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it to compute ligand cones for a family of triphenylphosphine palladium complexes, and
we showed that both the angle of the cone and its resulting solid angle strongly correlate
Keywords: with the Tolman cone angle, thus suggesting that there is no more need for atomic radii.
T_Olman cone angle We also defined the best cone of fixed apex fitting a population of unit vectors. We
Ligand cone angle proposed a simple analytical algorithm to compute it, which is proved to work in any d-
Mmlma}A endos}ng cone dimensional Euclidean space. We defined the conicity index « to evaluate quantitavely the
Best fitting d-dimensional cone . . . .
Least squares pertinence of the best fitting cone. We used this best fit cone to define a mean ligand cone,
Conicity index and thus a mean cone angle and a mean cone axis. We applied it to our family of
triphenylphosphine palladium complexes and we observed that the axis of the individual
cones deviated from the mean cone axis by at most 13.2°. The observed conicity index was
small (k = 0.0177), indicating a very good fit for the whole family of complexes.
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RESUME
Mots clés : Nous définissons I'angle du plus petit cone englobant comme étant I'angle conique de
Angle conique de Tolman Tolman a rayons atomiques nuls. Puis, nous fournissons un algorithme analytique simple

Angle conique de ligand

Cone minimal englobant

Meilleur c6ne moyen d-dimensionnel
Moindre carrés

Indice de conicité

de calcul du plus petit cone englobant a apex fixé, qui fonctionne dans le cas des ligands
non symétriques. Nous I'appliquons aux cones de ligands pour une famille de complexes
palladium triphenylphosphine et nous montrons qu’a la fois I'angle du cone et I'angle
solide qui en résulte sont fortement corrélés avec I'angle conique de Tolman, suggérant
ainsi qu'il n'y a plus besoin des rayons atomiques. Nous définissons aussi le meilleur cone
moyen d’apex fixé pour une population de vecteurs unitaires. Nous proposons un
algorithme analytique simple pour le calculer, que nous prouvons étre valide dans tout
espace euclidien d-dimensionnel. Nous définissons I'indice de conicité « pour évaluer
quantitativement la pertinence du meilleur cone. Nous utilisons ce meilleur cone pour
définir un cone moyen de ligand, et donc un angle moyen de c6ne et un axe moyen de cone.
Nous I'appliquons a notre famille de complexes palladium triphenylphosphine et nous
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observons que les axes individuels des cones dévient de I'axe moyen de cone d’au plus
13,2°. L'indice de conicité observé est faible (x =0,0177), indiquant un trés bon
ajustement a I'ensemble de la famille de complexes.

© 2015 Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.

1. Introduction

Ligand cone angles were introduced by Tolman to
measure the size of phosphine derivatives and other
phosphorus ligands [1]. This size is the solid angle defined
by the smallest angle cone having its apex lying at 2.28 A
from the phosphorus atom and circumscribing the ligand
atoms, usually modelled by spheres. The solid angle,
expressed in steradians, is 6 = 27(1 — cosa), where « is
the angle between the generatrix of the cone and its axis
(see general definitions in Section 3.1). In the case of
symmetric ligands PR3, the Tolman cone angle is easy to
compute because its axis is in the direction of the mean of
the three vectors defined by the P-R bonds. Then, given the
radius of the spherical ligands, « is retrieved by elementary
geometry calculus. This approach has to be refined for
unsymmetrical ligands such as MPR;R;R; and more
generally for MXR{R;R3, where M=H or is a metal atom,
and X=P,N, CH, or is any atom having a tetrahedral
hybridisation such as sp® or sd. It was pointed out that
even symmetrically substituted bulky phosphines may
offer unsymmetrical conformations [2]. The difficulty of
the calculation arises (i) when the spheres radii are
unequal, and (ii) when the X-R; bonds are not symmetri-
cally arranged around the M-X axis. Tolman approximated
6 as (61 + 6, + 603)/3, where 6; is the acute angle between
the directions of the X-R; bond and of the M-X bond
[3,4]. This method was criticized because the obtained
values may not reflect the properties of the ligand,
particularly when the substituent groups differ greatly
[5]. It seems that few geometric tools are available to
measure steric effects in organometallic chemistry, and
that could explain why ligand cone angles were much used
in this field [6-9], Recently, Bilbrey et al. [10-12] proposed
an analytic solution to the ligand cone angle calculation.

