Full paper/Mémoire

An unexpected transformation by reduction of isoxazolines

Naoufel Ben Hamadi *, Moncef Msaddek
Laboratory of Synthesis Heterocyclic and Natural Substances, Department of Chemistry, Faculty of Sciences of Monastir, Boulevard of Environment, 5000 Monastir, Tunisia

ARTICLE INFO

Article history:

Received 8 April 2012
Accepted after revision 4 June 2012
Available online 12 July 2012

Keywords:

1,3-dipolar cycloaddition
Isoxazolines
Regioselectivity
Stereo-selectivity
Vinylogous amide

Abstract

Aromatic nitrile oxides undergo regio- and stereo-specific 1,3-dipolar cycloaddition reactions with racemic 5 -hydroxy-4-methyl-1,5-dihydropyrrol-2-one derivatives 1. In each case, a single product 3 results from an anti approach to the hydroxyl group, the oxygen of the 1,3-dipole being attached to C-5 of pyrrolidinones. A detailed study of a procedure for the selective reduction of Δ^{2}-isoxazolines to the corresponding vinylogous amide derivatives is reported.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Over the years, nitrile oxides have become important building blocks in organic synthesis. The nitrile oxidesolefin 1,3-dipolar cycloaddition is a powerful reaction in that it can create as many as two new contiguous stereogenic centres in a single step [1]. In general, a reductive ring opening of Δ^{2}-isoxazolines can result in either complete reduction to an amino alcohol or $\mathrm{N}-\mathrm{O}$ bond reduction/hydrolysis to β-hydroxy ketones through hydroxyimine intermediates [2]. We envisioned that a judicious choice of reducing agent other than the reported catalytic hydrogenolysis [3] to give the vinylogous amide derivatives allowing the synthesis of many products of potential interest [4]. Based on an evaluation of the nitrile oxides cycloaddition, it was felt that the stereochemistry of these new centers could be controlled if the reaction system were properly designed. As a continuation of our effort to utilize heterocyclic compounds as dipolarophiles in 1,3-dipolar cycloaddition reactions [5], we report the

[^0]cycloaddition of aromatic nitrile oxides with chiral 5-hydroxy-4-methyl-1,5-dihydropyrrol-2-one derivatives.

2. Results and discussion

The synthetic route to the targeted Δ^{2}-isoxazolines 3ae-be is outlined in Scheme 2. The 1,3-dipolar cycloaddition of 5-hydroxy-4-methyl-1,5-dihydropyr-rol-2-ones 1a-b with aromatic nitrile oxides $2 \mathbf{c - e}$ at $110^{\circ} \mathrm{C}$ in toluene solution for 2 h , compound 3ae-be was obtained (Scheme 1).

The 1,3-dipolar cycloaddition of arylnitrile oxides is, in each case, regiospecific. The chemical shifts of C-6a (${ }^{13} \mathrm{C}$ NMR) are in excellent agreement with those usually obtained when this quaternary carbon is attached to oxygen atom. The syn or anti stereochemistry of this cycloaddition product was determined from a NOESY spectrum. The trans relationship between protons $3 \mathrm{a}-\mathrm{H}$ and $6-\mathrm{H}$ was deduced from absence of an NOE effect. The complete anti-selectivity observed in reactions with 5-hydroxy-4-methyl-1,5-dihydropyrrol-2-ones, electrostatic repulsion should account for the observed results. Moreover, syn orientation of the oxygen-containing pyrrolidinones to the oxygen atom of nitrile oxide leads to greater repulsion in the transition state (Scheme 2) [6].

