid; mp 206-207 ${ }^{\circ} \mathrm{C}$. IR (KBr): 3318, 3098, 2921, 1651, 1532 ($\mathrm{C}=\mathrm{O}$) , 1505, 1434, $1154,832 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 500 \mathrm{MHz}$): 1.13 $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.03-2.25\left(\mathrm{dd}, 2 \mathrm{H}, \mathrm{C}_{9}-\mathrm{H}\right)$,
2.45-2.74 (dd, 2H, $\left.\mathrm{C}_{11}-\mathrm{H}\right), 4.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.06(\mathrm{~s}, 1 \mathrm{H}$, $\left.\mathrm{C}_{7}-\mathrm{H}\right), 7.14-8.06(\mathrm{~m}, 9 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 8.62\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.5, \mathrm{C}_{6}-\mathrm{H}\right)$, 9.54 (s, 1H, NH). ${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 125 \mathrm{MHz}$): $\delta 26.31$, 28.56, 30.54, 35.53, 40.09, 51.43, 64.87, 76.98, 81.21, 89.76, 104.65, 118.76, 120.65, 123.65, 123.97, 125.03, 127.43, 128.20, 129.43, 129.54, 130.43, 132.43, 144.32, 150.43, 155.43, 195.54. MS (EI), m/z (\%) = $383\left(\mathrm{M}^{+}, 70\right), 276$ (92). HRMS (EI) Found: M^{+}, 383.2109. $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NO}_{2}$ requires $\mathrm{M}^{+}, 383.1921$. Anal Calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NO}_{2}$: C, 81.43; $\mathrm{H}, 6.57$; N, 3.65. Found: C, 81.21 ; H, 6.65; N, 3.86.
4.3.3. 10,10-Dimethyl-7-(4-nitrophenyl)-9,10,11,12-tetrahydrobenzo[c]acridin-8(7H)-one (4f)
0.378 g (95\%); yellow solid; mp 241-242 ${ }^{\circ} \mathrm{C}$. IR (KBr): 3306, 3065, 2897, 1643, 1567 ($\mathrm{C}=0$), 1512, 1421, 1142, $819 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 500 \mathrm{MHz}$): $1.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 1.41 (s, 3H, CH ${ }_{3}$), 2.08-2.34 (dd, 2H, C9-H), 2.56-2.83 (dd, $\left.2 \mathrm{H}, \mathrm{C}_{11}-\mathrm{H}\right), 5.89\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{7}-\mathrm{H}\right), 7.18-7.98$ (m, 9H, Ar-H), 8.74 (d, $1 \mathrm{H}, \mathrm{J}=8.0, \mathrm{C}_{6}-\mathrm{H}$), $9.67(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}, 125 MHz): $\delta 27.21,29.33,31.43,33.43,42.49,52.55,66.54$, $74.88,88.76,106.88,117.43,121.33,122.21,123.30$, 124.21, 126.10, 129.11, 129.43, 129.42, 131.34, 133.54, 147.21, 153.65, 157.87, 196.33. MS (EI), m/z (\%) = 398 (M^{+}, 70), 196 (94). HRMS (EI) Found: $\mathrm{M}^{+}, 398.2002 . \mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}$: requires M^{+}, 398.1611. Anal Calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}$: C , 75.36; H, 5.57; N, 7.03. Found: C, 75.30; H, 5.87; N, 7.21.
4.3.4. 10,10-Dimethyl-7-(2-nitrophenyl)-9,10,11,12-tetrahydrobenzo[c]acridin-8(7H)-one (4g)
0.378 g (93\%); yellow solid; mp 228-229 ${ }^{\circ} \mathrm{C}$. IR (KBr): 3318, 3098, 2921, 1651, 1532 ($\mathrm{C}=0$), 1505, 1434, 1154, $832 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 500 \mathrm{MHz}$): $1.16\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 1.38 (s, 3H, CH 3), 2.10-2.41 (dd, 2H, C9-H), 2.58-2.89 (dd, $\left.2 \mathrm{H}, \mathrm{C}_{11}-\mathrm{H}\right), 5.91\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{7}-\mathrm{H}\right), 7.14-8.03(\mathrm{~m}, 9 \mathrm{H}, \operatorname{Ar}-\mathrm{H})$, $8.82\left(\mathrm{~d}, 1 \mathrm{H}, J=8.0, \mathrm{C}_{6}-\mathrm{H}\right), 9.83(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 125 \mathrm{MHz}$): $\delta \delta 25.43,30.23,32.54,36.42,40.87$, 53.33, 67.34, 77.41, 88.76, 119.55, 120.22, 121.66, 122.41, 124.09, 125.31, 125.87, 129.09, 129.65, 130.42, 132.76, 135.31, 148.43, 156.72, 158.34, 197.67. MS (EI), m/z $(\%)=398\left(\mathrm{M}^{+}, 70\right), 196$ (95). HRMS (EI) Found: M^{+}, 398.1342. $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires $\mathrm{M}^{+}, 398.1611$. Anal Calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 75.36 ; $\mathrm{H}, 5.57$; $\mathrm{N}, 7.03$. Found: C, 75.16; H, 5.65; N, 7.09.
4.3.5. 7-(4-Fluorophenyl)-10,10-dimethyl-9,10,11,12-tetrahydrobenzo[c]acridin-8(7H)-one (4h)