It was also proposed to measure the steric size of
ligands and substituents by the solid angle generated by
the union of the atomic spheres [13], rather than the one
generated by their enclosing cone. This approach gives rise
to an analytical calculation of the solid angle, provided that
the intersections of more than two spheres could be
neglected [13]. There is a non-linear relationship between
the cone angle and the solid angle, which was measured
quantitavely [14]. To evaluate the importance of sphere
overlaps, an exact analytical calculation of sphere inter-
sections was done with the ASV freeware [15] using the
atomic radii recommended by Gavezzotti[16], and showed
that intersections between 6 or 7 atoms are commonly
observed in organic molecules [15,18]. These atomic radii
are sometimes slightly larger than those given by Bondi
[17], but it is recalled that an increase in the sphere radii
does not guarantee an increase of the van der Waals
surfaces. Running ASV on a database of 70 diverse ligands

showed that neglecting the intersections of more than two
atoms induced a mean error on van der Waals surface
calculations of 249%, and that neglecting the intersections
of more than three atoms led to a mean error of 87%, and
neglecting the ones of more than four atoms led to a mean
error to 16%, the maximal observed error in this case being
37% [18]. Despite that van der Waals surfaces are not used
in ligand solid angles calculations, these numbers show the
importance of atomic spheres overlaps.

An improved ligand solid angle algorithm was pro-
posed, which takes into account spheres intersections of
orders 3 and 4 [19], but it needs a complex numerical
integration. Recently, Bilbrey et al. [12,20] proposed an
analytic solution to the solid angle calculation, based on
the decomposition of the solid angle contributions
between those due to spherical polygon parts and those
due to the resulting truncated spherical sectors parts. This
algorithm, implemented by the authors in their Mathe-
matica FindSolidAngle package, is effective for the simple
geometrical arrangements expected to be encountered in
chemistry. However, it is not specified how it works in
general. E.g., the detection of potential multiple connected
components got by projection at the surface of the unit
sphere is not evoked, the solid angle subtended by an
internal spherical polygon may be not void and may even
be not unique, etc. The detection and the management of
such situations let the algorithm rather difficult to
implement.

The impact of conformational variations was evoked
early [21], leading to use weighted average cone angles
[22], while it was considered that this problem was
overcome by the use of the solid angle methodology
[23]. At the same time, Miiller and Mingos noticed also
that the Tolman cone angle definition does not take into
account the variations due to conformational changes
[24,25], and they used the atomic centers of the ligand
atoms rather than their van der Waals spheres. Then they
applied their algorithm to perform statistics on thousands
of phosphine structures found in the Cambridge Crystal-
lographic Data Base [26], and observed a variation in cone
angles for specific ligands, which is much larger than had
previously been suspected.

This slight change in the ligand cone angle calculation,
that we retain here (see Fig. 1) offers two other major
advantages: (i) the cone angle can be generalized to
complex polyatomic ligands R; via the calculation of the
fixed apex minimal cone enclosing any desired number of
atoms, and (ii) this calculation can be done analytically, as
shown in Section 3 of the present paper. We emphasize
that this generalization allows us to model molecular
shapes and structural fragments with cones although it is
usual to work with spherical models. Despite that is easy to
compute spherical shapes, the spherical model was shown
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(a)

Fig. 1. (a) Ligand cone, defined by Tolman [1]. (b) Smallest enclosing cone, defined here.

to be unrealistic and a cylindrical model was preferred for
drug design applications [27]. Fortunately, minimal height
enclosing cylinders and minimal radius enclosing cylin-
ders are computable analytically [28]. However, it seems
that apart cylinders and cones, it is hard to find the use of
non-spherical molecular shapes in the literature: it may be
due to the lack of simple analytical calculation algorithms.