$$
\begin{aligned}
& \text { 1a-b } \\
& a: A r^{1}=P h \\
& \text { b: } \mathrm{Ar}^{1}=p-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{OCH}_{3} \\
& E t_{3} N \text {, toluene } \\
& \text { anti-3 } \\
& \text { c: } \mathrm{Ar}^{2}=\mathrm{Ph} \\
& \mathrm{~d}: \mathrm{Ar}^{2}=p-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CH}_{3} \\
& \mathrm{e}: \mathrm{Ar}^{2}=p-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{OCH}_{3} \\
& \text { 3ac: } \mathrm{Ar}^{1}=\mathrm{Ph}, \mathrm{Ar}^{2}=\mathrm{Ph} \\
& \text { 3ad: } \mathrm{Ar}^{1}=\mathrm{Ph}, \mathrm{Ar}^{2}=p-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CH}_{3} \\
& \text { 3ae: } \mathrm{Ar}^{1}=\mathrm{Ph}, \mathrm{Ar}^{2}=p-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{OCH}_{3} \\
& \text { 3bc: } \mathrm{Ar}^{1}=p-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{OCH}_{3}, \mathrm{Ar}^{2}=\mathrm{Ph} \\
& \text { 3bd: } \mathrm{Ar}^{1}=p-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{OCH}_{3}, \mathrm{Ar}^{2}=p-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CH}_{3} \\
& \text { 3be: } \mathrm{Ar}^{1}=p-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{OCH}_{3}, \mathrm{Ar}^{2}=p-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{OCH}_{3}
\end{aligned}
$$

Scheme 1.

A similar mode of addition has been reported earlier for the reaction of 5 -alkoxy- $2(5 H)$-furanone with aromatic nitrile oxides [7] as well as by other dipoles [8]; it is mainly determined by HOMO, LUMO interactions [9].

The Δ^{2}-isoxazolines 3ac-be proved unexpectedly resistant to reduction by a variety of reducing agents, including zinc-acetic acid system [10], sodium borohydride with either $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ or $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ [11], lithium aluminium
hydride [12], sodium in ethanol, hydrogenation over nickel, palladium, or platinum oxide [13], and $\mathrm{Mo}(\mathrm{CO})_{6}$ [14]. Reduction of 3 to the vinylogous amide derivatives 4 was achieved cleanly and in high yield by using $\mathrm{Fe} / \mathrm{NH}_{4} \mathrm{Cl}$ in the presence of water [15] (Scheme 3).
${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, IR, HRMS, and elemental analyses characterized all the synthesized vinylogous amide derivatives 4. ${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 b c}$ showed one doublet at 0.72 ppm

$+\quad \mathrm{Ar}^{2}-\stackrel{\oplus}{\mathrm{C}}=\mathrm{N}-\stackrel{\ominus}{\mathrm{O}}$

TS-anti-3

anti-3

TS-syn-3

syn-3

Scheme 2.

Scheme 3.

Scheme 4.
corresponding to three methyl protons and showed multiplet at 3.62-3.67 for one proton attached at carbon $\mathrm{C}-2$, three protons correspond to $-\mathrm{OCH}_{3}$ group. Two doublet at 7.00 and 7.21 ppm are due to the $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ system corresponding to aromatic protons. The two $\mathrm{N}-\mathrm{H}$ groups appeared as a broad singulet at 7.39 and 8.22 ppm . The formation of the product was further confirmed by correct elemental analyses. The appearance of the two $\mathrm{N}-\mathrm{H}$ signals at different chemical shifts would be expected, since one of them will be intramolecularly H-bonded to the adjacent $\mathrm{C}=\mathrm{O}$. Also, the Z configuration was deduced from observation of an NOE effect between ortho-aromatic protons and the methyl protons at C4.

The plausible mechanism for the formation of isoxazolines $\mathbf{4}$ is given in Scheme 4. The back-donation from a π d filled orbital of Fe to the lumo π^{*} of isoxazoles, which should facilitate the N - O bond cleavage give the intermediate $\mathbf{3}^{\prime}$. The dehydration of the intermediate $\mathbf{3}^{\prime}$ leads to the formation of intermediate $\mathbf{3}^{\prime \prime}$. The final product of the cycloaddition $\mathbf{4}$ is obtained by isomerization of intermediate $\mathbf{3}^{\prime \prime}$.

3. Conclusion

In conclusion, our studies have revealed that the 1,3dipolar cycloaddition of aromatic nitrile oxides with various electron deficient olefins gives bicyclic Δ^{2} isoxazolines with complete regio- and stereo-selectivity.

