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A B S T R A C T

We defined the smallest enclosing cone angle as the Tolman cone angle for null atomic

spheres radii. Then we provide a simple analytical algorithm to compute the smallest

enclosing cone at fixed apex, which works in the case of unsymmetrical ligand. We applied

it to compute ligand cones for a family of triphenylphosphine palladium complexes, and

we showed that both the angle of the cone and its resulting solid angle strongly correlate

with the Tolman cone angle, thus suggesting that there is no more need for atomic radii.

We also defined the best cone of fixed apex fitting a population of unit vectors. We

proposed a simple analytical algorithm to compute it, which is proved to work in any d-

dimensional Euclidean space. We defined the conicity index k to evaluate quantitavely the

pertinence of the best fitting cone. We used this best fit cone to define a mean ligand cone,

and thus a mean cone angle and a mean cone axis. We applied it to our family of

triphenylphosphine palladium complexes and we observed that the axis of the individual

cones deviated from the mean cone axis by at most 13.28. The observed conicity index was

small k ¼ 0:0177ð Þ, indicating a very good fit for the whole family of complexes.

� 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Nous définissons l’angle du plus petit cône englobant comme étant l’angle conique de

Tolman à rayons atomiques nuls. Puis, nous fournissons un algorithme analytique simple

de calcul du plus petit cône englobant à apex fixé, qui fonctionne dans le cas des ligands

non symétriques. Nous l’appliquons aux cônes de ligands pour une famille de complexes

palladium triphenylphosphine et nous montrons qu’à la fois l’angle du cône et l’angle

solide qui en résulte sont fortement corrélés avec l’angle conique de Tolman, suggérant

ainsi qu’il n’y a plus besoin des rayons atomiques. Nous définissons aussi le meilleur cône

moyen d’apex fixé pour une population de vecteurs unitaires. Nous proposons un

algorithme analytique simple pour le calculer, que nous prouvons être valide dans tout

espace euclidien d-dimensionnel. Nous définissons l’indice de conicité k pour évaluer

quantitativement la pertinence du meilleur cône. Nous utilisons ce meilleur cône pour

définir un cône moyen de ligand, et donc un angle moyen de cône et un axe moyen de cône.

Nous l’appliquons à notre famille de complexes palladium triphenylphosphine et nous

mail addresses: michel.petitjean@univ-paris-diderot.fr, petitjean.chiral@gmail.com.
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. Introduction

Ligand cone angles were introduced by Tolman to
easure the size of phosphine derivatives and other

hosphorus ligands [1]. This size is the solid angle defined
y the smallest angle cone having its apex lying at 2.28 Å
om the phosphorus atom and circumscribing the ligand
toms, usually modelled by spheres. The solid angle,
xpressed in steradians, is u ¼ 2pð1 � cosaÞ, where a is
e angle between the generatrix of the cone and its axis
ee general definitions in Section 3.1). In the case of

ymmetric ligands PR3, the Tolman cone angle is easy to
ompute because its axis is in the direction of the mean of

e three vectors defined by the P–R bonds. Then, given the
adius of the spherical ligands, a is retrieved by elementary
eometry calculus. This approach has to be refined for
nsymmetrical ligands such as MPR1R2R3 and more
enerally for MXR1R2R3, where M = H or is a metal atom,
nd X = P, N, CH, or is any atom having a tetrahedral
ybridisation such as sp3 or sd3. It was pointed out that
ven symmetrically substituted bulky phosphines may
ffer unsymmetrical conformations [2]. The difficulty of
e calculation arises (i) when the spheres radii are

nequal, and (ii) when the X–Ri bonds are not symmetri-
ally arranged around the M–X axis. Tolman approximated

 as ðû1 þ û2 þ û3Þ=3, where ûi is the acute angle between
e directions of the X–Ri bond and of the M–X bond
,4]. This method was criticized because the obtained

alues may not reflect the properties of the ligand,
articularly when the substituent groups differ greatly
]. It seems that few geometric tools are available to
easure steric effects in organometallic chemistry, and
at could explain why ligand cone angles were much used

 this field [6–9], Recently, Bilbrey et al. [10–12] proposed
n analytic solution to the ligand cone angle calculation.