0.352 g (95\%); white solid; mp 218-219 ${ }^{\circ} \mathrm{C}$. IR (KBr): 3315, 3069, 2973, 1640, 1531 ($\mathrm{C}=0$), 1514, 1439, 1125, $836 \mathrm{~m}^{-1} .{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 500 \mathrm{MHz}\right): 1.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.08-2.34\left(\mathrm{dd}, 2 \mathrm{H}, \mathrm{C}_{9}-\mathrm{H}\right), 2.45-2.81(\mathrm{dd}$, $\left.2 \mathrm{H}, \mathrm{C}_{11}-\mathrm{H}\right), 5.92\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{7}-\mathrm{H}\right), 7.11-7.89(\mathrm{~m}, 9 \mathrm{H}, \operatorname{Ar}-\mathrm{H})$, 8.62 (d, 1H, $J=7.5, \mathrm{C}_{6}-\mathrm{H}$), 9.61 (s, $\left.1 \mathrm{H}, \mathrm{NH}\right) .{ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 125 \mathrm{MHz}$): $\delta \delta 27.32,31.03,33.04,37.23$, 44.92, 58.41, 69.29, 78.44, 89.70, 119.02, 120.44, 120.89, 123.07, 124.26, 125.04, 125.89, 129.12, 129.54, 131.07, 133.52, 139.54, 149.43, 157.56, 159.42, 198.98. ${ }^{19}$ F NMR (DMSO- $\left.d_{6}, 470 \mathrm{MHz}\right):-60.09 . \mathrm{MS}(E I), \mathrm{m} / \mathrm{z}(\%)=371\left(\mathrm{M}^{+}\right.$, 70), 276 (92). HRMS (EI) Found: $\mathrm{M}^{+}, 371.2101$. $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{FNO}$ requires M^{+}, 371.1703. Anal Calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{FNO}: \mathrm{C}, 80.84$; H, 5.97; N, 3.77. Found: C, 80.42; H, 6.05; N, 3.73.
4.3.6. 7-(2-Fluorophenyl)-10,10-dimethyl-9,10,11,12-tetrahydrobenzo[c]acridin-8(7H)-one (4i)
0.356 g (96\%); pale yellow solid; mp231-233 ${ }^{\circ} \mathrm{C}$. IR (KBr): 3373, 3053, 2983, 1674, 1530 ($\mathrm{C}=\mathrm{O}$), 1520, 1423, $1145,823 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 500 \mathrm{MHz}$): 1.12 ($\mathrm{s}, 3 \mathrm{H}$, CH_{3}), $1.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.05-2.35\left(\mathrm{dd}, 2 \mathrm{H}, \mathrm{C}_{9}-\mathrm{H}\right), 2.42-2.65$ (dd, 2H, C $11-\mathrm{H}$), $6.05\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{7}-\mathrm{H}\right), 7.21-8.11(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, $8.74\left(\mathrm{~d}, 1 \mathrm{H}, J=8.0, \mathrm{C}_{6}-\mathrm{H}\right), 9.65(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (DMSO-d $d_{6}, 125 \mathrm{MHz}$): $\delta 29.43,32.43,35.04,39.54$, 44.56, 59.54, 68.65, 75.87, 89.43, 118.54, 121.44, 121.99, 123.65, 124.54, 125.43, 125.65, 129.43, 129.84, 131.37, 133.62, 141.54, 147.43, 154.58, 159.54, 197.87. ${ }^{19}$ F NMR (DMSO-d $d_{6}, 470 \mathrm{MHz}$): -61.03. MS (EI), m/z (\%) $=371\left(\mathrm{M}^{+}, 70\right), 276$ (95). HRMS (EI) Found: M^{+}, 371.165709. $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{FNO}$ requires $\mathrm{M}^{+}, 371.1708$. Anal Calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{FNO}: \mathrm{C}, 80.84$; H, 5.97; N, 3.77. Found: C, 80.61; H, 5.65; N, 3.83.
4.3.7. 10,10-Dimethyl-7-(4-(trifluoromethyl)phenyl)-9,10,11,12-tetrahydrobenzo[c]acridin-8(7H)-one (4j)
0.408 g (97\%); white solid; mp $276-277^{\circ} \mathrm{C}$. IR (KBr): 3332, 3076, 2971, 1651, 1522 ($\mathrm{C}=0$), 1525, 1474, 1124, $822 \mathrm{~cm}^{-1} .^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 500 \mathrm{MHz}\right): 1.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 1.23 (s, 3H, CH ${ }_{3}$), 2.05-2.32 (dd, 2H, C9-H), 2.43-2.84 (dd, $\left.2 \mathrm{H}, \mathrm{C}_{11}-\mathrm{H}\right), 5.97\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{7}-\mathrm{H}\right), 7.17-8.12(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.73$ (d, $\left.1 \mathrm{H}, J=7.5, \mathrm{C}_{6}-\mathrm{H}\right), 9.45(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}, 125 MHz): $\delta 26.34,29.42,31.54,33.65,42.76,55.65,68.65$, $76.54,85.43,88.65,105.43,119.54,121.43,123.98,124.54$, 126.32, 127.08, 128.21, 129.21, 129.76, 131.32, 133.83, $137.96\left(\mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{CF}}=255.76 \mathrm{~Hz}\right), 147.34,156.43,158.09,198.56$. ${ }^{19} \mathrm{~F}$ NMR (DMSO- d ${ }_{6}, 470 \mathrm{MHz}$): -111.2. MS (EI), m/z $(\%)=421\left(\mathrm{M}^{+}, 70\right), 276$ (98). HRMS (EI) Found: M^{+}, 421.2106. $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{NO}$ requires $\mathrm{M}^{+}, 421.1709$. Anal Calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{NO}$: C, 74.10; H, 13.52; N, 3.32. Found: C, 74.54, 13.21; H, 3.45.

