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 Introduction

Ammonia is a poisonous gas, harmful to people’s health
d is a severe environment contaminant. However,
monia is necessary for some physiological and biological

ocesses and is the raw material in petroleum refining and
rtilizer manufacture. As an undesired material, the
moval of ammonia from flue gases becomes an important
ue since traditional ammonia–water absorption systems

quire additional rectification, increasing costs to prohib-
d limits [1]. Solvents that can absorb high quantities of

ammonia and that do not need expensive additional
separation processes represent an interesting alternative.
Ionic liquids have shown to be that type of solvents and have
received especial attention for process, such as synthesis,
separations, catalysis, electrochemistry and waste gas
separation [2–6]. Detailed information about various
applications of ionic liquids is available in the literature
[7–13]. The capture of ammonia by ionic liquids has also
received some attention in the literature [1,12,13]. Experi-
mental data show that solubility of ammonia in ionic liquids
cover different ranges for different types of ionic liquids at
the same temperature and pressure, and for several ionic
liquids, solubility can be as high as 80% in mole fraction.

Different gas + ionic liquids mixtures have been studied
in the literature using various thermodynamic models,
mainly equations of state [16–20]. The application of an
equation of state (EoS) to mixtures requires the use of
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A B S T R A C T

Artificial neural networks have been used for the correlation and prediction of solubility

data of ammonia in ionic liquids. This solubility of ammonia is highly variable for different

types of ionic liquids at the same temperature and pressure, its correlation and prediction

is of special importance in the removal of ammonia from flue gases for which effective and

efficient solvents are required. Nine binary ammonia + ionic liquids mixtures were

considered in the study. Solubility data (P–T–x) of these systems were taken from the

literature (208 data points for training and 50 data points for testing). The training

variables are the temperature and the pressure of the binary systems (T, P), being the target

variable the solubility of ammonia in the ionic liquid (x). The study shows that the neural

network model is a good alternative method for the estimation of solubility for this type of

mixtures. Absolute average deviations were below 5.6%, for each isothermal data set and

overall absolute average deviations were below 3.0%. Only in the range of low solubility

(below 0.2 in mole fraction) did predicted solubility give deviations higher than 10%.
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ixing rules to represent the dependency of the EoS
arameters on concentration and combination rules to
epresent the interaction between the unlike components

 the mixture. The accuracy in correlating vapor–liquid
quilibrium obtained by this method depends on the EoS
sed and the mixing and combining rule employed
1]. Also, binary interaction parameters must be intro-

uced to obtain more accurate results. Such interaction
arameters are obtained by fitting experimental phase
quilibrium data at each temperature at which VLE is
equired. Considering also the difficulties of experimental

easurements, besides the high cost in some cases, the
evelopment of alternative estimation methods, such as
rtificial neural networks have shown to be very successful
r estimating VLE data that are of interest in chemical

ngineering [22–25].
For the specific case of ammonia + ionic liquids

ixtures, some experimental studies at low and moderate
ressures have been presented in the literature. Yokozeki
nd Shiflett [14,15] determined pressure–temperature–
omposition (P–T–x) solubilities of ammonia at room
mperature ILs. The authors presented phase equilibrium

ata of four NH3 + IL mixtures: NH3 with [C4mim][BF4],
4mim][PF6], [C6mim][C1] and [C2mim][Tf2N]. In

nother work, Yokozeki and Shiflett [15] reported P–T–x

olubility of ammonia in [C2mim][Ac], [C2mim][SCN],
2mim][EtOSO3] and [DMEA][Ac]. In both works, the

uthors observed high solubilities of ammonia in these
nic liquids. More recently, Li et al. [1] reported

xperimental solubilities of ammonia in four imidazo-
um-type ILs: [C2mim][BF4], [C4mim][BF4], [C6mim][BF4]
nd [C8mim][BF4]. The authors showed that all these ionic
quids have high solvency to capture NH3. To the best of
e authors knowledge, specific applications, such as the

ne done in this work, in which P–T–x equilibrium data of
mmonia + ionic liquids are correlated using artificial
eural networks, have not been presented in the literature.

. Application of artificial neural networks

Artificial neural networks are a computational model
spired in the behavior of natural neurons. A structure

architecture) receives data related to a given property,
solubility for instance, and some independent variables
that are supposedly related to the dependent main variable
(temperature and pressure, for instance). The input and
output variables are weighed by weights and shifted by a
bias factor specific to each neuron. By optimization, the
network learns the relation between the variables and
stores the values of the weights and biases that give the
lowest error between calculated and experimental data of
the dependent variable (solubility in this work).