It was also proposed to measure the steric size of
gands and substituents by the solid angle generated by
e union of the atomic spheres [13], rather than the one

enerated by their enclosing cone. This approach gives rise
 an analytical calculation of the solid angle, provided that
e intersections of more than two spheres could be

eglected [13]. There is a non-linear relationship between
e cone angle and the solid angle, which was measured

uantitavely [14]. To evaluate the importance of sphere
verlaps, an exact analytical calculation of sphere inter-
ections was done with the ASV freeware [15] using the
tomic radii recommended by Gavezzotti [16], and showed
at intersections between 6 or 7 atoms are commonly

bserved in organic molecules [15,18]. These atomic radii
re sometimes slightly larger than those given by Bondi
7], but it is recalled that an increase in the sphere radii

oes not guarantee an increase of the van der Waals

showed that neglecting the intersections of more than two
atoms induced a mean error on van der Waals surface
calculations of 249%, and that neglecting the intersections
of more than three atoms led to a mean error of 87%, and
neglecting the ones of more than four atoms led to a mean
error to 16%, the maximal observed error in this case being
37% [18]. Despite that van der Waals surfaces are not used
in ligand solid angles calculations, these numbers show the
importance of atomic spheres overlaps.

An improved ligand solid angle algorithm was pro-
posed, which takes into account spheres intersections of
orders 3 and 4 [19], but it needs a complex numerical
integration. Recently, Bilbrey et al. [12,20] proposed an
analytic solution to the solid angle calculation, based on
the decomposition of the solid angle contributions
between those due to spherical polygon parts and those
due to the resulting truncated spherical sectors parts. This
algorithm, implemented by the authors in their Mathe-
matica FindSolidAngle package, is effective for the simple
geometrical arrangements expected to be encountered in
chemistry. However, it is not specified how it works in
general. E.g., the detection of potential multiple connected
components got by projection at the surface of the unit
sphere is not evoked, the solid angle subtended by an
internal spherical polygon may be not void and may even
be not unique, etc. The detection and the management of
such situations let the algorithm rather difficult to
implement.

The impact of conformational variations was evoked
early [21], leading to use weighted average cone angles
[22], while it was considered that this problem was
overcome by the use of the solid angle methodology
[23]. At the same time, Müller and Mingos noticed also
that the Tolman cone angle definition does not take into
account the variations due to conformational changes
[24,25], and they used the atomic centers of the ligand
atoms rather than their van der Waals spheres. Then they
applied their algorithm to perform statistics on thousands
of phosphine structures found in the Cambridge Crystal-
lographic Data Base [26], and observed a variation in cone
angles for specific ligands, which is much larger than had
previously been suspected.

This slight change in the ligand cone angle calculation,
that we retain here (see Fig. 1) offers two other major
advantages: (i) the cone angle can be generalized to
complex polyatomic ligands Ri via the calculation of the
fixed apex minimal cone enclosing any desired number of
atoms, and (ii) this calculation can be done analytically, as
shown in Section 3 of the present paper. We emphasize
that this generalization allows us to model molecular
shapes and structural fragments with cones although it is
usual to work with spherical models. Despite that is easy to

observons que les axes individuels des cônes dévient de l’axe moyen de cône d’au plus

13,28. L’indice de conicité observé est faible k ¼ 0; 0177ð Þ, indiquant un très bon

ajustement à l’ensemble de la famille de complexes.

� 2015 Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.
ompute spherical shapes, the spherical model was shown
urfaces. Running ASV on a database of 70 diverse ligands c
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 be unrealistic and a cylindrical model was preferred for
ug design applications [27]. Fortunately, minimal height
closing cylinders and minimal radius enclosing cylin-
rs are computable analytically [28]. However, it seems
at apart cylinders and cones, it is hard to find the use of
n-spherical molecular shapes in the literature: it may be
e to the lack of simple analytical calculation algorithms.
There are several ways to take into account the

nformational changes of the ligands. We propose the
llowing one. For each conformer, we know from
e present analytical minimal enclosing cone algorithm
hich ligand atom centers are on the surface of the cone
e Section 3.5). We mark the atomic centers of these
and atoms. These marked ligand atoms can differ from
e conformer to another conformer, even for simple
ands such as Me or Et. Then, assuming a common origin