The methyl group increases the dipolarophilic reactivity of the pyrrolidinones, as well as their regioselectivity. Finally, the electrostatic repulsion between oxygen-containing pyrrolidinones and the oxygen atom of nitrile oxide are the main reasons for the observed anti-selectivity. These heterocycles were reduced to unexpected vinylogous amide derivatives using iron and ammonium chloride.

4. Experimental details

Infrared spectra were recorded on a Perkin-Elmer IR197 spectrophotometer in KBr discs. NMR spectra were obtained with a Bruker AC 300 spectrometer operating at 300 MHz for ${ }^{1} \mathrm{H}$ and at 75.64 MHz for ${ }^{13} \mathrm{C}$ using TMS as the internal standard. Elemental analysis was performed with a Perkin-Elmer 240B microanalyzer. High-resolution mass spectra (HRMS) were recorded on a Waters Micromass GCT instrument. The melting points, thermal transitions, and mesomorphic textures were determined using an Olympus BX50 microscope equipped with a Mettler Toledo FP-82 hot-stage and a PM-30 exposure control unit. All the reagents were obtained from commercial sources and used without further purification. 5-hydroxy-4-methyl-1,5-dihydropyrrol-2-ones 1a-b were obtained by the reduction of citraconimide derivatives with NaBH_{4} [16]. The aromatic nitrile oxides $\mathbf{2 c - e}$ were prepared according to published procedures [17]. The organic solvents were of commercial grade quality and all were dried by traditional methods. In
general, all the compounds were purified by column chromatography on silica gel (60-120 mesh), and crystallization from analytical grade solvents. The purity of the sample was checked by thin-layer chromatography (Merck Kieselgel 60F254).

4.1. General procedure for the addition of aromatic nitrile

 oxides to 5-hydroxy-1,5-dihydropyrrol-2-one derivativesA solution of dipolarophiles $\mathbf{1 a - b}(1 \mathrm{mmol})$ and chloroximes $2 \mathbf{c - e}$ (1.1 mmol) in toluene (10 mL), was stirred at $110^{\circ} \mathrm{C}$. To this solution, trimethylamine (0.2 mL), dissolved in toluene (10 mL), was added dropwise. The precipitated triethylammonium chloride was removed by filtration and the filtrate was concentrated in vacuo, and chromatography (SiO_{2}; ethyl acetate/petroleum ether, 2:1) to afford compounds 3ac-be.
4.1.1. (3aR* $\left.{ }^{*} 6 R^{*}, 6 a S^{*}\right)$-6-exo-hydroxy-6a-methyl-3,5-diphenyl-3a,5,6,6a-tetrahydro-4H-pyrrolo[3,4-d]isoxazole-4-one 3ac

Yield ($214 \mathrm{mg}, 70 \%$), white solid. M.p $=224-225^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}) v_{\text {max }} / \mathrm{cm}^{-1}: 1640(\mathrm{C}=\mathrm{N}) ; 1740(\mathrm{C}=\mathrm{O}) ; 3300(\mathrm{OH}) .{ }^{1} \mathrm{H}-$ NMR (DMSO) $\delta: 1.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.11(\mathrm{~s}, 1 \mathrm{H}, 3 \mathrm{a}-\mathrm{H}), 4.61$ $(\mathrm{d}, 1 \mathrm{H}, \mathrm{OH}, J=7.8 \mathrm{~Hz}), 6.49(\mathrm{~d}, 1 \mathrm{H}, 6-\mathrm{H}, J=7.8 \mathrm{~Hz}), 7.23-$ 7.81 (m, 10H, $\mathrm{H}_{\text {arom }}$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (DMSO) $\delta: 19.12,61.04$, 89.35, 91.09, 122.90-137.00, 153.97, 169.01. Elemental analysis: $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires $\mathrm{C}, 70.12$; $\mathrm{H}, 5.23$; $\mathrm{N}, 9.09 \%$; Found: C, 70.15 ; H, 5.35; N, 8.99\%.
4.1.2. (3aR*, $\left.6 R^{*}, 6 a S^{*}\right)$-6-exo-hydroxy-6a-methyl-3-(4-methylphenyl)-5-phenyl-3a,5,6,6a-tetrahydro-4H-pyrrolo[3,4-d]isoxazole-4-one 3ad