The artificial neural networks are ‘‘neural’’ in the sense
that they have been inspired by neuroscience but not
necessarily because they are faithful models of biological
neural or cognitive phenomena. A neural network is
characterized by:

� its pattern of connections between the neurons (the
architecture);
� its method of determining the weights on the connec-

tions (training or learning process);
� its activation function (relation between dependent and

independent variables).

Good descriptions of ANN are given in the literature
[26].

Taskinen and Yliruusi [27] presented a complete list of
properties, mostly for organic substances, that have been
analyzed in the literature, until 2003, using different
approaches of ANN. Properties, such as normal boiling
point, critical temperature, critical pressure, vapor pres-
sure, heat capacity, enthalpy of sublimation, heat of
vaporization, density, surface tension, viscosity, thermal
conductivity, and acentric factor, among others, were
thoroughly reviewed. Also, ANN has been previously used
for gas solubility and phase equilibrium modelling in
mixtures that do not include ionic liquids [28–32].

Applications of neural networks for the prediction of
various thermodynamic properties of ionic liquids have been
reported in a number of papers during the last ten years.
Melting temperature have been studied by Carrera and Aires-
de-Sousa [33], Bini et al. [34] and Torrecilla et al. [35], while
other properties, such as density, viscosity and heat capacity
have been modelled by Palomar et al. [36], Valderrama et al.
[37,38] and Lashkarbolloki et al. [39,40]. Other authors have
used ANN to model mixture properties, such as concentra-
tions, infinite dilution activity coefficients [41–43]. Solubility
modeling and Henry’s law correlation using ANN have been
done by Palomar et al. [36], Eslamimanesh et al. [25] and
Safamirzaei and Modarres [44,45].

Table 1 shows selected papers on VLE calculation in
binary mixtures of gas + ionic liquids using ANN. In the
table, the type and number of systems studied, the number
of data treated, the variable being correlated and predicted,
the optimum architecture, and the type of information
provided by the authors are clearly indicated. The symbol
(*) in the last column indicates papers that provide the
weight and bias matrixes, which correspond to the ANN
model. As shown in the table, a drawback of most papers
describing applications of ANN is that they do not give
detailed information (data, architecture, activation func-

Nomenclature

P Pressure

Pc Critical pressure

T Temperature

Tc Critical temperature

x1 Solubility (component 1)

xcal Calculated solubility

xexp Experimental solubility

Greek symbols (super/subscripts)

cal Calculated

exp Experimental
ions, weight and bias matrix, or the program codes) to
f neurons organized in different layers (known as t
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ow other researchers to reproduce the results and to
ake appropriate use of the ANN model. This is of special
portance since it is known that a given ANN architecture
nnot reproduce exactly the same results after each run of
e network, unless the same weight and bias matrixes are
ed. In this paper, the authors provide as supplementary
aterial the ANN model, consisting of the program codes
 train the network and to predict the solubility of

monia in IL, and also the files containing the data used
r training and testing. All this will allow any reader to
produce the results presented and to predict the
lubility of ammonia in IL at other temperature for the
stems studied. The codes can also be used to train the
twork with any other data if desired.

 Solubility estimation using ANN

Nine binary ammonia + ionic liquids mixtures were
nsidered for analysis and vapor–liquid equilibrium data

 these systems were taken from the literature [1,14,15]. The
ne ionic liquids are: [C4mim][BF4], [C4mim][PF6],
2mim][BF4], [C6mim][BF4], [C8mim][BF4], [DMEA][AC],
2mim][AC], [C2mim][Tf2N] and [C6mim][C1]. The training
riables are the temperature and the pressure of the binary
stems (T, P), being the target variable the solubility of
monia in the ionic liquid. Then, to distinguish between

e ionic liquids in the mixtures studied, two properties of
e ionic liquids were used, the critical temperature and the
itical pressure (Tc, Pc). Therefore, the number of input
rameters for each case studied is equal to four (T, P, Tc,

). The output variable is equal to 1 (the solubility of
monia in IL). Table 2 lists the pure component properties

of all substances considered in this study. In the table, Tc is
the critical temperature and Pc is the critical pressure. The
values for the pure component properties were obtained
from the literature [46,47].