 M, we are left with the problem of finding the best cone
 fixed apex fitting all the marked atomic centers. We give
 Section 3.3 an analytical solution to this problem,
rmulated as a least squares one. Then we define in
ction 3.4 the conicity index k, which takes values in the
terval [0,1], the value k=0 meaning that all marked
omic centers lies on the surface of the cone, and the value
1 being reached in the worst cases, characterized in
ction 3.4. It is emphasized that, compared to our best
ting cone algorithm, computing some mean cone angle
ch as the arithmetic mean of individual cone angles, has
awbacks: such mean cone angle does not produce a
ean axis, and computing some mean axis would not be
herent with the arithmetic mean of the cone angles.
rthermore, such a method would not permit to define a
nicity index, although this latter provides quantitative
formation about the impact of conformational changes

 steric effects. The axis of the best fitting cone is of
terest because it gives rise to a second quantitative
rameter: the acute planar angle between the axis of the
allest enclosing cone and the axis of the best fitting

ne. This parameter indicates how the ligand size of
XR1R2R3 deviates from the mean ligand size of the
mily. At the opposite of the well-known RMS (Root Mean
uare) deviation, it does not need the knowledge of a
ean conformer.

A minor problem is to suppress the impact on a best fit
ne calculation of free rotations around the M–X axis
fore aligning the conformers in a common Cartesian

coordinate system. When R1, R2 and R3 are different, a 3D
rotation performed to optimally superpose each conformer
on a common reference conformer solves the problem. It is
proposed to set the pivot at M and to restrict this optimal
rotation to X and to the respective three atoms of R1, R2 and
R3 that are bonded to X, rather to involve more atoms when
the Ri are polyatomic. The reason is that extending the
optimal superposition to more atoms may give poor
alignments in the neighborhood of X in the case of bulky
ligands, while for usual applications of cone angles the
neighborhood of X is assumed to be more important than
the rest of the ligands. Furthermore, the restriction to X and
to its neighbours permits potential extensions to super-
positions of different molecules MXR1R2R3 rather than to
different conformers of a common molecule MXR1R2R3,
thus generalizing the definition of the best fitting cone.
After translating the M atom of each conformer at the
origin, each desired optimal 3D rotation can be found by
minimizing the RMS deviation by the least squares method
implemented in the ARMS freeware, which is based on
quaternions (see appendix in [29], or appendix A.5 in [30]
for more general results about optimal rotations). When
two or three ligands are identical, there are respectively
two or six pairwise correspondences between the ligands
atoms bonded to X. In this situation, the one with the
smallest minimized RMS is retained.

2. Results and discussion

We exemplify our minimal enclosing cone algorithm
using a family of palladium triphenylphosphines com-
plexes (Table 1). The resulting cone is equivalent to the
Tolman cone for null atomic radii. The angle values we got
are in the range 57.7–64.68, and should be compared with
the half of the Tolman cone angle values, which ranged in
the interval 150.3–173.68. This difference of a factor 2 is
due to our mathematical definition of the cone angle,
which stands in Ed (see Section 3.1).

The observed correlation coefficient between the ligand
cone angle in [10] and our minimum enclosing cone angle
a is ra = 0.9800, and with our solid angle u is ru = 0.9796,
while a and u are highly correlated (0.99995). Since the
ligand cone angles encountered in the literature are almost
all times used for empirical correlations with physical data,
it is simpler to calculate a rather than the usual ligand cone

Fig. 1. (a) Ligand cone, defined by Tolman [1]. (b) Smallest enclosing cone, defined here.
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ngles because there is no need for atomic radii. The
orrelation between a and u is not surprising because u is a
nction of a. Then, the high value of the correlation

oefficient indicates that the relationship can be estimated
s linear for the considered ligands.