Yield ($256 \mathrm{mg}, 80 \%$), white solid. M.p $=191-192^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}) v_{\max } / \mathrm{cm}^{-1}: 1635(\mathrm{C}=\mathrm{N}) ; 1735(\mathrm{C}=\mathrm{O}) ; 3300(\mathrm{OH}) .{ }^{1} \mathrm{H}-$ NMR (DMSO) $\delta: 1.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.19(\mathrm{~s}$, $1 \mathrm{H}, 3 \mathrm{a}-\mathrm{H}), 4.53$ (d, 1H, OH, J=7.5 Hz), 6.61 (d, 1H, 6-H, $J=7.5 \mathrm{~Hz}), 7.36-7.80\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{H}_{\text {arom }}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ (DMSO) $\delta: 19.20,21.01,60.02,89.40,90.93,123.45-140.89,154.31$, 168.59. Elemental analysis: $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires $\mathrm{C}, 70.79$; H, 5.63; N, 8.69\%; Found: C, 70.75; H, 5.56; N, 8.54\%.
4.1.3. (3aR*,6R*,6aS*)-6-exo-hydroxy-3-(4-methoxyphenyl)-6a-methyl-5-phenyl-3a,5,6,6a-tetrahydro-4H-pyrrolo[3,4-dJisoxazole-4-one 3ae

Yield ($236 \mathrm{mg}, 70 \%$), white solid. M.p $=202-203^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}) \mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}: 1630(\mathrm{C}=\mathrm{N}) ; 1740(\mathrm{C}=\mathrm{O}) ; 3300(\mathrm{OH}) .{ }^{1} \mathrm{H}-$ NMR (DMSO) $\delta: 1.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.18$ (s, 1H, 3a-H), 4.56 (d, 1H, OH, J=7.5 Hz), 6.53 (d, 1H, 6-H, $J=7.5 \mathrm{~Hz}$), 7.07-7.69 (m, 9H, $\mathrm{H}_{\text {arom }}$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ (DMSO) $\delta: 20.24,55.74,60.26,84.45,89.02,114.98-161.31$, 156.28, 170.45. Elemental analysis: $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires C, 67.44; H, 5.36; N, 8.28; Found: C, 67.55; H, 5.45; N, 8.31\%.
4.1.4. (3aR*,6R*,6aS*)-6-exo-hydroxy-5-(4-methoxyphenyl)-6a-methyl-3-phenyl-3a,5,6,6a tetrahydro-4H-pyrrolo[3,4-dJisoxazole-4-one 3bc

Yield ($276 \mathrm{mg}, 90 \%$), white solid. M. $\mathrm{p}=178-179^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}) \mathrm{v}_{\mathrm{max}} / \mathrm{cm}^{-1}: 1635(\mathrm{C}=\mathrm{N}) ; 1737(\mathrm{C}=\mathrm{O}) ; 3300(\mathrm{OH}) .{ }^{1} \mathrm{H}-$ NMR (DMSO) $\delta: 1.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.70$
(s, 1H, 3a-H), 5.56 (d, 1H, OH, J = 7.5 Hz), 6.94 (d, 1H, 6-H, $J=7.5 \mathrm{~Hz}), 7.02(\mathrm{~d}, 2 \mathrm{H})$ and $7.83(\mathrm{~d}, 2 \mathrm{H}): \mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ part. $J=9 \mathrm{~Hz}, 7.21-7.58\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{\text {arom }}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ (DMSO) δ : 19.02, 55.70, 59.50, 87.83, 91.71, 114.38-161.18, 154.38, 167.65. Elemental analysis: $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires $\mathrm{C}, 67.44$; H, 5.36; N, 8.28\%; Found: C, 67.50; H, 5.41; N, 8.33\%.
4.1.5. (3aR*,6R*,6aS*)-6-exo-hydroxy-5-(4-methoxyphenyl)-6a-methyl-3-(4-methylphenyl)-3a,5,6,6a-tetrahydro-4H-pyrrolo[3,4-d]isoxazole-4-one 3bd