To develop an accurate ANN model for correlating and
predicting the solubility of ammonia in ionic liquids in the
form developed in this work, Matlab software was used
and the following files were written:

� an Excel file containing the independent variables:
temperature, pressure and the two critical properties
(Tc, Pc);
� an Excel file containing the dependent variable, the

solubility (x1);
� a Matlab code that consists of two parts: a training

section and a testing section.

In the training section, the program reads the input data
(the two Excel files), defines the architecture, trains the
defined network, generates the weight and bias matrixes,
and stores such data for testing. In the testing section, the
program reads the weight and bias matrixes, the Excel file
containing the variables for which the solubility wants to
be predicted and stores the results in an output file.

The most basic architecture normally used for this type
of applications involves a back propagation feed-forward
neural network containing three layers: the array input
layer, one hidden layer and the output layer [24]. This type
of network has proved to work well in another application
for the estimation of physical and thermodynamic proper-
ties [22,24,37,38]. In the application described in this work,
this simple architecture provides good results. Therefore,
one hidden layer was required. Table 3 shows the source
and range of the 208 data used for training of the artificial
neural network.

As an example, Table 4 shows the solubility.m Matlab
code (provided as supplementary material) used for
training and testing the solubility of ammonia. Once the
ANN has been trained and the parameters of the network
(weights and biases) are determined, they are stored in file
w_solubility. It is expected that the values of x1 calculated
by the network during training are close to the experi-
mental values used for such training. In fact, the deviation
between input values and correlated values is the objective
function that must be minimized. Once this objective
function has been minimized, it is assumed that the ANN

ble 1

lected papers on VLE calculations in binary mixtures using ANN. The symbol (*) in the last column indicates papers providing the weight and bias matrixes

d NR means not reported.

eference Type of mixtures Number of

systems

Number

points

Number of

independent

variables

Dependent

variable

layers

optimum

network

Provide

data?

Provide

ANN

Program?

42] Organic solutes + ionic liquids 64 916 8 lng1 3 No No

25] CO2 + ionic liquids 24 1128 5 xCO2
3 Yes No

43] CO2 or CHF3 + ionic liquids 9 1567 9 lng1 3 Yes No

40] Ethanol, water, acetonitrile,

methanol, nitromethane

+ ionic liquids

18 1571 4 Cp 3 Yes No

44] Gas + [C4mim] [PF6] 7 NR 4 KH 3 Yes No*

45] Gas + [C4mim] [PF4] 7 80 4 xgas 3 Yes No*

his work NH3 + ionic liquids 9 258 4 xNH3
3 Yes Yes

ble 2

perties for all substances involved in this study.

omponents Tc (K) Pc (Mpa) Reference

mmonia 405.5 11.35 [46]

C4mim][PF6] 719.4 1.73 [47]

C2mim][BF4] 596.2 2.36 [47]

C4mim][BF4] 643.2 2.04 [47]

C6mim][BF4] 690.0 1.79 [47]

C8mim][BF4] 737.0 1.60 [47]

DMEA][AC] 715.1 3.14 [47]

C2mim][AC] 807.1 2.92 [47]

C2mim][Tf2N] 1249.3 3.26 [47]

C6mim][C1] 829.2 2.35 [47]
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arned the relation between the variables. How accurate
as the learning is determined by the deviations between

alculated and experimental values of solubility.
Once the network is trained, three files are automati-

ally created by the program solubility.m:

 the file solubility_correlated.xls containing the values of
the solubility of ammonia in the ionic liquid (x1) that the
network learned during training;

 the file w_solubility containing all matrixes that define
the ANN model;

 the solubility_predicted.xls containing the values of x1,
determined by the trained network.

Matlab program (line 42 in Table 4) loads the ANN
odel stored in the file w_solubility, which contains the
eight matrix defined during training. Then, the file

ariables_for_prediction.xls is automatically loaded. This
le contains 50 rows with the values of the independent
ariables for those cases for which the solubility of
mmonia in the ionic liquid has to be estimated. Using

the model contained in the file w_solubility, the program
determines the solubility for the 50 cases considered in
this study for testing the ANN model. The program
automatically creates an Excel file named solubility

_predicted.xls where the predicted values for the solubility
are stored.

