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The chemistry of organosilicon compounds can provide
ealth of chemical and biological diversity for medicinal
gs design. The incorporation of silicon atom into a drug
ctures has been used to improve pharmacological

ency, to modify selectivity toward a given target, to
nge metabolic rates, and specifically to increase
philicity. A small increase in lipophilicity can provide

eral physiological benefits, including increased bio-
ilability as well as tissue and cell penetration [1–3].
e of silicon-containing drug structures such as Tac101

and BNP1350 have entered human clinical trials for the
treatment of cancer [2] (Fig. 1).

The imidazole core constitutes an active backbone in
exciting medications and is present in natural products,
e.g., Losartan, Olmesartan, Eprosartan, Pimobendan, Tri-
fenagrel, and Naamidine A (Fig. 2). The potency and wide
applicability of the imidazole pharmacophore can be
attributed to its hydrogen bond donor–acceptor capability
as well as its high affinity for metals that are present in
many protein active sites. Some of imidazole derivatives
could be used as ionic liquids, anion sensors, electrical and
optical materials, in molecular switches and organic light-
emitting diodes (OLEDs). This versatile applicability high-
lights the importance of access to efficient synthetic routes
to well benign fully substituted imidazoles [4–9]. Cycliza-
tions via one-pot multicomponent coupling reactions
(MCRs) are widely used for eco-compatible syntheses [10].
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A B S T R A C T

The one-step synthesis of silylated 1,2,4,5-tetraaryl imidazoles by use of a series of M/

SAPO-34 (M: Fe, Co, Mn, and Cu) nanocatalysts and subsequent silylation reactions is

described. Cu/SAPO-34 catalyst has the highest activity in improving the efficiency of the

heterogeneous cyclo-condensation of an aldehyde, benzil, ammonium acetate and a

primary aromatic amine in water under ultrasonic irradiation. Some of imidazole

derivatives are studied with a view to the synthesis of a series of new, multi-substituted

imidazoles containing organosilyl groups including carbosilanes (Si–C) and silyl ethers

(Si–O).
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Multisubstituted imidazoles are generally synthesized
by one-step condensation of an aldehyde, benzil, ammo-
nium acetate and primary aromatic amine in the presence
of various catalysts and green techniques [8,11–13]. Now,
the use of ultrasound irradiation in different areas of
chemistry has grabbed significant levels, not only for the
possibility to perform environmentally benign syntheses,
but also for the excellent yields they allow [14–18]. Many
organic reactions have been devised, in which reagents are
supported on various inorganic solid supports [19]. Various
metal-supported zeolites, such as Cu-modified zeolites
(HY, H–USY, H–Beta, Mordenite and ZSM-5), have been
given more attention for catalytic applications [20]. Re-
cently, silicoaluminophosphate (SAPO-n) zeolites, as small
pore-sized molecular sieves, have been successfully used
by several industrial researchers [21–23]. No reports are
available on the synthesis of fully substituted imidazoles
by use of H-SAPO-34 zeolites. Therefore, investigation of
the preparation of tetraaryl imidazoles using M/SAPO-34
(M: Fe, Co, Mn, and Cu) zeolite catalysts as heterogeneous
‘‘E’’ catalysts (efficient, eco-friendly and economic) via
zeolite-catalyzed multicomponent reactions (ZCMCRs)
[24] was carried out in this study. In continuation of
our interest in the synthesis of useful heterocyclic
compounds possessing an imidazole nucleus and because
of the importance of organosilicon compounds, we have
synthesized a series of new, multi-substituted imidazoles

containing organosilyl groups including carbosilanes (Si–C)
and silyl ethers (Si–O).

2. Results and discussion

The catalytic influence of the different transition metals
supported on the H-SAPO-34 zeolite, of the weight
loadings of metal (wt.%), of the amount of catalysts has
been studied here with different reaction media that were
tested for the preparation of highly substituted imidazole
derivatives. A one-pot four-component condensation of
benzil (1 mmol), benzaldehyde (1 mmol), p-methylaniline
(1 mmol), and ammonium acetate (1.1 mmol) was used as
a model reaction for the synthesis of 2,4,5-triphenyl-1-p-
tolyl-1H-imidazole 1a in water under ultrasound irradia-
tion (high intensity). In the absence of a catalyst, the
reaction was incomplete, even after 2 h of sonication,
though the formation of a small amount of 1a (20%) was
observed. When the model reaction was carried out in the
presence of an H-SAPO-34 support (10 wt.%) in the same
conditions, the product 1a was isolated with 32% yield,
after 60 min. However, the reaction proceeded rather
slowly and no significant acceleration was observed. We
showed that the incorporation of different transition
metals into the H-SAPO-34 support improves the cyclo-
condensation reaction leading to the synthesis of a series of
M/SAPO-34 (M: Fe, Co, Mn, and Cu) catalysts. All catalysts
showed good yield and only produced trace amounts of
by-product 2,4,5-triphenyl-1H-imidazole, at Mn-based
catalyst. Metal loading on the support was done at two
different loading of 5.0 and 10 wt.% of metal on the support.
The results showed that the activity of catalysts with a metal
loading of 10 wt.% is lower with a 5 wt.% loading. This
decrease can be attributed to excessive metal agglomera-
tion, leading to the formation of large metal particles. In
addition, further content of metal blocks the pores and the
active sites of the catalyst so that catalytic activity decreases.
The best results (95% yield, after 3 min) were obtained in
the presence of 5 wt.% of Cu/SAPO-34 in aqueous medium
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er ultrasound irradiation (Table 1, entry 1). This result is
greement with our working hypothesis that the copper
s, acidity and reactant adsorption ability of the support
ht be the main factors allowing one to improve the