Published values of ligand cone angles are close to 1808
ee Table 1) and can be greater than 1808 for some nickel

r platinium complexes [10], while 2a is around 1208. This
ifference is due to the exclusion of the ligand atomic
pheres in the calculation of a. On the other hand,
odeling the molecular shape by a cone should either take

 account all atomic spheres, including the one of the
etal (estimated to 1.63 Å for Pd [17]), or ignore all atomic

pheres. Locating the apex of the cone enclosing all atomic
pheres (including the metal one) would lead to a complex
lgorithm, and worse, would need the knowledge of
dequate atomic radii. Ignoring only the atomic sphere of
e metal gives large angle cones, close to a half plane,
hich are not realistic from the molecular shape point of

iew. Ignoring all atomic spheres leads to a very simple
nalytical algorithm (Section 3.5), it does not require
tomic radii, the angle values are still pertinent for
stablishing empirical calculations, and the conical molec-
lar shape is physically more realistic than a half plane.
.g., for the tetrakis Pd(PPh3)4 a solid angle close to 0.5 half
pace per Pd(PPh3) part is more realistic than a solid angle
round one half space because for this latter the sum of the
ur contributions of the Pd(PPh3) parts is around two full

paces, thus indicating excessive cone intersections.
In order to define a mean cone for the 15 complexes of

able 1 and to evaluate quantitatively the dispersion
round this mean cone, we operated as follows. The mean
one has sense only in a common Cartesian coordinate
ystem: we selected Pd(PPh3) (see Table 1) as the reference
omplex to perform a 3D superposition of each of the
4 other complexes onto this reference one. We set the

palladium atom as the common origin for the 15 complexes
and we computed the 14 optimal rotations as indicated at
the end of Section 1. There was an additional difficulty due
to the differences in the atom numbering of the complexes.
Thus, to retrieve each of the 14 pairwise correspondences
for the phosphorus and its neighboring carbons, we used
the CSR freeware, based on an automatic 3D motif
recognition [31].

For each of the 15 complexes, we got 3 contact points on
the surface of their individual smallest enclosing cone, all
with apex at the origin. These 45 points are in a common
Cartesian coordinate system and thus we computed the
best cone fitting these 45 points (see Section 3.3). This best
fit cone has an angle ā ¼ 60:616� while the smallest cone
enclosing the 45 points has an angle of 68:090�. The
resulting 15 angles between the axis ū of the best fit cone
and the 15 individual cone axes are given in Table 2. This
angle, denoted by g, indicates how the ligand size deviates
from the mean one of the family. At the opposite of the
smallest enclosing cone angle, it is poorly correlated with
the Tolman cone angle (correlation coefficient: 0.511).

We measured the global dispersion of the directions of
the 45 points around the surface of the best fit cone with
the conicity index k (see Section 3.4), which takes values in
0;1. We found k ¼ 0:0177. A null value would have meant
that all 45 points are on the surface on the cone, although
only 2 or 3 are expected to be found on the surface, in
general (see Section 3.5). It indicates that the observed
differences of conformations of the phenyl groups in the
input structural files have little effect on the cone
calculation. The largest angle was the one of
Pd(PPh3)(S2N3C8H9).

It is emphasized that the knowledge of the mean cone
leads us to define not only a mean angle, but also a mean
axis and deviations from this mean axis: that was not
possible with usual ligand cone angle approaches.

able 1

inimal enclosing cone angles for a family of palladium triphenylphosphines complexes. a: angle between the axis and the generatrix. u: solid angle of the

one.

Palladium complex (data from ref. [10]) cos a a (degrees) u (steradians) Cone angle from ref. [10]