It is well known that artificial neural networks are good
tools for interpolation but not for extrapolation [26]. There-
fore, the values of the independent variables (T, P) must be
within the ranges used for training the network. In this
study, the range of temperature was between 283 and
356 K, the range of P between 0.044 and 4.25 MPa and
the range of x1 between 0.045 and 0.948, and the pure
component properties of all substances considered are
those listed in Table 2. Thus, if during testing any of the
variables is outside the ranges used in training, good
results are not guaranteed. In these cases, the ANN must be
trained again, providing the necessary information in the
file variables_for_training.xls and solubility_for_training.xls.

The complete Matlab codes and the Excel files written for
this work, with all the data used, are provided as
supplementary material.

able 3

ource and range of data used for training of the artificial neural network.

Systems

NH3 (1)+

Reference T (K) N Range of date

Range of x1 Range of P (MPa)

[C4mim][PF6] [14] 283.4 4 0.371–0.862 0.138–0.517

298.0 5 0.351–0.854 0.174–0.796

298.6 5 0.344–0.853 0.184–0.822

347.2 5 0.253–0.791 0.345–2.385

355.8 5 0.239–0.773 0.371–2.700

[C4mim][BF4] [14] 282.2 6 0.201–0.844 0.091–0.497

298.4 6 0.173–0.833 0.128–0.818

323.6 6 0.122–0.805 0.196–1.535

347.5 6 0.080–0.759 0.257–2.375

355.1 6 0.068–0.749 0.275–2.570

[C2mim][BF4] [1] 293.0 5 0.2153–0.6921 0.140–0.550

298.0 5 0.1474–0.6176 0.110–0.550

323.0 5 0.0838–0.3896 0.120–0.630

333.0 5 0.1185–0.2549 0.200–0.570

[C6mim][BF4] [1] 293.0 5 0.3815–0.7543 0.170–0.580

298.0 5 0.3673–0.6974 0.220–0.600

313.0 5 0.2722–0.6236 0.230–0.710

333.0 5 0.1280–0.5106 0.140–0.690

[C8mim][BF4] [14] 293.0 5 0.4202–0.8081 0.130–0.540

298.0 5 0.2788–0.7476 0.120–0.610

323.0 5 0.1564–0.6002 0.100–0.59

333.0 5 0.1321–0.5022 0.120–0.59

[DMEA][AC] [15] 283.2 6 0.477–0.865 0.136–0.491

298.1 6 0.475–0.864 0.163–0.769

348.0 6 0.454–0.853 0.433–2.689

372.8 4 0.675–0.844 1.994–4.249

[C2mim][AC] [15] 282.5 6 0.624–0.877 0.321–0.550

298.2 6 0.601–0.871 0.463–0.896

324.5 6 0.538–0.852 0.792–1.774

348.5 6 0.473–0.819 1.098–2.891

[C2mim][Tf2N] [14] 282.3 6 0.220–0.948 0.114–0.618

298.4 6 0.137–0.944 0.145–0.958

323.4 6 0.089–0.926 0.171–1.840

347.6 6 0.045–0.886 0.196–2.860

[C6mim][C1] [14] 283.1 6 0.095–0.837 0.044–0.511

298.1 6 0.090–0.828 0.053–0.819

324.3 6 0.060–0.799 0.103–1.600

347.9 6 0.065–0.756 0.102–2.490
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 Results and discussion

Several network architectures were tested to select the
ost accurate and simple scheme. Since no additional
formation about the recommended number of layers and
urons has been found for the calculation of properties for
y type of substances, the optimum number of layers and
urons was determined by trial and error. Simplicity of
e architecture and accuracy of the results were the
quirements imposed to find the optimum architecture.
e accuracy of the chosen final network was checked by
termining the relative and absolute deviations between

the calculated values of x1 after training and data from the
literature. The Fig. 1 shows the absolute percent deviation
in correlating the solubility versus the number of layers in
an architecture (10,N,1) and (5,N,1).

The average absolute deviations %Dx1

�� ��, and relative
deviations %Dx1, for a set of N data are defined as:

%Dx1

�� �� ¼ 100

N

X xcal
1 � xexp

1

xexp
1

�����

����� (1)

%Dx1 ¼
100

N

X xcal
i � xexp

i

xexp
i

(2)

ble 4

e Matlab code solubility.m used in this work to train the network.

o. % solubility.m

 %*************

 %This is the Matlab code for training an ANN with P–T data, using as independent variables

 %the critical temperature, the critical pressure, the temperature and the pressure

 %

 %Reading independent variables for training (the critical temperature, the critical pressure, the temperature,

 %and the pressure)

 p = xlsread(’variables_for_training’);p = p’;