Yield ($212 \mathrm{mg}, 60 \%$), white solid. M.p $=169-170^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}) v_{\text {max }} / \mathrm{cm}^{-1}: 1643(\mathrm{C}=\mathrm{N}) ; 1744(\mathrm{C}=\mathrm{O}) ; 3300(\mathrm{OH})$. ${ }^{1} \mathrm{H}-$ NMR (DMSO) $\delta: 1.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 3.77 (s, 3H, OCH_{3}), 4.67 (s, 1H, 3a-H), 5.47 (d, 1H, OH, $J=7.8 \mathrm{~Hz}), 6.91(\mathrm{~d}, 1 \mathrm{H}, 6-\mathrm{H}, J=7.8 \mathrm{~Hz}), 6.96(\mathrm{~d}, 2 \mathrm{H})$ and $7.41(\mathrm{~d}, 2 \mathrm{H})$: AA'BB' part. $J=9 \mathrm{~Hz}, 7.29(\mathrm{~d}, 2 \mathrm{H})$ and 7.80 (d, 2H): $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ part. $J=7.8 \mathrm{~Hz} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ (DMSO) δ : 19.06, 21.36, 55.61, 59.15, 88.15, 92.04, 114.11-157.67, 154.76, 167.40. Elemental analysis: $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires C, 68.17; H, 5.72; N, 7.95\%; Found: C, 68.30; H, 5.67; N, 7.79\%.
4.1.6. (3aR*, $\left.6 R^{*}, 6 a S^{*}\right)$-6-exo-hydroxy-3,5-di(4-methoxyphenyl)-6a-methyl-3a,5,6,6a-tetrahydro-4H-pyrrolo[3,4-d]isoxazole-4-one 3be

Yield ($144 \mathrm{mg}, 40 \%$), white solid. M.p $=181-182^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}) v_{\text {max }} / \mathrm{cm}^{-1}: 1638(\mathrm{C}=\mathrm{N}) ; 1733(\mathrm{C}=\mathrm{O}) ; 3300(\mathrm{OH})$. ${ }^{1} \mathrm{H}-$ NMR (DMSO) $\delta: 1.67\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3,74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.14(\mathrm{~s}, 1 \mathrm{H}, 3 \mathrm{a}-\mathrm{H}), 5.40(\mathrm{~d}, 1 \mathrm{H}, \mathrm{OH}$, $J=7.8 \mathrm{~Hz}), 7.15(\mathrm{~d}, 1 \mathrm{H}, 4-\mathrm{H}, J=7.8 \mathrm{~Hz}), 6.92(\mathrm{~d}, 2 \mathrm{H})$ and $7.36(\mathrm{~d}, 2 \mathrm{H}): \mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ part. $J=9 \mathrm{~Hz}, 7.06(\mathrm{~d}, 2 \mathrm{H})$ and 7.66 (d, 2H): $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ part. $J=8.7 \mathrm{~Hz} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ (DMSO) δ : 20.31, 55.62, 55.74, 60.36, 84.77, 89.69, 114.36-161.28, 157.79, 170.23. Elemental analysis: $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5}$ requires C, 65.21; H, 5.47; N, 7.60\%; Found: C, 65.33; H, 5.45; N, 7.75\%.

4.2. General procedure for reduction of isoxazolines

To a 100 mL round-bottomed flask isoxazoline (1 mmol), and $\mathrm{NH}_{4} \mathrm{Cl}(3 \mathrm{mmol})$ in ethanol and water ($1: 1,10 \mathrm{~mL}$) was added Fe powder (3 mmol). The mixture was heated to $80^{\circ} \mathrm{C}$ and was allowed to stir at this temperature for 3 h . The EtOH was removed under reduced pressure and the reaction mixture was extracted with dichlorometane $(3 \times 50 \mathrm{~mL})$. The organic solution was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporated and chromatography $\left(\mathrm{SiO}_{2}\right.$; ethyl acetate/petroleum ether, 3:1) to afford compounds 4ac-be.
4.2.1. (Z)-3-(amino(phenyl)methylene)-4-methyl-1-phenylpyrrolidine-2,5-dione 4ac