There are several ways to take into account the
conformational changes of the ligands. We propose the
following one. For each conformer, we know from
the present analytical minimal enclosing cone algorithm
which ligand atom centers are on the surface of the cone
(see Section 3.5). We mark the atomic centers of these
ligand atoms. These marked ligand atoms can differ from
one conformer to another conformer, even for simple
ligands such as Me or Et. Then, assuming a common origin
in M, we are left with the problem of finding the best cone
of fixed apex fitting all the marked atomic centers. We give
in Section 3.3 an analytical solution to this problem,
formulated as a least squares one. Then we define in
Section 3.4 the conicity index «, which takes values in the
interval [0,1], the value k=0 meaning that all marked
atomic centers lies on the surface of the cone, and the value
k=1 being reached in the worst cases, characterized in
Section 3.4. It is emphasized that, compared to our best
fitting cone algorithm, computing some mean cone angle
such as the arithmetic mean of individual cone angles, has
drawbacks: such mean cone angle does not produce a
mean axis, and computing some mean axis would not be
coherent with the arithmetic mean of the cone angles.
Furthermore, such a method would not permit to define a
conicity index, although this latter provides quantitative
information about the impact of conformational changes
on steric effects. The axis of the best fitting cone is of
interest because it gives rise to a second quantitative
parameter: the acute planar angle between the axis of the
smallest enclosing cone and the axis of the best fitting
cone. This parameter indicates how the ligand size of
MXR1R,R3 deviates from the mean ligand size of the
family. At the opposite of the well-known RMS (Root Mean
Square) deviation, it does not need the knowledge of a
mean conformer.

A minor problem is to suppress the impact on a best fit
cone calculation of free rotations around the M-X axis
before aligning the conformers in a common Cartesian

coordinate system. When Ry, R, and Rj are different, a 3D
rotation performed to optimally superpose each conformer
on a common reference conformer solves the problem. It is
proposed to set the pivot at M and to restrict this optimal
rotation to X and to the respective three atoms of Ry, R, and
R3 that are bonded to X, rather to involve more atoms when
the R; are polyatomic. The reason is that extending the
optimal superposition to more atoms may give poor
alignments in the neighborhood of X in the case of bulky
ligands, while for usual applications of cone angles the
neighborhood of X is assumed to be more important than
the rest of the ligands. Furthermore, the restriction to X and
to its neighbours permits potential extensions to super-
positions of different molecules MXR R,R3 rather than to
different conformers of a common molecule MXR;R;R3,
thus generalizing the definition of the best fitting cone.
After translating the M atom of each conformer at the
origin, each desired optimal 3D rotation can be found by
minimizing the RMS deviation by the least squares method
implemented in the ARMS freeware, which is based on
quaternions (see appendix in [29], or appendix A.5 in [30]
for more general results about optimal rotations). When
two or three ligands are identical, there are respectively
two or six pairwise correspondences between the ligands
atoms bonded to X. In this situation, the one with the
smallest minimized RMS is retained.

2. Results and discussion

We exemplify our minimal enclosing cone algorithm
using a family of palladium triphenylphosphines com-
plexes (Table 1). The resulting cone is equivalent to the
Tolman cone for null atomic radii. The angle values we got
are in the range 57.7-64.6°, and should be compared with
the half of the Tolman cone angle values, which ranged in
the interval 150.3-173.6°. This difference of a factor 2 is
due to our mathematical definition of the cone angle,
which stands in E4 (see Section 3.1).

The observed correlation coefficient between the ligand
cone angle in [10] and our minimum enclosing cone angle
a is 1o, =0.9800, and with our solid angle 6 is ry=0.9796,
while « and 6 are highly correlated (0.99995). Since the
ligand cone angles encountered in the literature are almost
all times used for empirical correlations with physical data,
itis simpler to calculate o rather than the usual ligand cone
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Table 1

Minimal enclosing cone angles for a family of palladium triphenylphosphines complexes. a: angle between the axis and the generatrix. 0: solid angle of the

cone.