4.3.8. 10,10 -Dimethyl-9,10,11,12-

tetrahydrobenzo[c]acridin-8(7H)-one (4k)
0.243 g (88%); yellow solid; mp 187-189 ${ }^{\circ} \mathrm{C}$. IR (KBr): 3323, 3065, 2937, 1665, 1548 ($\mathrm{C}=0$), 1512, 1423, 1129, $823 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 500 \mathrm{MHz}\right): 1.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 1.23 (s, 3H, CH3), 2.15-2.43 (dd, 2H, C9-H), 2.48-2.87 (dd, $\left.2 \mathrm{H}, \mathrm{C}_{11}-\mathrm{H}\right), 6.18\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{7}-\mathrm{H}\right), 7.08-7.78(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.65$ $\left(\mathrm{d}, 1 \mathrm{H}, J=8.0, \mathrm{C}_{6}-\mathrm{H}\right), 9.76(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}, 125 MHz): $\delta 28.31,29.50,33.74,38.03,44.87,76.98,81.21$, 89.76, 125.03, 127.43, 128.20, 129.43, 129.54, 130.43, 132.43, 144.32, 150.43, 155.43, 195.54. MS (EI), m/z $(\%)=277\left(\mathrm{M}^{+}, 70\right), 151$ (76). HRMS (EI) Found: M^{+}, 277.1509. $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}$ requires $\mathrm{M}^{+}, 277.1501$. Anal Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}: \mathrm{C}, 82.28$; $\mathrm{H}, 6.90$; N, 5.05. Found: C, 82.34 ; H , 6.65; N, 5.36.
4.3.9. 7,10,10-Trimethyl-9,10,11,12-tetrahydrobenzo[c]acridin-8(7H)-one (4l)
0.253 g (87%); yellow solid; $\mathrm{mp} 191-192{ }^{\circ} \mathrm{C}$. IR (KBr): 3336, 3087, 2987, 1643, 1543 ($\mathrm{C}=0$), 1532, 1465, 1132, $818 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 500 \mathrm{MHz}$): $1.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.12-2.45\left(\mathrm{dd}, 2 \mathrm{H}, \mathrm{C}_{9}-\mathrm{H}\right), 2.55-2.60(\mathrm{dd}$, $\left.2 \mathrm{H}, \mathrm{C}_{11}-\mathrm{H}\right), 3.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.32\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{7}-\mathrm{H}\right), 7.09-7.78$ $(\mathrm{m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.56\left(\mathrm{~d}, 1 \mathrm{H}, J=8.0, \mathrm{C}_{6}-\mathrm{H}\right), 9.65(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 125 \mathrm{MHz}$): $\delta 28.08,29.23,33.34,37.76$,
$46.65,57.88,68.98,79.07,80.54,88.76,110.65,125.43$, 129.28, 129.74, 131.43, 138.43, 149.33, 154.43, 156.76, 196.87. MS (EI), m/z (\%) = 291 ($\mathrm{M}^{+}, 70$), 166 (79). HRMS (EI) Found: $\mathrm{M}^{+}, 291.180309 . \mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}$ requires $\mathrm{M}^{+}, 291.1608$. Anal Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}: \mathrm{C}, 82.44 ; \mathrm{H}, 7.26 ; \mathrm{N}, 4.81$. Found: C, 82.06; H, 7.32; N, 4.43.