Yield ($284 \mathrm{mg}, 85 \%$), white solid. M.p $=196-197^{\circ} \mathrm{C}$. IR (KBr) $v_{\text {max }} / \mathrm{cm}^{-1}: 1732(\mathrm{C}=\mathrm{O}) ; 1735 \quad(\mathrm{C}=\mathrm{O}) ; 3330$ $\left(\mathrm{NH}_{2}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}(\mathrm{DMSO}) \delta: 0.82(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.74(\mathrm{q}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.42 (br s, 1H), 7.47 to $7.65(\mathrm{~m}, 10 \mathrm{H}), 8.35$ (br s, 1 H), ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (DMSO) $\delta: 16.6,38.2,93.3,127.4$, 127.8, 127.9, 129.0, 129.1, 130.2, 133.2, 136.2, 157.9, 170.6, 177.9. HRMS $(\mathrm{M}+\mathrm{H})^{+}$requires 309.1233 found 309.1239. Elemental analysis: $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 73.95 ; \mathrm{H}, 5.52$; $\mathrm{N}, 9.58$; found C 73.85 , H 5.66 , $\mathrm{N} 9.61 \%$.
4.2.2. (Z)-3-(amino(p-tolyl)methylene)-4-methyl-1-phenylpyrrolidine-2,5-dione 4ad

Yield ($245 \mathrm{mg}, 80 \%$), white solid. M.p $=182-183^{\circ} \mathrm{C}$. IR (KBr) $v_{\text {max }} / \mathrm{cm}^{-1}: 1730(\mathrm{C}=0) ; 1736(\mathrm{C}=\mathrm{O}) ; 3330\left(\mathrm{NH}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 0.83(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{q}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 7.43(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.94$ to $7,55(\mathrm{~m}$, $8 \mathrm{H}), 8.35$ (br s, 1 H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 17.1,39.0,95.4$, 114.6, 125.6, 127.3, 128.1, 128.9, 129.6, 155.2, 156.7, 159.3, 161.5, 171.8, 179.1. $\mathrm{HRMS}(\mathrm{M}+\mathrm{H})^{+}$requires 323.1390 found 323.1396. Elemental analysis: $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires C, C, 74.49; H, 5.92; N, 9.14; found C 75.63, H 5.87, N 9.09\%.
4.2.3. (Z)-3-(amino(4-methoxyphenyl)methylene)-4-methyl-1-phenylpyrrolidine-2,5-dione 4ae

Yield ($241 \mathrm{mg}, 75 \%$), white solid. M.p $=169-170^{\circ} \mathrm{C}$, IR (KBr) $v_{\text {max }} / \mathrm{cm}^{-1}: 1735(\mathrm{C}=\mathrm{O}) ; 1740(\mathrm{C}=\mathrm{O}) ; 3330\left(\mathrm{NH}_{2}\right),{ }^{1} \mathrm{H}$ NMR (DMSO) $\delta: 0.72$ (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 3.61$ (q, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 7.01(J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.21$ ($J=8.7 \mathrm{~Hz} ; 2 \mathrm{H}$), 7.44 (br s, 1H), 7.53 to 7,56 (m, 5H), 8.19 (br s, 1 H$).{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (DMSO) $\delta: 16.5,38.1,55.7,93.4,114.2$, $125.8,127.8,128.6,129.1,130.2,136.2,157.6,158.8,170.9$, 178.1. HRMS $(\mathrm{M}+\mathrm{H})^{+}$requires 339.1339 found 339.1342. Elemental analysis: $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires $\mathrm{C}, 70.79$; $\mathrm{H}, 5.63$; $\mathrm{N}, 8.69$; found C 70.71 , H 5.58 , N 8.55%.
4.2.4. (Z)-3-(amino(phenyl)methylene)-1-(4-methoxyphenyl)-4-methylpyrrolidine-2,5-dione 4bc