Palladium complex (data from ref. [10]) cos a « (degrees) 6 (steradians) Cone angle from ref. [10]
1 d(PPhs) 0.441571 63.796 3.509 170.0
2 d(PPhs)»(SN2C3),Cl 0.532900 57.798 2.935 150.3
3 d(PPhs )»(SN»C3 ),Cl 0.521229 58.585 3.008 155.4
4 d(PPhs3)(P,0C;4Ho)Cl 0.534833 57.667 2.923 1514
5 d(PPhs3)(SN40,CgH7)Cl 0.514252 59.053 3.052 155.2
6 d(PPhs)(SN3CoH10)Cl 0.501834 59.879 3.130 156.9
7 d(PPh;)(SH) 0.483577 61.081 3.245 160.8
8 Pd(PPhs ),(S3NO,C7Hs) 0.489504 60.692 3.208 160.9
9 d(PPhs )»(S3NO,C5Hs) 0.434539 64.244 3.553 173.6
10 d(PPhs)(SNCsH.) 0.474321 61.685 3.303 163.1
11 d(PPh3)(NFCy5H;5)Cl 0.485598 60.948 3.232 165.9
12 d(PPhs)(SN5C1oH11) 0.458999 62.677 3.399 167.4
13 d(PPh;)(S;N3CgHo) 0.458199 62.729 3.404 167.7
14 d(PPh3)(SN4CgH10) 0.451533 63.158 3.446 170.6
15 d(PPh;)(NFC;;H;s)Cl 0.429580 64.559 3.584 1722

angles because there is no need for atomic radii. The
correlation between « and 6 is not surprising because fis a
function of «. Then, the high value of the correlation
coefficient indicates that the relationship can be estimated
as linear for the considered ligands.

Published values of ligand cone angles are close to 180°
(see Table 1) and can be greater than 180° for some nickel
or platinium complexes [10], while 2« is around 120°. This
difference is due to the exclusion of the ligand atomic
spheres in the calculation of a. On the other hand,
modeling the molecular shape by a cone should either take
in account all atomic spheres, including the one of the
metal (estimated to 1.63 A for Pd [17]), or ignore all atomic
spheres. Locating the apex of the cone enclosing all atomic
spheres (including the metal one) would lead to a complex
algorithm, and worse, would need the knowledge of
adequate atomic radii. Ignoring only the atomic sphere of
the metal gives large angle cones, close to a half plane,
which are not realistic from the molecular shape point of
view. Ignoring all atomic spheres leads to a very simple
analytical algorithm (Section 3.5), it does not require
atomic radii, the angle values are still pertinent for
establishing empirical calculations, and the conical molec-
ular shape is physically more realistic than a half plane.
E.g., for the tetrakis Pd(PPhs), a solid angle close to 0.5 half
space per Pd(PPhs) part is more realistic than a solid angle
around one half space because for this latter the sum of the
four contributions of the Pd(PPhs) parts is around two full
spaces, thus indicating excessive cone intersections.

In order to define a mean cone for the 15 complexes of
Table 1 and to evaluate quantitatively the dispersion
around this mean cone, we operated as follows. The mean
cone has sense only in a common Cartesian coordinate
system: we selected Pd(PPhs) (see Table 1) as the reference
complex to perform a 3D superposition of each of the
14 other complexes onto this reference one. We set the

palladium atom as the common origin for the 15 complexes
and we computed the 14 optimal rotations as indicated at
the end of Section 1. There was an additional difficulty due
to the differences in the atom numbering of the complexes.
Thus, to retrieve each of the 14 pairwise correspondences
for the phosphorus and its neighboring carbons, we used
the CSR freeware, based on an automatic 3D motif
recognition [31].