 % %Reading the dependent variable for training (solubility);

 t = xlsread(’solubility_for_training’);t = t’;

0 % Normalization of all data (values between –1 y +1)

1 [pn,minp,maxp,tn,mint,maxt] = premnmx(p,t);

2 % Definition of ANN:(topology, activation functions, training algorithm)

3 net = newff(minmax(pn),[5,4,1],{’tansig’,’tansig’,’purelin’},’trainlm’);

4 % Definition of frequency of visualization of errors during training

5 net.trainParam.show = 10;

6 % Definition of number of maximum iterations (epochs) and global error between iterations (goal)

7 net.trainParam.epochs = 500; net.trainParam.goal = 1e�4;

8 %Network starts: reference random weights and gains

9 w1 = net.IW{1,1}; w2 = net.LW{2,1}; w3 = net.LW{3,2};

0 b1 = net.b{1}; b2 = net.b{2}; b3 = net.b{3};

1 %First iteration with reference values and correlation coefficient

2 before_training = sim(net,pn);

3 corrbefore_training = corrcoef(before_training,tn);

4 %Training process and results

5 [net,tr] = train(net,pn,tn);

6 after_training = sim(net,pn);

7 % Back-Normalization of results, from values between -1 y +1 to real values

8 after_training = postmnmx(after_training,mint,maxt); after_training = after_training’;

9 Res = sim(net,pn);

0 % Saving results, correlated solubilities in an Excel file

1 dlmwrite(’solubility_correlated1.xls’,after_training,char(9));

2 %Saving the nerwork (weigths and other files)

3 save w1_solubility

4 %

5 %solubility_prediction.m

6 %**************

7 %

8 %This is the Matlab code for predicting the solubility

9 %

0 %Reading weigth and other characteristics of the trained ANN saved in the file w1_solubility

2 load w1_solubility

3 % Reading of Excel file with new indepent variables to predict solubilities

4 pnew = xlsread(’variables_for_prediction’); pnew = pnew’;

5 % Normalization of all variable (values between –1 y +1)

6 pnewn = tramnmx(pnew,minp,maxp);

7 % Running the network and obtaining the predicted values of solubility.

8 anewn = sim(net,pnewn);

9 % Back-Normalization of results, from values between –1 and 1 to real values

0 anew = postmnmx(anewn,mint,maxt); anew = anew’;

1 % Saving results, predicted solubilities in an Excel file.

2 dlmwrite(’solubility_predicted1.xls’,anew,char(9));
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The final network used has five neurons in the input
yer, one hidden layer of four neurons and one neuron in
e output layer (5,4,1). This architecture has been chosen
r the model proposed in this work.

During training, absolute individual deviations
etween correlated and literature values of solubility of
mmonia in the ionic liquid were below 10% for most of the
ata points. The average absolute deviation was 3.3%,
hile average relative deviation was 0.31%. These values

re considered to be accurate enough to state that the ANN
arned in an appropriate way. Once the training was

uccessfully done and the optimum network architecture
as determined, 50 input data (Tc, Pc, T, P) of nine binary

ystems at other temperatures not used in the training
rocess, included in the file variables_for_prediction.xls,
ere read by the program. The predicted 50 values of x1

alculated in the testing section of program are shown in
able 5.

Table 5 shows the individual absolute deviations for the
olubility of ammonia in the ionic liquid x1, predicted by

e proposed ANN model for nine isotherms not used
uring training. The last file in the table shows the average
bsolute deviations for all the predicted points. As seen in
able 5, the ANN model reproduces the solubility of
mmonia in the ionic liquid x1 with average absolute
eviations from 0.5% to 5.5% for each isothermal data set.
he average relative deviations vary between –4.4% and
.4% for each isothermal data set. The maximum individual
bsolute deviation in x1 is 17.1%.

Fig. 2 shows experimental and calculated values of
olubility of ammonia in the ionic liquid (x1) vs pressure (P)
r the system NH3 (1) + [C4mim][BF4] (2) at T = 298.6 K,
hile Fig. 3 shows the same for the mixture NH3

) + [C8mim][BF4] (2) at T = 313 K. In these figures, symbol
) represents the experimental data and the dashed line
) represents the calculated values. As seen in the figures,

oth cases show the good agreement found between ANN
odel estimates and experimental data.