Yield ($306 \mathrm{mg}, 95 \%$), white solid. M.p $=174-175^{\circ} \mathrm{C}$. IR (KBr) $v_{\max } / \mathrm{cm}^{-1}: 1729(\mathrm{C}=\mathrm{O}) ; 1738(\mathrm{C}=\mathrm{O}) ; 3330\left(\mathrm{NH}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 0.72(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.62(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 7.00(\mathrm{~J}=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~J}=9.0 \mathrm{~Hz}, 2 \mathrm{H})$, 7.39 (br s, 1H), 7.51 to $7,59(\mathrm{~m}, 5 \mathrm{H}), 8.22$ (br s, 1H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 16.6,38.1,55.7,93.4,114.2,125.8$, 127.8, 128.6, 129.1, 130.1, 136.3, 157.6, 158.8, 170.9, 178.1. HRMS $(\mathrm{M}+\mathrm{H})^{+}$requires 339.1339 found 339.1331. Elemental analysis: $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires $\mathrm{C}, 70.79 ; \mathrm{H}, 5.63$; $\mathrm{N}, 8.69$; found C 70.82, H 5.59, N 8.75\%.
4.2.5. (Z)-3-(amino(p-tolyl)methylene)-1-(4-methoxyphenyl)-4-methylpyrrolidine-2,5-dione 4bd

Yield ($235 \mathrm{mg}, 70 \%$), white solid. M.p $=166-167^{\circ} \mathrm{C}$, IR (KBr) $v_{\text {max }} / \mathrm{cm}^{-1}: 1737(\mathrm{C}=0) ; 1737(\mathrm{C}=\mathrm{O}) ; 3330\left(\mathrm{NH}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 0.84(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{q}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 4.75$ (br s, 1H), 6.97 to $7,52(\mathrm{~m}$, $8 \mathrm{H}), 8.41$ (br s, 1 H$) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 17.0,39.0,55.8$, $95.4,114.7,125.6,127.2,128.2,128.8,129.6,155.1,156.8$, 159.4, 161.4, 171.9, 179.1. HRMS $(\mathrm{M}+\mathrm{H})^{+}$requires 353.1495 found 353.1490. Elemental analysis: $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires $\mathrm{C}, 71.41$; $\mathrm{H}, 5.99$; $\mathrm{N}, 8.33$; found C 71.53, H 5.89, N 8.37%.
4.2.6. (Z)-3-(amino(4-methoxyphenyl)methylene)-1-(4-methoxyphenyl)-4-methylpyrrolidine-2,5-dione 4be

Yield ($264 \mathrm{mg}, 75 \%$), white solid. M. $\mathrm{p}=199-200^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}) v_{\max } / \mathrm{cm}^{-1}: 1730(\mathrm{C}=\mathrm{O}) ; 1733(\mathrm{C}=0) ; 3330\left(\mathrm{NH}_{2}\right),{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 0.88(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.49(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.76$ (s, 3H), $3.80(\mathrm{~s}, 3 \mathrm{H}), 4.73$ (br s, 1H), $6.90(\mathrm{~J}=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 7.11(\mathrm{~J}=8.7 \mathrm{~Hz} ; 2 \mathrm{H}), 7.23(\mathrm{~J}=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.37$ $(J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.39$ (br s, 1 H$) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta:$ 17.0, 39.0, 55.8, 55.9, 95.4, 114.7, 114.8, 125.6, 127.8, 128.2, 128.8, 156.7, 159.4, 161.4, 171.9, 179.0. HRMS $(\mathrm{M}+\mathrm{H})^{+}$requires 369.1444 found 369.1440. Elemental analysis: $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires $\mathrm{C}, 68.17$; $\mathrm{H}, 5.72$; $\mathrm{N}, 7.95$; found C 68.13, H 5.66, N 7.88\%.