lo-condensation reaction on Cu(NO3)2/SAPO-34.
It is also worthy to note that ultrasound-assisted
ctions proceed by an acoustic cavitation phenomenon,
the formation, growth, and collapse of bubbles in the
id medium. During the collapse of a cavity, high local
peratures and pressures arise, which lead to an

rease in the rate of reactions [14–17]. When other
ents such as methanol, acetonitrile, ethanol, THF, and

ylacetate were used, the reactions were slower and the
lds lower.

The reactions of various aldehydes, benzil, amines,
and ammonium acetate were examined in the presence
of Cu/SAPO-34 (5 wt.%) in water under ultrasound
irradiation. In all cases, the requisite imidazole deriva-
tives were obtained within 3 to 5 min in excellent yields
(Table 2) without the formation of any side products such
as 2,4,5-trisubstituted imidazoles, oxidized products of
anilines, and aldehydes, which are normally observed
under the influence of strong acids. Some of the tetraaryl
imidazoles are known compounds and their identity was
confirmed by IR, NMR, elemental analyses, and melting
points.

A plausible mechanism for the catalytic activity of
Cu/SAPO-34 is postulated in Scheme 1. Cu/SAPO-34

le 1

imization of the reaction conditionsa.

O

O

H2N

NH4OAc

O

H

+

Catalyst

N

N

1a

H2O, ((( (

try Catalyst (wt.%) Time (min) Yield (%)b

Cu/SAPO-34 (10) 30 78

Cu/SAPO-34 (5) 5 95

Fe/SAPO-34 (10) 30 65

Fe/SAPO-34 (5) 5 71

Co/SAPO-34 (10) 30 63

Co/SAPO-34 (5) 5 68

Mn/SAPO-34 (10) 30 48

Mn/SAPO-34 (5) 5 50

HSAPO-34 (10) 60 32

 – 120 20

Reaction conditions: benzaldehyde (1.0 mmol), benzil (1.0 mmol), 4-methylaniline (1.0 mmol), ammonium acetate (1.1 mmol), and 5 wt.% Cu/SAPO-34

ater under ultrasonic irradiation at ambient temperature at 20% of the processor’s power. (The metal content was kept at 5 wt.% for M/SAPO-34

lysts).

The indicated yields refer to isolated products.
Scheme 1. Plausible mechanism for the formation of 1,2,4,5-tetraaryl imidazoles in the presence of Cu(NO3)2/SAPO-34.
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activates the aldehyde’s carbonyl group in order to
facilitate the formation of diamine intermediate A. This
catalyst also activates the diketone to make easier the
condensation with intermediate A, to give imidazol-5-ol
intermediate C that, upon elimination of water, is
transformed into the desired 1,2,4,5-tetraaryl imidazole.

We have recently used bulky tris(trimethylsilyl)-
methyllithium (TsiLi) as a reagent for the preparation of
vinylsilanes, epoxysilanes, halovinylsilanes, silyl ethers,
etc. [25–30]. In the previous publication, we reported the
synthesis of bulky organosilicon groups containing highly
substituted imidazoles using silyl-substituted organome-
tallic reagents (RSiMe2)3CLi (R = H, Me, Ph) [31,36]. In
continuation of our research in this field, the new
organosilyl derivatives of imidazole 1b were synthesized
by using its lithium derivative, which was prepared via

the metalation of 1b with lithiumdiisopropylamide (LDA)
in THF, at room temperature. Trapping of this active
intermediate by dropping silyl chlorides such as dimethyl-
silylchloride, trimethylsilylchloride, triethylsilylchloride,
and triphenylsilylchloride resulted in the desired products
(Scheme 2).