Some final words about the meaning of the good results
btained for the estimated solubility are necessary to
ighlight the importance of accurately predicting this
ariable. Of the systems treated in this paper, the system
H3 + [C2mim][AC] presents high solubility (> 0.5 in mole

while for systems, such as NH3 + [C6mim][C1] in similar
ranges of temperature, solubility is lower than 0.1 in mole
fraction. The proposed ANN model was able to correlate
and predict the solubility with low deviations for most
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umber of hidden layers N in an architecture (10,N,1) and (5,N,1).

Table 5

Average deviations for the solubility of ammonia in ionic liquids, for nine

complete isotherms not used during training. The last file shows the

average absolute deviations for all the predicted points.

Systems: NH3 (1) T (K) Pexp (MPa) x1 exp % x1

[C4mim][PF6] 324.0 0.274 0.292 0.5

0.423 0.389 1.8

0.583 0.492 1.9

1.083 0.681 0.7

1.567 0.828 2.2

1.4
[C4mim][BF4] 298.6 0.127 0.174 4.2

0.196 0.267 2.5

0.271 0.367 2.5

0.437 0.548 0.3

0.616 0.683 2.9

0.807 0.834 0.9

2.2
[C2mim][BF4] 313.0 0.140 0.126 4.4

0.290 0.255 2.3

0.370 0.324 4.9

0.530 0.447 6.5

0.620 0.526 9.6

5.5
[C6mim][BF4] 323.0 0.180 0.1898 2.0

0.390 0.3548 4.7

0.460 0.4106 1.1

0.540 0.4550 0.8

0.710 0.5779 7.4

3.2
[C8mim][BF4] 313.0 0.180 0.283 6.7

0.300 0.398 9.3

0.390 0.505 1.7

0.500 0.574 3.1

0.600 0.644 1.1

4.4
[DMEA][AC] 322.7 0.277 0.466 1.4

0.463 0.609 0.6

0.786 0.704 3.4

0.980 0.757 2.0

1.250 0.809 1.2

1.521 0.860 0.6

1.5
[C2mim][AC] 298.3 0.470 0.599 0.3

0.667 0.730 0.8

0.765 0.788 0.6

0.820 0.825 0.3

0.850 0.839 0.1

0.898 0.871 0.9

0.5
[C2mim][Tf2N] 299.4 0.136 0.171 17.1

0.287 0.430 8.3

0.434 0.568 0.6

0.698 0.768 0.6

0.969 0.921 0.1

0.994 0.943 0.9

4.6
[C6mim][C1] 297.8 0.059 0.086 13.8

0.133 0.231 0.3

0.216 0.337 7.0

0.377 0.537 2.2

0.647 0.728 2.1

0.816 0.828 0.3

4.3
ases. In the correlation, some few points showed
action) in a wide range of temperature (282 to 348 K) c
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viations higher than 10% and in the prediction, only
o of the fifty predicted points showed deviations

gher than 10%. In these cases, the highest deviations
tained are associated with the quality of the experi-
ental data. As Yokozeki and Shiflett [14] wrote: ‘‘rather
rge uncertainties in low x1 values are due to the
accuracy in weight measurements of very small

ounts of NH3’’.
In summary, this paper shows that ANN represent a

od tool for correlating and predicting solubility of
monia in ionic liquids at temperatures for which no

perimental data exist. The next natural step in this type
 studies would be predicting the solubility of ammonia in
her ionic liquids not used for obtaining the ANN model.

 do this, however, much more data would be needed,
hich are not available at this time.

 Conclusions

An artificial neural network model has been used to
rrelate and predict the solubility of ammonia in ionic
uids for nine binary ammonia + ionic liquid systems.
e study and the results allow obtaining two main
nclusions:

the solubility of ammonia in ionic liquid, x1, can be
obtained with good accuracy, giving absolute average
deviations below 5.6%, for each isothermal data set and
overall absolute average deviations of 3.0%;

� only in the range of low solubilities (below 0.2 in mole
fraction) did the predicted solubilities give deviations
higher than 10%.
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Appendix A. Supplementary data

Supplementary data associated with this article can be

found, in the online version, at http://dx.doi.org/10.1016/

j.crci.2014.01.025.

Additional Supporting Information includes several files

that facilitates readers to reproduce the results and to predict

solubility in other cases: Matlab code for training and testing

the ANN, Matlab code to predict solubility using the trained

network, the ANN model (weight matrix), a file containing

the variables for training, a file containing the solubility data

to be used to train the network, a file containing the variables

for prediction, and a file where the predicted values are

stored. If readers and researchers use these files for further

work, this paper must be cited.
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