1 Pd(PPh3) 0.441571 63.796 3.509 170.0

2 Pd(PPh3)2(SN2C3)2Cl 0.532900 57.798 2.935 150.3

3 Pd(PPh3)2(SN2C3)2Cl 0.521229 58.585 3.008 155.4

4 Pd(PPh3)(P2OC14H9)Cl 0.534833 57.667 2.923 151.4

5 Pd(PPh3)(SN4O2C8H7)Cl 0.514252 59.053 3.052 155.2

6 Pd(PPh3)(SN3C9H10)Cl 0.501834 59.879 3.130 156.9

7 Pd(PPh3)(SH) 0.483577 61.081 3.245 160.8

8 Pd(PPh3)2(S3NO2C7H5) 0.489504 60.692 3.208 160.9

9 Pd(PPh3)2(S3NO2C7H5) 0.434539 64.244 3.553 173.6

10 Pd(PPh3)(SNC5H4) 0.474321 61.685 3.303 163.1

11 Pd(PPh3)(NFC15H15)Cl 0.485598 60.948 3.232 165.9

12 Pd(PPh3)(SN3C10H11) 0.458999 62.677 3.399 167.4

13 Pd(PPh3)(S2N3C8H9) 0.458199 62.729 3.404 167.7

14 Pd(PPh3)(SN4C8H10) 0.451533 63.158 3.446 170.6

15 Pd(PPh3)(NFC11H15)Cl 0.429580 64.559 3.584 172.2

able 2

ngles g ¼ u; ūð Þ in degrees, between the axis ū of the best fit cone and the cone axis u of each of the 15 complexes, numbered as in Table 1.

Complex 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

g 4.4 1.9 6.7 2.2 8.8 6.6 7.2 8.3 10.3 4.6 6.4 8.4 13.2 12.3 5.0
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The minimal angle enclosing cone algorithm and the
st fitting d-dimensional cone algorithm were imple-
ented in the freeware CONE. Sources are written in
rtable f77. Documentation and binaries for Mac OS
 and 64 bits Intel linux platforms are available free of
arge on a software repository located at http://
titjeanmichel.free.fr/itoweb.petitjean.freeware.html.
Running CONE on Windows platforms can be done

rough the installation of a linux emulator such as
gwin (free). When needed, convex hull calculations (see
ction 3.5) can be done with the freeware RADI. This
tter can be found on the same software repository than
NE together with the freewares ARMS and ASV

entioned in Section 1, and with the CSR freeware
entioned in Section 2.

 Appendix: analytical results and algorithms

. Definitions and notations

Definition 1. In the the Euclidean space Ed, a cone of
ex x0 is a ruled surface generated by the set of all lines
tersecting x0 and having a constant angle a with a given
is containing x0. Each of these lines is called a generatrix.
This axis is defined by a unit vector u, and we set

nventionnally c ¼ cos a as being a non-negative value.
e case c=0 corresponds to the plane orthogonal to u and
ntaining x0. The case c=1 corresponds to a degenerated
ne reduced to its axis. Generalizations to non-constant
gles (non-circular cones) are not considered here. Thus, a
ne in Ed is defined by 2d free parameters: x0, c, and u. Its
uation is the set of points x so that u0ðx � x0Þ ¼ c x � x0k k,
here the quote indicates a transposition operation and

here the norm of ðx � x0Þ is x � x0k k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x � x0ð Þ0 x � x0ð Þ

q
.

Remark 1: Given the axis defined by u, the word cone

plies in some contexts to the points x satisfying to the
ditional constraint sin a � 0, which in fact lets to
nsider only a half of the cone. In E3, this latter
compasses a solid angle equal to 2pð1 � cosaÞ. Unless
herwise stated, we retain the definition corresponding to
full cone.

Remark 2: In some contexts the cone is defined as the
nvex set such that 0 � u0ðx � x0Þ � x � x0k kcos a, still
ith cos a � 0, in which case the half cone in the sense of
finition 1 is the boundary of this latter convex set. There

e other variants. For convenience, we retain Definition 1.
We consider n+1 distinct given points

 i ¼ 0; 1; :::; n, in Ed. We define the unit vectors
¼ ðxi � x0Þ= xi � x0k k; i ¼ 1; :::; n, and the matrix W with
lines and d columns, each line i containing

 i ¼ 1; :::; n.
We use the following notations. I is the identity

atrix of rank n. 1 is the vector having n components,

 equal to 1. A ¼ I � 1 10=n is the centering operator

hus A ¼ A0 ¼ A2
�

. T ¼ W 0AW is the inertia matrix

sociated with W, i.e. T is n times the covariance matrix

 the vi, i ¼ 1; :::; n. P ¼ I � uu0 is the projection matrix on

e (d – 1)-dimensional subspace generated by the vectors
thogonal to u.