4.3.10. 7-Isopropyl-10,10-dimethyl-9,10,11,12-

 tetrahydrobenzo[c]acridin-8(7H)-one (4m)0.283 g (89%); pale yellow solid; mp $195-197^{\circ} \mathrm{C}$. IR (KBr): 3318, 3098, 2921, 1651, 1532 (C=O), 1505, 1434, $1154,832 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 500 \mathrm{MHz}$): 1.13 ($\mathrm{s}, 3 \mathrm{H}$, CH_{3}), 1.31 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 2.03-2.25 (dd, 2H, C9-H), 2.45-2.74 (dd, $2 \mathrm{H}, \mathrm{C}_{11}-\mathrm{H}$), 3.45 (hep., 1H, CH), 4.56 (d, $6 \mathrm{H}, 2 \times \mathrm{CH}_{3}$), 6.21 (s, 1H, C 7 -H), 7.16-8.02 (m, 5H, Ar-H), 8.72 (d, 1 H , $J=7.5, \mathrm{C}_{6}-\mathrm{H}$), $9.65(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}, $125 \mathrm{MHz}): \delta 26.31,28.56,30.54,32.43,33.27,34.65$, 35.53, 40.09, 51.43, 64.87, 76.98, 81.21, 89.76, 128.20, 129.43, 129.54, 131.04, 131.23, 143.32, 152.65, 153.43, 194.60. MS (EI), m/z (\%) = $319\left(\mathrm{M}^{+}, 70\right), 276$ (90), 193 (45). HRMS (EI) Found: $\mathrm{M}^{+}, 319.1908 . \mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}$ requires M^{+}, 319.1932. Anal Calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}: \mathrm{C}, 82.72 ; \mathrm{H}, 7.89$; N , 4.38. Found: C, 82.56; H, 7.65; N, 4.66.

Acknowledgements

We thank the Payame Noor University (PNU), Tehran, Iran, for financial support. Also, I express special thanks to my wife (Dr. A. Hashemi) and my daughters (Niloofar and Niki).