For each of the 15 complexes, we got 3 contact points on
the surface of their individual smallest enclosing cone, all
with apex at the origin. These 45 points are in a common
Cartesian coordinate system and thus we computed the
best cone fitting these 45 points (see Section 3.3). This best
fit cone has an angle @ = 60.616° while the smallest cone
enclosing the 45 points has an angle of 68.090°. The
resulting 15 angles between the axis 11 of the best fit cone
and the 15 individual cone axes are given in Table 2. This
angle, denoted by y, indicates how the ligand size deviates
from the mean one of the family. At the opposite of the
smallest enclosing cone angle, it is poorly correlated with
the Tolman cone angle (correlation coefficient: 0.511).

We measured the global dispersion of the directions of
the 45 points around the surface of the best fit cone with
the conicity index « (see Section 3.4), which takes values in
0;1. We found « = 0.0177. A null value would have meant
that all 45 points are on the surface on the cone, although
only 2 or 3 are expected to be found on the surface, in
general (see Section 3.5). It indicates that the observed
differences of conformations of the phenyl groups in the
input structural files have little effect on the cone
calculation. The largest angle was the one of
Pd(PPh3)(S,N3CgHog).

It is emphasized that the knowledge of the mean cone
leads us to define not only a mean angle, but also a mean
axis and deviations from this mean axis: that was not
possible with usual ligand cone angle approaches.

Table 2

Angles y = (u,u) in degrees, between the axis 1 of the best fit cone and the cone axis u of each of the 15 complexes, numbered as in Table 1.
Complex 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1% 4.4 1.9 6.7 22 8.8 6.6 7.2 8.3 10.3 4.6 6.4 8.4 13.2 123 5.0
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The minimal angle enclosing cone algorithm and the
best fitting d-dimensional cone algorithm were imple-
mented in the freeware CONE. Sources are written in
portable f77. Documentation and binaries for Mac OS
10 and 64 bits Intel linux platforms are available free of
charge on a software repository located at http://
petitjeanmichel.free.fr/itoweb.petitjean.freeware.html.

Running CONE on Windows platforms can be done
through the installation of a linux emulator such as
Cygwin (free). When needed, convex hull calculations (see
Section 3.5) can be done with the freeware RADI. This
latter can be found on the same software repository than
CONE together with the freewares ARMS and ASV
mentioned in Section 1, and with the CSR freeware
mentioned in Section 2.

3. Appendix: analytical results and algorithms
3.1. Definitions and notations

Definition 1. In the the Euclidean space E¢, a cone of
apex Xg is a ruled surface generated by the set of all lines
intersecting xo and having a constant angle o with a given
axis containing xo. Each of these lines is called a generatrix.

This axis is defined by a unit vector u, and we set
conventionnally ¢ = cos « as being a non-negative value.
The case c=0 corresponds to the plane orthogonal to u and
containing xo. The case c=1 corresponds to a degenerated
cone reduced to its axis. Generalizations to non-constant
angles (non-circular cones) are not considered here. Thus, a
cone in E¢ is defined by 2d free parameters: xo, ¢, and u. Its
equation is the set of points x so that u’(x — xg) = c||x — Xo||,
where the quote indicates a transposition operation and

where the norm of (x — xq) is [|x — Xo|| = 1/ (X — X0)'(X — Xo).

Remark 1: Given the axis defined by u, the word cone
applies in some contexts to the points x satisfying to the
additional constraint sin o >0, which in fact lets to
consider only a half of the cone. In E3, this latter
encompasses a solid angle equal to 27 (1 — cosx). Unless
otherwise stated, we retain the definition corresponding to
a full cone.

Remark 2: In some contexts the cone is defined as the
convex set such that 0 < u/(x —xg) < ||x — xo||cos «, still
with cos « >0, in which case the half cone in the sense of
Definition 1 is the boundary of this latter convex set. There
are other variants. For convenience, we retain Definition 1.