3.2. Calculation of a circumscribed cone

Definition 2. A cone circumscribed to k points is a cone
such that the k points lie on its surface.

We assume that the apex x0 is fixed and we would like
to find the cone circumscribed to the points x1; :::; xn. The
resulting system has n equations u0vi ¼ c, i ¼ 1; :::; n or, in
matricial form, Wu ¼ c1. It has d unknowns and thus it is
underdetermined when n<d and it is overdetermined
when n>d. Thus we consider the case n=d and we assume
that the square matrix W is invertible, i.e. no (d – 1)-
dimensional plane contains the n points.

Theorem 1. The cone of apex x0 circumscribed to n=d

points in Ed has its axis in the direction of the unit vector

u ¼ W�11=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10ðWW 0Þ�1

1
q

and the cosine of its angle is

cos a ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10ðWW 0Þ�1

1
q

.

Proof. W is invertible, thus u ¼ cW�11. Because u is a
unit vector and c was conventionnally set non-negative, we

get c ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10ðWW 0Þ�1

1
q

and u ¼ W�11=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10ðWW 0Þ�1

1
q

.

Remark 3: It is checked that we have indeed the
solution value c2 � 1 as follows. The symmetric matrix
WW 0 have non-negative eigenvalues and thus its largest
eigenvalue cannot exceed its trace, this latter being equal
to n. Then the smallest eigenvalue of ðWW 0Þ�1

cannot be
smaller than 1/n, and from the Courant–Fischer minimax
theorem [32], the quadratic form 10ðWW 0Þ�1

1 cannot be
smaller than ð101=nÞ ¼ 1, so that c2 � 1.

Remark 4: There are two particular situations: c = 0 and
c = 1. The case c=0 arises if and only if the square matrix W

is non-invertible: W 01 ¼ 0. It is such that u0vi ¼ 0 for all
i ¼ 1; :::; n, which corresponds to a cone which is a plane
orthogonal to u and containing x0. The case c=1 arises if and
only if all the n quantities u0vi ¼ 1, which means that vi ¼ u

for all i ¼ 1; :::; n: all points are aligned on the axis and the
cone is degenerated.

3.3. Least squares best fitting cone

We consider the case n � d. In general we cannot have
the n equalities Wu � c1 ¼ 0 all satisfied together, but we
can minimize S ¼ Wu � c1k k2, i.e. we look for the values of
(c,u) minimizing S ¼ Wu � c1ð Þ0ðWu � c1Þ.

Theorem 2. The optimal unit vector u is the eigenvector
associated with the smallest eigenvalue ld of the inertia
matrix T ¼ W 0AW and the minimized sum of the squared
distances of the n points to the surface of the cone is ld.

Proof. The solution of the optimization  problem
above should satisfy to grad S þ Lð1 � u0uÞ½ � ¼ 0, L being
the Lagrangian associated with the constraint
u0u ¼ 1. It follows that 2nc � 2ð10WuÞ ¼ 0 and that
2W 0Wu � 2cW 01 � 2Lu ¼ 0.

We get c ¼ 10Wu=n, and then L ¼ u0WðI � 1 10=nÞWu, i.e.
L ¼ u0Tu. Then we get S ¼ u0Tu and ðI � uu0ÞW 0AWu ¼ 0, i.e.
PTu ¼ 0 and Tu ¼ Lu. The latter equation is satisfied if and
only if Tu is proportional to u, which means that u is an
eigenvalue of T. Let l1; :::; ld be the eigenvalues of T sorted
in decreasing order. From the Courant–Fischer minimax
theorem, the minimum of S is S� ¼ ld and the maximum of
S is l1.

http://petitjeanmichel.free.fr/itoweb.petitjean.freeware.html
http://petitjeanmichel.free.fr/itoweb.petitjean.freeware.html
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Remark 5: When n = d, W is a square matrix so that AW

 not of full rank because 10A ¼ 0 and thus 10AW ¼ 0. Then,
 ¼ W 0AW , which can be written T ¼ AWð Þ0ðAWÞ because
2 ¼ A, cannot be of full rank. We deduce that ld ¼ 0 and
e find again that S=0 and Wu ¼ c1.