In contrast, the reaction of silyl chloride derivatives
with organolithium reagent prepared via the metalation
of 1a proceeded slowly; after 2 h, it gave a poor yield.
Imidazole 2b having an hydrosilane (Si–H) substituent is
potentially useful for the preparation of new derivatives of
imidazole containing organosilicon groups (silyl ethers)
via the hydrocoupling reactions between compound 2b
and some alcohols under Karstedt’s catalyst (platinum(0)-
1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex, solu-
tion in xylene). Reaction of 2b with methanol as a primary
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Scheme 2. Synthesis of 1,2,4,5-tetraaryl imidazoles containing organosilyl groups.
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hol gave higher yields than the analogous reaction
h secondary alcohols such as isopropyl alcohol and
nol, probably because of a steric hindrance increase.

onclusion

In this work, Cu(II) nitrate impregnated H-SAPO-34
lite has been used as an efficient supported reagent for
improved and rapid one-pot synthesis of 1,2,4,5-
aaryl imidazoles in water under ultrasound irradiation
xcellent yields. This simple procedure combined with

y recovery and reuse of the catalyst makes this method
nomically and environmentally benign. Some of
dazole derivatives were studied for the synthesis of a
ies of new, multi-substituted imidazoles containing
anosilyl groups including carbosilanes (Si–C) and silyl
ers (Si–O). The synthetic intermediate 2-(4-((methox-
methylsilyl)methyl)phenyl)-1,4,5-triphenyl-1H-imid-
le 6b is a potential precursor compound for the
thesis of other tetraaryl imidazole-substituted (alkoxy
ethylsilyl)methanes through the transetherification

ctions 6b with other alcohols and polymers bearing
roxyl groups. We shall investigate this possibility and
uss our results in future communications.

xperimental

 Material and technique

Chemicals were either prepared in our laboratory or
chased from Merck, Fluka, and Aldrich. Commercial

products were used without further purification. The
1H NMR and 13C NMR spectra were recorded with a Bruker
FT-400 MHz spectrometer at room temperature and with
CDCl3 and/or DMSO-d6 as a solvent. The FT-IR spectra were
recorded on a Bruker Tensor 270 spectrometer. The
reactions were carried out by used of an ultrasonic
processor probe (SONOPULS Ultrasonic homogenizers).
The Elemental analyses were carried out with an
Elementar vario EL III instrument. The abbreviations used
for NMR signals are: s = singlet, d = doublet, t = triplet,
and m = multiplet. Melting points were recorded on a
Büchi B-545 apparatus in open capillary tubes and are
uncorrected.

4.2. Nanocatalysts preparation

Catalysts were prepared by the homogeneous deposi-
tion precipitation (HDP) method. In the HDP method, an
aqueous solution of urea is utilized to generate ammonium
hydroxide as a precipitating agent at elevated tempera-
ture, according to the following reaction: CO(NH2)2 + 3H2O
! CO2 + 2NH4

+ + 2OH�.
The precursors of the used metals were Co(NO3)2�6H2O,

Fe(NO3)3�9H2O, Cu(NO3)2�3H2O, and Mn(NO3)2�4H2O, and
the support used was SAPO-34. Metal loading on a support
was done at two different metal loadings of 5.0 and 10 wt%.
In a typical procedure, the SAPO-34 support was added to a
solution containing an appropriate amount of metal nitrate
under vigorous stirring, and then urea was added to the
mixture. The temperature was gradually increased to 95 8C
and maintained at that value for 5 h until the hydroxide

le 2

hesis of 1,2,4,5-tetraaryl imidazoles catalyzed by Cu/SAPO-34 nanocatalyst.

NH4OAc

H2NO

O
O

H

+

Cu/SAPO-34

R2

R1
N

N

R2

R1

H2O,((((

try Product R1 R2 Time (min) Yield (%)a MP (8c)

Found Report

1a C6H5 4-MeC6H4 5 95 183–184 183–185 [32]

1b 4-MeC6H4 C6H5 7 85 183–185 182–184 [33]

1c 4-OMeC6H4 C6H5 4 90 184–186 186 [13]

1d 4-MeC6H4 4-FC6H4 7 85 188–190 188–190 [31]

1e 4-ClC6H4 4-MeC6H4 4 96 167–169 167–169 [31]

1f 4-MeC6H4 4-ClC6H4 7 84 166–168 167–169 [34]

1g 4-MeC6H4 3-ClC6H4 7 85 198–200 198–200 [31]

1h C6H5 4-OHC6H4 5 85 > 280 > 280 [35]

1i 4-OHC6H4 4-OHC6H4 5 82 > 280 > 280 [35]

 1j 4-ClC6H4 4-OHC6H4 4 92 > 280 > 280 [35]