We consider n+1 distinct given points
x;, i=0, 1, ..., n, in E% We define the unit vectors
v = (X; — X0)/||X;i — Xo||, i=1,...,n,and the matrix Wwith
n lines and d columns, each line i containing

v, i=1,..,n

i’ ) »

We use the following notations. I is the identity
matrix of rank n. 1 is the vector having n components,

all equal to 1. A=1—-11"/n is the centering operator
(thus A=A = AZ). T=WAW is the inertia matrix
associated with W, i.e. T is n times the covariance matrix
ofthev,i=1,..,n. P =1—uu is the projection matrix on
the (d - 1)-dimensional subspace generated by the vectors
orthogonal to u.

3.2. Calculation of a circumscribed cone

Definition 2. A cone circumscribed to k points is a cone
such that the k points lie on its surface.

We assume that the apex xq is fixed and we would like
to find the cone circumscribed to the points xq, ..., X,. The
resulting system has n equations u'v;=c,i=1,...nor, in
matricial form, Wu = c1. It has d unknowns and thus it is
underdetermined when n<d and it is overdetermined
when n>d. Thus we consider the case n=d and we assume
that the square matrix W is invertible, i.e. no (d-1)-
dimensional plane contains the n points.

Theorem 1. The cone of apex x, circumscribed to n=d
points in E¢ has its axis in the direction of the unit vector

u= W’]l/\/I/(WW’)_H and the cosine of its angle is
cos a =1//1(WW') 1.

Proof. W is invertible, thus u = cW~'1. Because u is a
unit vector and c was conventionnally set non-negative, we

get c=1/\//(WW) "1 and u = W 1/y/1(WW') 1.

Remark 3: It is checked that we have indeed the
solution value c? <1 as follows. The symmetric matrix
WW' have non-negative eigenvalues and thus its largest
eigenvalue cannot exceed its trace, this latter being equal
to n. Then the smallest eigenvalue of (WW’)’1 cannot be
smaller than 1/n, and from the Courant-Fischer minimax
theorem [32], the quadratic form 1'(WW’)’]1 cannot be
smaller than (1'1/n) = 1, so that ¢? < 1.

Remark 4: There are two particular situations: ¢ =0 and
c=1.The case c=0 arises if and only if the square matrix W
is non-invertible: W'1 = 0. It is such that u'v; = 0 for all
i=1,...,n, which corresponds to a cone which is a plane
orthogonal to u and containing xo. The case c=1 arises if and
only if all the n quantities u’v; = 1, which means thatv; = u
foralli=1,...,n: all points are aligned on the axis and the
cone is degenerated.

3.3. Least squares best fitting cone

We consider the case n >d. In general we cannot have
the n equalities Wu — ¢1 = 0 all satisfied together, but we
can minimize S = |Wu — c1|)?, i.e. we look for the values of
(c,u) minimizing S = (Wu — c1) (Wu — c1).

Theorem 2. The optimal unit vector u is the eigenvector
associated with the smallest eigenvalue A4 of the inertia
matrix T = W/AW and the minimized sum of the squared
distances of the n points to the surface of the cone is A4.

Proof. The solution of the optimization problem
above should satisfy to grad[S + L(1 — v'u)] =0, L being
the Lagrangian associated with the constraint
wu=1. It follows that 2nc-2(1'Wu) =0 and that
2W'Wu — 2cW'1 — 2Lu = 0.

Wegetc = 1"Wu/n,and then L = W (I - 11'/n)Wu, i.e.
L = u'Tu. Then we get S = w'Tu and (I — uu)W'AWu = 0, i.e.
PTu = 0 and Tu = Lu. The latter equation is satisfied if and
only if Tu is proportional to u, which means that u is an
eigenvalue of T. Let A1, ..., A4 be the eigenvalues of T sorted
in decreasing order. From the Courant-Fischer minimax
theorem, the minimum of Sis S* = A4 and the maximum of
Sis )\,1.
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Remark 5: When n=d, W is a square matrix so that AW
is not of full rank because 1’A = 0 and thus 1’AW = 0. Then,
T = W'AW, which can be written T = (AW)'(AW) because
A? = A, cannot be of full rank. We deduce that A4 = 0 and
we find again that S=0 and Wu = c1.