References

[1] B.B. Toure, D.G. Hall, Chem. Rev. 109 (2009) 4439.
[2] P. Lu, Y.G. Wang, Synlett (2010) 165.
[3] D.J. Vugts, M.M. Koningstein, R.F. Schmitz, F.J.J. De Kanter, M.B. Groen, R.V.A. Orru, Chem. Eur. J. 12 (2006) 7178.
[4] T.E. Nielsen, S.L. Schreiber, Angew. Chem. Int. Edit. 47 (2008) 48.
[5] D.P. Spalding, E.C. Chapin, H.S. Mosher, J. Org. Chem. 19 (1954) 357.
[6] G.J. Finaly, G.J. Atwell, B.C. Baguley, Oncol. Res. 11 (1999) 249.
[7] H.H. Lee, W.R. Wilson, D.M. Ferry, P. van Zijl, S.M. Pullen, W.A. Denny, J. Med. Chem. 39 (1996) 2508.
[8] M. Demeunynck, F. Charmantray, Curr. Pharm. Des. 7 (2001) 1703.
[9] N. Martin, M. Quinteiro, C. Saoane, L. Mora, M. Saure, E. Ockoa, A. Morales, J. Hetrocycl. Chem. 51 (1995) 235.
[10] X.S. Wang, D.Q. Shi, Y.F. Zhang, S.H. Wang, S.J. Tu, Chin. J. Org. Chem. 24 (2004) 430.
[11] S.J. Tu, C.B. Miao, Y.B. Gao, Y.J. Feng, J.C. Feng, Chin. J. Org. Chem. 20 (2002) 703.
[12] N. Zotova, A. Franzke, A. Amstrong, D.G. Blackmond, J. Am. Chem. Soc. 129 (2007) 15100.
[13] B. List, P. Pojarliev, W.T. Biller, J. Am. Chem. Soc. 124 (2002) 827.
[14] B.T. Hahn, R. Froehlich, K. Harms, F. Glorius, Angew. Chem. Int. Ed. 47 (2008) 9985.
[15] H. Xie, L. Zu, H.R. Queis, H. Li, J. Wang, W. Wang, Org. Lett. 10 (2008) 1923.
[16] S.R. Guo, Y.Q. Yuan, Synth. Commun. 38 (2008) 2722.
[17] (a) J.S. Yadav, S.P. Kumar, G. Kondaji, R.S. Rao, K. Nagaiah, Chem. Lett. 33 (2004) 1168;
(b) J. Mabry, B. Ganem, Tetrahedron Lett. 47 (2006) 55.
[18] A. Kumar, R.A. Maurya, Tetrahedron 63 (2007) 1946.
[19] (a) R. Varala, A. Nasreen, R. Enugala, S.R. Adapa, Tetrahedron Lett. 48 (2007) 69;
(b) B.M. Borah, G. Das, Tetrahedron Lett. 47 (2006) 3135;
(c) G.i. Li, G. Zhao, J. Org. Chem. 70 (2005) 4272;
(d) A. Yanagisawa, Y. Nakamura, T. Arai, Tetrahedron Asymmetry 15 (2004) 1909.
[20] D.B. Ramachary, N.S. Chowdari, C.F. Barbas, Angew. Chem. Int. Ed. 42 (2003) 4233.
[21] D.B. Ramachary, M. Kishore, J. Org. Chem. 72 (2007) 5056.
[22] A. Shabani, A. Rahmati, J. Mol. Catal. A: Chem. 249 (2006) 246.
[23] S.D. Sharma, P. Hazarika, D. Konwar, Tetrahedron Lett. 49 (2008) 2216.
[24] M.M. Heravi, F. Derikvand, F.F. Bamoharram, J. Mol. Catal. A: Chem. 263 (2007) 112.
[25] (a) A. Bogevig, N. Kumaragurubaran, K. Juhl, W. Zhuang, K.A. Jorgensen, Angew. Chem. Int. Ed. 41 (2002) 1790;
(b) S.E. Wolkenberg, D.D. Wisnoski, W.H. Leister, Y. Wang, Z. Zhao, C.W. Lindsley, Org. Lett. 6 (2004) 1453.
[26] M.M. Heravi, K. Bakhtiari, H.A.S. Oskooie, J. Taheri, Mol. Catal. A: Chem. 263 (2007) 279.
[27] A.Y. Usyatinsky, Y.L. Khmelnitsky, Tetrahedron Lett. 41 (2000) 5031.
[28] E. Cortes, R. Martinez, J.G. Avila, R.A. Toscano, J. Hetrocycl. Chem. 25 (1988) 895 .
[29] X.S. Wang, M.M. Zhang, Z.S. Zeng, D.Q. Shi, S.J. Tu, Z.Y. Wei, Z.M. Zong, Arkivoc. (2006) 117.
[30] V. Nadaraj, S.T. Selvi, S. Mohan, Eur. J. Med. Chem. 44 (2009) 976.
[31] H. Zang, Y. Zhang, Y. Mo, B. Cheng, Synth. Comm. 41 (2011) 3207.

[^0]: * Corresponding author.

 E-mail addresses: heravimr@yahoo.com, heravimr@gmail.com (M.R. Poor Heravi).