 1k 4-OHC6H4 4-MeC6H4 8 83 > 280 298–300

 1l 4-MeC6H4 4-BrC6H4 7 84 190–192 190–192 [31]

 1 m 4-MeC6H4 4-MeC6H4 8 80 189–191 189–191 [34]

 1n 4-ClC6H4 C6H5 5 88 152–155 154 [13]

 1o 2-C4H3S 4-MeC6H4 5 88 177–179 –

 1p 4-MeC6H4 C7H7 7 87 180–182 –

Indicated yields refer to isolated products.
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precipitate was complete. Thereafter, the mixture was
aged at room temperature for 14 h and then the solid was
filtered, washed thoroughly with deionized water, air dried
at 90 8C for 14 h and then finally calcined at 550 8C for 4 h
[36].

4.3. General procedure for the preparation of 1,2,4,5-

tetraaryl imidazoles (1a–1p)

A mixture of benzil (1 mmol), aldehyde (1 mmol),
amine (1 mmol), and ammonium acetate (1.1 mmol) as
ammonia source and 5 wt.% of Cu/SAPO-34 in 3 of water
was introduced in a 20-ml heavy walled pear-shaped two-
necked flask with a nonstandard tapered outer joint. The
flask was attached to a 12-mm tip diameter probe and the
reaction mixture was sonicated at ambient temperature at
20% of the processor’s power. After completion of the
reaction (monitored by TLC, within 2–6 min), the solid
product was filtered, washed with water, dried, and
recrystallized from ethanol. The supported reagent was
washed thrice with water and ethanol and dried under
vacuum before reuse.

4.3.1. Spectral data of some of the selected products

4.3.1.1. 1-(4-Fluorophenyl)-4,5-diphenyl-2-p-tolyl-1H-im-

idazole (1d). White powder; yield 97%; m.p. = 188–190 8C;
FTIR (KBr, cm�1): 3058 (Ar–H), 2962 (C–H), 1602, 1508,
1444 (C = C), 960, 775, 730. 1H NMR (400 MHz, CDCl3,
ppm): d 2.36 (s, 3H, Ar–CH3), 6.96–7.00 (m, 2H, Ar–H),
7.03–7.07 (m, 2H, Ar–H), 7.11 (d, 2H, J = 8.0 Hz, Ar–H),
7.14–7.17 (m, 2H, Ar–H), 7.21–7.32 (m, 6H, Ar–H). 7.35 (d,
2H, J = 8.0 Hz, Ar–H), 7.63 (d, 2H, J = 7.2 Hz, Ar–H), 13C NMR
(100 MHz, CDCl3, ppm): d 20.24 (Ar–CH3), 114.95, 115.17,
125.58, 126.32, 126.41, 127.01, 127.12, 127.41, 127.79,
127.88, 128.99, 129.08, 129.50, 129.58, 130.07, 132.19,
133.30, 137.16, 137.31, 146.12, 159.59, 162.06 (Ar). Anal.
calcd. for C28H21FN2: C 83.14, H 5.23, N 6.93%. Found: C
83.09, H 5.14, N 6.81%.

4.3.1.2. 2-(4-Chlorophenyl)-4,5-diphenyl-1-p-tolyl-1H-im-

idazole (1e). White powder; yield 96%; m.p. = 167–169 8C;
FTIR (KBr, cm�1): 3054 (Ar–H), 2976 (C–H), 1600, 1510,
1478, 1445 (C = C), 745, 696. 1H NMR (400 MHz, CDCl3,
ppm): d 2.36 (s, 3H, Ar–CH3), 6.95 (d, J = 8.1 Hz, 2H, Ar–H),
7.10 (d, J = 8.1 Hz, 2H, Ar–H), 7.16–7.18 (m, 2H, Ar–H),
7.21–7.30 (m, 8H, Ar–H), 7.41–7.43 (m, 2H, Ar–H), 7.61–
7.63 (m, 2H, Ar–H). 13C NMR (100 MHz, CDCl3, ppm): d
20.14 (Ar–CH3), 119.77, 125.61, 126.30, 126.95, 126.99,
127.13, 127.29, 127.31, 128.10, 128.82, 129.03, 129.50,
130.05, 130.17, 133.15, 133.21, 133.31, 137.41, 144.74
(Ar). Anal. calcd. for C28H21ClN2: C 79.89, H 5.03, N 6.66%.
Found: C 79.76, H 5.14, N 6.86%.