Remark 6: For any n and discarding whether or not u is
optimal, it is checked that we have indeed the optimal
value ¢? <1 as follows. We have n?c? = (1'W)uu/(W'1),
which is a quadratic form, which cannot exceed
(1I'W)(W'1) because the largest eigenvalue of uu' is
1. But (1'WW'1) cannot exceed 1'1 = n times the largest
eigenvalue of WW', this latter being not greater than the
trace of WW/, i.e. n. Thus n2c¢? < n? and c2? < 1. The sense of
the eigenvector u is set to have a non-negative c value.

Remark 7: Another least squares method would be to
minimize the sum of n squared distances of the points x; to
their orthogonal projection on the cone, rather than the
sum of n squared distances of the v; to their orthogonal
projection on the cone. In this situation, a numerical
minimizer is required.

3.4. Conicity index

Definition 3. The conicity index is k =d - S*/n.

Theorem 3. « takes values in [0;1].

Proof. We look for the upper bound of the minimal
S§* = A4 givend and n. The maximal value for A4is A4. In this
situation all the d eigenvalues of T are equal to Tr(T)/d, i.e.
d-S" =Tr(WW) - Tr(W11W)/n. Thus d - S* = n(1 — '),
where the mean of the n unit vectors is 7 = W’1/n. Since
IVl <1, S*€[0,n/d).

The value k=0 indicates that all points lie at the surface
of the cone. The value x=1 indicates the worst possible
fitting by the cone. It is reached when T is proportional to
the identity matrix I and when ¥ = 0. This extreme value is
reached, e.g., for the vertices of a regular d-simplex with
the apex at its center [33].

3.5. Smallest enclosing cone

Having a fixed apex xo and n input data points X1, ..., X,,
we propose in the case d=3 a minimal enclosing cone
algorithm in the sense of a minimal angle «. Such a cone
has 3 free parameters: the unit vector u and the angle «.. A
point x; is enclosed in the cone if cos(x; — Xg, 1) > cosc.

The smallest enclosing cone is sought among the
minimal cones circumscribed to successively k=1, 2, and
3 points and containing the n—k other points.

The trivial case k=1 corresponds to n points aligned
with xq: if it is the case the algorithm stops.

The case k=2 is solved via enumerating the n(n — 1)/2
pairs of input points and computing for each pair its
minimal circumscribed cone (the minimal cone circum-
scribed to 2 points x; and x; is such that its axis is bisecting
the angle x; — xo — X3). If the latter encloses all points, it is
retained. If there is one or several retained cones, the one
with the smallest angle is the solution and the algorithm
stops.

If not, we enumerate the n(n — 1)(n — 2)/6 triplets of
input points and we compute for each triplet its
circumscribed cone as shown in Section 3.2. The one with

the smallest angle is retained and the algorithm termi-
nates.

Remark 8: For some applications the minimal enclosing
half cone of fixed apex xo needs to be considered. If it
happens that the algorithm above does not output such a
half cone, another algorithm is required, based on
circumscribed half cones. If we add at each step of the
above algorithm the constraint that all n points are
enclosed in the same half cone, either a valid optimal half
cone is returned, or no half cone is found. When xq is an
extreme point of the convex hull of {xg,x,...,xn}, there is
at least one enclosing half cone because a half cone is a
convex set, and therefore the minimal enclosing half cone
necessarily exists. When xy is in the interior of the convex
hull of {xg,x1,...,X,}, or equivalently, xo is interior to the
convex hull of {xq,...,x,}, no enclosing half cone exists.

The convex hull of a finite set of points can be computed
by standard methods such as the beneath-beyond method
[34]. It is pointed out that, for large n values, the
computation of the smallest enclosing half cone can be
much faster if it is applied to the vertices of the convex hull
of the n points rather than to the n points.

Remark 9: When a finite-volume revolution cone is
needed, it is proposed to orthogonally project the n points
x; on the axis, then to close the conic solid by two circular
disks orthogonal to the axis and intersecting it at the two
extreme projected points. If a half cone was considered,
only one disk is needed.
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