References

[1] (a) K.H. Robert, R.S. Becky, J. Org. Chem. 55 (1990) 4603;
(b) L Fišera, L. Jarosková, I. Matejková, H. Heimgartner, Heterocycles 40 (1995) 271.
[2] D.P. Curran, J. Am. Chem. Soc. 104 (1982) 4024.
[3] (a) D.P. Curran, J. Am. Chem. Soc. 105 (1983) 5826;
(b) P. Baraldi, A. Barco, S. Benetti, S. Manfredini, D. Simoni, Synthesis (1987) 276;
(c) A. Guarna, A. Guidi, A. Goti, A. Brandi, F. de Sarlo, Synthesis (1989) 175;
(d) J.W. Bode, E.M. Carreira, Org. Lett. 3 (2001) 1587;
(e) J.W. Bode, E.M. Carreira, J. Am. Chem. Soc. 123 (2001) 3611.
[4] F. Mark, G.A.D. Yonghong, J.K. Charles, P. Damon, R.D. Jeffrey, Bioorg. Med. Chem. Lett. 15 (2005) 3044.
[5] (a) N. Ben Hamadi, M. Msaddek, Heterocycl. Commun. 12 (2006) 457; (b) N. Ben Hamadi, M. Msaddek, C. R. Chim. 14 (2011) 891.
[6] S.H. Schroeter, R. Appel, R. Brammer, G.O. Schenck, Justus Liebigs Ann. Chem. 42 (1966) 697.
[7] (a) L Fišera, P. Oravec, Collect. Czech. Chem. Commun. 52 (1987) 1315; (b) B. De Lange, B.L. Feringa, Tetrahedron Lett. (1988) 5317;
(c) L Fišera, P. Oravec, G. Roman, Monatschefte für Chemie 122 (1991) 165.
[8] R.J.L. García, A. Fraile, G. Gonzàlez, M.R. Martín, F.R. Clemente, G.R. Ruth, J. Org. Chem. 68 (2003) 6534, and references therein.
[9] R. Huisgen, in: A. Padwa (Ed.), 1,3-Dipolar Cycloaddition Chemistry, vol. 1. Wiley, New York, 1984, 1.
[10] P.M. Wovkulich, M.R. Uskokovic, Tetrahedron 41 (1985) 3455.
[11] (a) M. Annunziata, F. Cinquini, A. Cozzi, R.A. Gilardi, J. Chem. Soc. Perkin Trans. 1 (1985) 2289;
(b) K. Amstrong, W. Collington, G. Knight, A. Naylor, S. Warren, J. Chem. Soc. Perkin Trans. 1 (1993) 1433.
[12] (a) R. Huisgen, H. Hauck, R. Grashey, H.H. Seidl, Chem. Ber. 102 (1969) 736;
(b) W. Oppolzer, M. Petrzilka, J. Am. Chem. Soc. 98 (1976) 6722.
[13] (a) T. Koizumi, H. Hirai, E. Yoshii, J. Org. Chem. 47 (1982) 4004;
(b) H. Lida, K. Kasahara, C. Kibayashi, J. Am. Chem. Soc. 108 (1986) 4647.
[14] (a) K.T. Geoffrey, T. William, Org. Lett. 4 (2002) 4101;
(b) P.G. Baraldi, A. Barco, S. Benetti, S. Manfredini, D. Simoni, Synthesis (1987) 276;
(c) S.-M. Paek, H. Yun, N.-J. Kim, J.-W. Jung, D.-J. Chang, S. Lee, J. Yoo, H.J. Park, Y.-G. Suh, J. Org. Chem. 74 (2009) 554.
[15] (a) J. Dahong, C Yuanwei, J. Org. Chem. 73 (2008) 9181; (b) K. Ieva, L. Ringaile, B. Algirdas, C. Inga, Synlett. 23 (2012) 381.
[16] M. Nobuyuki, N. Toshiki, H. Masaomi, I. Kazuhiro, B. Junichiro, Y. Hidemi, T. Kunihiko, J. Chem. Soc. Perkin Trans. 1 (2002) 707.
[17] M. Christl, R. Huisgen, Chem. Ber. 106 (1973) 3345.

[^0]: * Corresponding author.

 E-mail address: bh_naoufel@yahoo.fr (N. Ben Hamadi).