4.3.1.3. 1-(3-Chlorophenyl)-4,5-diphenyl-2-p-tolyl-1H-im-

idazole (1g). White powder; yield 94%; m.p. = 198–200 8C;
FTIR (KBr, cm�1): 3056 (Ar–H), 2963 (C–H), 1601, 1490,
1479 (C = C), 739, 703. 1H NMR (400 MHz, CDCl3, ppm): d
2.33 (s, 3H, Ar–CH3), 6.93-6.95 (m, 1H, Ar–H), 7.05
(t, J = 1.86 Hz, 1H, Ar–H), 7.08 (d, 2H, J = 8.04 Hz, Ar–H),
7.12–7.27 (m, 10H, Ar–H), 7.32 (d, 2H, J = 8.15 Hz,

Ar–H),7.58–7.60 (m, 2H, Ar–H). 13C NMR (100 MHz, CDCl3,
ppm): d 20.27 (Ar–CH3), 125.64, 125.77, 126.24, 126.33,
127.14, 127.15, 127.47, 127.58, 127.78, 127.95, 128.92,
129.31, 130.05, 133.21, 133.48, 137.33, 137.45, 146.00
(Ar). Anal. calcd. for C28H21ClN2: C 79.89, H 5.03, N 6.66%.
Found: C 79.78, H 5.12, N 6.74%.

4.3.1.4. 4-(2,4,5-Triphenyl-1H-imidazol-1-yl)phenol

(1h). White powder; yield 92%; m.p. >280 8C; FTIR (KBr,
cm�1): 3414 (OH), 3054 (Ar–H), 2922 (C–H), 1604, 1513,
1446 (C = C), 696. 1H NMR (400 MHz, CDCl3, ppm): d 6.66
(d, J = 8.5 Hz, 2H, Ar–H), 7.04 (d, J = 8.5 Hz, 2H, Ar–H),
7.14–7.30 (m, 11H, Ar–H), 7.42–7.44 (m, 2H, Ar–H), 7.49
(d, J = 7.5 Hz, 2H, Ar–H), 9.78 (s, 1H, Ar–OH). 13C NMR
(100 MHz, CDCl3, ppm): d 115.59, 126.35, 127.84, 128.12,
128.15, 128.27, 128.40, 129.79, 130.58, 130.63, 131.12,
131.59, 134.56, 136.61, 146.11, 157.31 (Ar). Anal. calcd. for
C27H20N2O: C 83.48, H 5.19, N 7.21%. Found: C 83.54, H
5.07, N 7.19%.

4.3.1.5. 4,40-(4,5-Diphenyl-1H-imidazole-1,2-diyl)diphenol

(1i). White powder; yield 91%; m.p. >280 8C; FTIR (KBr,
cm�1): 3416 (OH), 3053 (Ar–H), 2924 (C–H), 1642, 1513,
1438 (C = C), 694. 1H NMR (400 MHz, CDCl3, ppm): d 6.64–
6.67 (m, 4H, Ar–H), 7.00 (d, J = 8.4 Hz, 2H, Ar–H), 7.12–7.29
(m, 10H, Ar–H), 7.45 (d, J = 7.7 Hz, 2H, Ar–H), 9.73 (bs, 2H,
Ar–OH). 13C NMR (100 MHz, CDCl3, ppm): d 114.92, 115.55,
121.48, 126.22, 126.31, 128.05, 128.09, 128.16, 128.39,
129.67, 129.84, 130.86, 130.89, 131.14, 134.75, 136.15,
146.56, 157.19, 157.52 (Ar). Anal. calcd. for C27H20N2O2: C
80.18, H 4.98, N 6.93%. Found: C 80.01, H 4.75, N 6.87%.

4.3.1.6. 4-(2-(4-Chlorophenyl)-4,5-diphenyl-1H-imidazol-1-

yl)phenol (1j). White powder; yield 94%; m.p. >280 8C;
FTIR (KBr, cm�1): 3416 (OH), 3054 (Ar–H), 2926 (C–H),
1595, 1513, 1478, 1440 (C = C), 745, 695. 1H NMR
(400 MHz, CDCl3, ppm): d 6.67 (d, J = 8.4 Hz, 2H, Ar–H),
7.05 (d, J = 8.4 Hz, 2H, Ar–H), 7.14–7.43 (m, 12H, Ar–H),
7.47 (d, J = 7.5 Hz, 2H, Ar–H), 9.82 (s, 1H, Ar–OH). 13C NMR
(100 MHz, CDCl3, ppm): d 115.69, 126.33, 126.46, 127.55,
128.15, 128.27, 128.37, 128.43, 129.37, 129.71, 129.74,
130.44, 131.10, 131.89, 132.98, 134.37, 136.76, 144.96,
157.42 (Ar). Anal. calcd. for C27H19ClN2O: C 76.68, H 4.53, N
6.62%. Found: C 76.49, H 4.61, N 6.58%.