Remark 6: For any n and discarding whether or not u is
ptimal, it is checked that we have indeed the optimal
alue c2 � 1 as follows. We have n2c2 ¼ ð10WÞuu0ðW 01Þ,
hich is a quadratic form, which cannot exceed

10WÞðW 01Þ because the largest eigenvalue of uu0 is
. But ð10WW 01Þ cannot exceed 101 ¼ n times the largest
igenvalue of WW 0, this latter being not greater than the
ace of WW 0, i.e. n. Thus n2c2 � n2 and c2 � 1. The sense of
e eigenvector u is set to have a non-negative c value.
Remark 7: Another least squares method would be to

inimize the sum of n squared distances of the points xi to
eir orthogonal projection on the cone, rather than the

um of n squared distances of the vi to their orthogonal
rojection on the cone. In this situation, a numerical
inimizer is required.

.4. Conicity index

Definition 3. The conicity index is k ¼ d � S�=n.
Theorem 3. k takes values in [0;1].
Proof. We look for the upper bound of the minimal

� ¼ ld given d and n. The maximal value for ld is l1. In this
ituation all the d eigenvalues of T are equal to TrðTÞ=d, i.e.

 � S� ¼ TrðW 0WÞ � TrðW 01 10WÞ=n. Thus d � S� ¼ nð1 � v̄0v̄Þ,
here the mean of the n unit vectors is v̄ ¼ W 01=n. Since

v̄ k � 1; S� 2 0; n=d½ �.
The value k=0 indicates that all points lie at the surface

f the cone. The value k=1 indicates the worst possible
tting by the cone. It is reached when T is proportional to
e identity matrix I and when v̄ ¼ 0. This extreme value is

eached, e.g., for the vertices of a regular d-simplex with
e apex at its center [33].

.5. Smallest enclosing cone

Having a fixed apex x0 and n input data points x1; :::; xn,
e propose in the case d=3 a minimal enclosing cone

lgorithm in the sense of a minimal angle a. Such a cone
as 3 free parameters: the unit vector u and the angle a. A
oint xi is enclosed in the cone if cosðxi � x0; uÞ � cosa.

The smallest enclosing cone is sought among the
inimal cones circumscribed to successively k = 1, 2, and

 points and containing the n�k other points.
The trivial case k = 1 corresponds to n points aligned

ith x0: if it is the case the algorithm stops.
The case k = 2 is solved via enumerating the nðn � 1Þ=2

airs of input points and computing for each pair its
inimal circumscribed cone (the minimal cone circum-

cribed to 2 points xi and xj is such that its axis is bisecting
e angle x1 � x0 � x2). If the latter encloses all points, it is

etained. If there is one or several retained cones, the one
ith the smallest angle is the solution and the algorithm

tops.
If not, we enumerate the nðn � 1Þðn � 2Þ=6 triplets of

put points and we compute for each triplet its

the smallest angle is retained and the algorithm termi-
nates.

Remark 8: For some applications the minimal enclosing
half cone of fixed apex x0 needs to be considered. If it
happens that the algorithm above does not output such a
half cone, another algorithm is required, based on
circumscribed half cones. If we add at each step of the
above algorithm the constraint that all n points are
enclosed in the same half cone, either a valid optimal half
cone is returned, or no half cone is found. When x0 is an
extreme point of the convex hull of fx0; x1; :::; xng, there is
at least one enclosing half cone because a half cone is a
convex set, and therefore the minimal enclosing half cone
necessarily exists. When x0 is in the interior of the convex
hull of fx0; x1; :::; xng, or equivalently, x0 is interior to the
convex hull of fx1; :::; xng, no enclosing half cone exists.

The convex hull of a finite set of points can be computed
by standard methods such as the beneath-beyond method
[34]. It is pointed out that, for large n values, the
computation of the smallest enclosing half cone can be
much faster if it is applied to the vertices of the convex hull
of the n points rather than to the n points.

Remark 9: When a finite-volume revolution cone is
needed, it is proposed to orthogonally project the n points
xi on the axis, then to close the conic solid by two circular
disks orthogonal to the axis and intersecting it at the two
extreme projected points. If a half cone was considered,
only one disk is needed.
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