4.3.1.7. 1-(4-Bromophenyl)-4,5-diphenyl-2-p-tolyl-1H-im-

idazole (1l). White powder; yield 90%; m.p. = 190–192 8C;
FTIR (KBr, cm�1): 3057 (Ar–H), 2961 (C–H), 1602, 1570,
1510, 1478 (C = C), 726, 697. 1H NMR (400 MHz, CDCl3,
ppm): d 2.36 (s, 3H, Ar–CH3), 6.93 (d, J = 8.6 Hz, 2H, Ar–H),
7.11–7.17 (m, 4H, Ar–H), 7.20–7.35 (m, 8H, Ar–H), 7.41 (d,
2H, J = 8.6 Hz, Ar–H), 7.60–7.62 (m, 2H, Ar–H). 13C NMR
(100 MHz, CDCl3, ppm): d 20.27 (Ar–CH3), 121.06, 121.58,
125.64, 126.37, 127.14, 127.51, 127.88, 127.96, 128.56,
128.91, 129.35, 129.44, 130.10, 131.13, 131.25, 133.27,
135.27, 137.42, 146.04 (Ar). Anal. calcd. for C28H21BrN2: C
72.26, H 4.55, N 6.02%. Found: C 72.14, H 4.47, N 6.14%.

4.3.1.8. 4,5-Diphenyl-2-(thiophen-2-yl)-1-p-tolyl-1H-imid-

azole (1o). Pink powder; yield 91%; m.p. = 178–180 8C;
FTIR (KBr, cm�1): 3060 (Ar–H), 2930 (C–H), 1603, 1490,
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8 (C = C), 1398, 1237, 1115, 1072, 1026, 968, 917,
, 699. 1H NMR (400 MHz, CDCl3, ppm): d 2.41 (s, 3H,
CH3), 6.73 (d, J = 3.4 Hz, 1H, Ar–H), 6.90 (t, J = 4.4 Hz,

 Ar–H), 7.12 (d, J = 8.2 Hz, 2H, Ar–H), 7.18–7.30
 11H, Ar–H), 7.62 (d, J = 7.2 Hz, 2H, Ar–H). 13C NMR
0 MHz, CDCl3, ppm): d 20.29 (Ar–CH3), 125.08,
.20, 125.58, 126.09, 126.32, 126.93, 127.11, 127.30,
.64, 128.95, 129.39, 130.01, 132.28, 132.95, 133.26,
.21, 138.16 (Ar). Anal. calcd. for C26H20N2S: C 79.56,
.14, N 7.14, S 8.17%. Found: C 79.38, H 5.25, N 7.01,

.31%.

1.9. 1-Benzyl-4,5-diphenyl-2-p-tolyl-1H-imidazole

). White powder; yield 90%; m.p. = 180–182 8C; FTIR
r, cm�1): 3031 (Ar–H), 2918 (C–H), 1619, 1509, 1478,
2 (C = C), 934, 773, 698. 1H NMR (400 MHz, CDCl3,
): d 2.41 (s, 3H, Ar–CH3), 5.14 (s, 2H, CH2), 6.84–6.86

 2H, Ar–H), 7.18 (d, J = 7.1 Hz, 1H, Ar–H), 7.23–7.44 (m,
, Ar–H), 7.58–7.63 (m, 4H, Ar–H). 13C NMR (100 MHz,
l3, ppm): d 20.30 (Ar–CH3), 47.22 (CH2), 124.97,
.24, 125.74, 126.25, 127.01, 127.50, 127.70, 127.74,
.84, 127.90, 128.03, 128.84, 130.05, 130.12, 136.64,
.76 (Ar). Anal. calcd. for C29H24N2: C 86.97, H 6.04, N

9%. Found: C 86.81, H 6.20, N 7.02%.

 Procedure for synthesis of 2-(4-

methylsilyl)methyl)phenyl)-1,4,5-triphenyl-1H-imidazole

) and 2-(4-((trimethylsilyl)methyl)phenyl)-1,4,5-triphenyl-

imidazole (3b)

To a stirred THF solution (15 ml) of diisopropylamine
 mmol), a cyclohexane solution (3 ml) of n-butyllithium
5 g, 10 mmol) was added in a 100-ml round-bottomed
k equipped with a three-way stop-cock and an isobaric-
e dropping funnel. After stirring for a few minutes to
plete the formation of lithium diisopropylamide (LDA),

,4-triphenyl-5-p-tolyl-1H-imidazole (1b) (10 mmol)
s added. The color of the mixture turned brown

ediately. Then an excess amount of dimethylsilyl
oride or trimethylsilyl chloride (36 mmol) in THF

 ml) was dropped from the isobaric-type dropping
nel into the mixture for 1 h at 0 8C. After completion of

 reaction, low-temperature-boiling materials were
porated and the residue was chromatographed over
ca gel by 10:1 n-hexane:ethyl acetate to yield 90% of
) and 82% of (3b).

1. The spectral data of selected products

1.1. 2-(4-((Dimethylsilyl)methyl)phenyl)-1,4,5-triphenyl

-imidazole (2b). White powder; yield 90%, m.p. = 180–
 8C; FTIR (KBr, cm�1): 3055 (Ar–H), 2960 (C–H), 2922,
3 (Si-H), 1563, 1491, 1450, 1418 (C = C), 1390, 1260,
, 850 (Si–CH3), 764, 694. 1H NMR (400 MHz, CDCl3,
): d 0.1–0.11 (d, 6H, SiMe2), 2.15 (s, 2H, CH2), 3.94–

6 (m, 1H, S-H), 6.95 (d, J = 7.9 Hz, 2H, Ar–H), 7.07 (d, 2H,
.6 Hz, Ar–H), 7.16 (d, 2H, J = 7.5 Hz, Ar–H). 7.21–7.33

 11H, Ar–H), 7.64 (d, 2H, J = 7.6 Hz, Ar–H). 13C NMR
0 MHz, CDCl3, ppm): d -5.81 (SiMe2), 23.13 (CH2),
.47, 126.36, 126.80, 127.09, 127.27, 127.40, 127.90,

127.95, 129.47, 129.70, 130.08, 133.47, 136.15, 139.44,
146.19. Anal. calcd. for C30H28N2Si: C 81.04, H 6.35, N
6.30%. Found: C 81.11, H 6.28, N 6.41%.

4.4.1.2. 2-(4-((Trimethylsilyl)methyl)phenyl)-1,4,5-triphe-

nyl-1H-imidazole (3b). White powder; yield 82%, m.p. =
156–158 8C; FTIR (KBr, cm�1): 3054 (Ar–H), 2956 (C–H),
1509, 1451, 1417 (C = C), 1380, 1258, 939, 835 (Si–CH3),
768, 697. 1H NMR (400 MHz, CDCl3, ppm): d -0.04 (s, 9H,
SiMe3), 2.05 (s, 2H, CH2), 6.88 (d, J = 8.0 Hz, 2H, Ar–H), 7.03
(d, J = 6.5 Hz, 2H, Ar–H), 7.14 (d, J = 5.94 Hz, 2H, Ar–H),
7.13–7.29 (m, 11H, Ar–H) 7.62 (d, 2H, J = 7.4 Hz, Ar–H). 13C
NMR (100 MHz, CDCl3, ppm): d -3.00 (SiMe3), 26.04 (CH2),
125.06, 125.47, 125.92, 126.39, 126.67, 126.82, 127.09,
127.27, 127.41, 127.56, 127.79, 127.92, 129.43, 129.71,
130.09, 136.16, 140.03. Anal. calcd. for C31H30N2Si: C 81.18,
H 6.59, N 6.11%. Found: C 81.27, H 6.39, N 6.08%.

4.5. Procedure for synthesis of 2-(4-

((triethylsilyl)methyl)phenyl)-1,4,5-triphenyl-1H-imidazole

(4b) and 2-(4-((triphenylsilyl)methyl)phenyl)-1,4,5-

triphenyl-1H-imidazole (5b)

After preparation of organolithium-imidazole
(10 mmol) in THF solution (10 ml), a solution (15 ml) of
triethylsilyl chloride or triphenylsilyl chloride (11 mmol)
was dropped from the isobaric-type dropping funnel into
the mixture for 3 h at room temperature. After completion
of the reaction, the mixture was poured into a saturated
aqueous ammonium chloride solution (50 ml) and
extracted with CH2Cl2 (2 � 50 ml). The organic phase
was washed with water (100 ml) and dried (Na2SO4), then
the residue was chromatographed over silica gel by 10:1 n-
hexane:ethyl acetate to yield 65% of (4b) and 45% of (5b).

4.5.1. The spectral data of selected products

4.5.1.1. 2-(4-((Triethylsilyl)methyl)phenyl)-1,4,5-triphenyl-

1H-imidazole (4b). White powder; yield 65%, m.p. = 90–
92 8C; FTIR (KBr, cm�1): 3056 (Ar–H), 2952 (C–H), 1597,
1565, 1527, 1490, 1447 (C = C), 1380, 1240, 939, 840 (Si–
C2H5), 759, 697. 1H NMR (400 MHz, CDCl3, ppm): d 0.49 (q,
J = 7.9 Hz, 6H, SiCH2-CH3), 0.90 (t, J = 7.9 Hz, 9H, SiCH2-
CH3), 2.08 (s, 2H, CH2), 6.92 (d, J = 8.0 Hz, 2H, Ar–H), 7.03 (d,
J = 6.8 Hz, 2H, Ar–H), 7.14 (d, J = 6.0 Hz, 2H, Ar–H), 7.18–
7.29 (m, 11H, Ar–H), 7.63 (d, J = 7.4 Hz, 2H, Ar–H). 13C NMR
(100 MHz, CDCl3, ppm): d 1.80 (SiCH2-CH3), 6.23 (SiCH2-
CH3), 20.56 (CH2), 124.95, 125.42, 126.35, 126.68, 126.77,
126.99, 127.04, 127.22, 127.35, 127.79, 127.86, 129.36,
129.66, 130.03, 133.43, 136.11, 140.17, 146.26. Anal. calcd.
for C34H36N2Si: C 81.55, H 7.25, N 5.59%. Found: C 81.63, H
7.16, N 5.41%.

4.5.1.2. 1,4,5-Triphenyl-2-(4-((triphenylsilyl)methyl)phe-

nyl)-1H-imidazole (5b). White powder; yield 45%, m.p. =
120–122 8C; FTIR (KBr, cm�1): 3054 (Ar–H), 2956 (C–H),
1600, 1589, 1562, 1540, 1495, 1454 (C = C), 1383, 1249,
938, 844 (Si–C), 754, 699. 1H NMR (400 MHz, CDCl3, ppm):
d 2.88 (s, 2H, CH2), 6.98 (d, J = 7.0 Hz, 2H, Ar–H), 7.03 (d,
J = 7.0 Hz, 2H, Ar–H), 7.11–7.58 (m, 28H, Ar–H), 7.62 (d,
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J = 6.8 Hz, 2H, Ar–H). 13C NMR (100 MHz, CDCl3, ppm):
15.22 (CH2), 124.99, 125.94, 126.15, 126.68, 127.03,
127.25, 127.30, 127.35, 127.51, 127.79, 127.87, 127.94,
128.16, 129.51, 130.10, 135.52, 136.02, 145.55. Anal. calcd.
for C46H36N2Si: C 85.67, H 5.63, N 4.34%. Found: C 85.81, H
5.54, N 4.45%.

4.6. General procedure for the synthesis of tetraaryl

imidazole-substituted (alkoxydimethylsilyl)methanes

A 50-ml round-bottomed two-neck flask was charged
with 2b (0.50 mmol) and ROH (20 ml) under dry argon
under magnetic stirring. Karstedt’s catalyst ([Pt]/[Si–H]=
7.2 � 10�3) was then added and the reaction progress was
monitored. Several samples were taken at different time
intervals and were analyzed by infrared (FTIR) spectrosco-
py. The mixture was stirred at 65–70 8C until complete
disappearance of the Si–H bond in the FTIR spectra. After
completion of the reaction, the mixture was allowed to
cool to room temperature. Then alcohol was evaporated
under reduced pressure, and the residue was purified by
column chromatography (silica gel, 10:1 n-hexane:ethyl
acetate) to give the corresponding products.

4.6.1. Spectral data of the selected product

4.6.1.1. 2-(4-((Methoxydimethylsilyl)methyl)phenyl)-1,4,5-

triphenyl-1H-imidazole (6b). White powder; yield 90%,
m.p. = 156–158 8C; FTIR (KBr, cm�1): 3061 (Ar–H), 2931
(C–H), 1600, 1600, 1566, 1497, 1447 (C = C), 1419, 1394,
1370, 1256, 937, 845 (Si–C), 1085, 1025, 955 (Si–O), 726,
697. 1H NMR (400 MHz, CDCl3, ppm): d 0.13 (s, 6H, SiMe2),
2.17 (s, 2H, CH2), 3.38 (s, 2H, O–CH2), 7.03 (dd, J = 1.3 Hz,
J = 7.8 Hz, 2H, Ar–H), 7.15 (dd, J = 1.6 Hz, J = 7.7 Hz, 2H,
Ar–H), 7.20–7.32 (m, 13H, Ar–H), 7.63 (d, J = 7.2 Hz, 2H,
Ar–H). 13C NMR (100 MHz, CDCl3, ppm):–4.52 (SiMe2),
18.73 (CH2), 50.00 (O–CH2), 125.48, 126.47, 126.82,
126.91, 127.10, 127.26, 127.46, 127.91, 129.50, 129.67,
129.73, 130.10, 136.12, 141.84. Anal. calcd. for
C31H30N2OSi: C 78.44, H 6.37, N 5.90%. Found: C 78.58,
H 6.28, N 6.01%.
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