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a b s t r a c t

Tubulo-interstitial microcalcifications in renal transplant are described with a wide dif-
ference of incidence (4e78%) according to time and goal of biopsies. Currently, staining
procedures are used to deduce the composition of crystals and speculate about their ae-
tiologies. Here we test the contribution of infrared microspectroscopy (IR-MS) in under-
standing kidney transplant crystal deposits. First, microcalcifications observed in 118
allograft biopsies are studied by IR-MS. The Fourier transform infrared signal shows that a
major proportion (92%) of calcium phosphate crystals is in the pure or mixed form. Next,
we compare 50 patients with calcifications to 100 without calcifications and show
persistent hyperparathyroidism and tubular cell vacuolization as circumstances of crystal
deposition. Finally, the graduation level of calcification by IR-MS appears to be correlated
with the graft outcome. Graft survival seems to be worse in case of high microcalcification
detection by IR-MS. These preliminary data suggest IR-MS as a great tool for clinicians to
diagnose, characterize, and quantify microcalcifications in kidney allografts.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. This is an open access
article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

L’incidence des cristaux tubulo-interstitiels au sein des greffons r�enaux est tr�es variable (4
�a 78%) selon le motif et le d�elai de r�ealisation de la biopsie. La nature des cristaux est
d�eduite de leurs aspects en microscopie optique selon les diff�erents marquages utilis�es
pour ensuite orienter le clinicien sur leurs �etiologies. Nous testons ici l’apport de la
microspectroscopie infrarouge (MS-IR) dans l’�etude des d�epôts cristallins du greffon r�enal.
Tout d’abord nous �etudions en MS-IR la nature des microcalcifications de 118 biopsies de
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greffon. Il s’agit majoritairement (92%) de cristaux purs ou mixtes phosphocalciques.
Ensuite, la comparaison de 50 patients avec calcifications �a 100 t�emoins permet d’iden-
tifier l’hyperparathyroidie et les l�esions de microvacualisations tubulaires comme �etant
associ�ees aux d�epôts cristallins. Enfin, l’abondance de ces d�epôts est quantifi�ee par MS-IR.
Elle semble corr�el�ee au pronostic de la greffe, avec une survie moins bonne du greffon en
cas de d�epôts abondants. Ces donn�ees pr�eliminaires sugg�erent que la MS-IR est un outil
performant pour le diagnostic, la caract�erisation et la quantification des microcalcifications
du greffon r�enal.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. This is an open access
article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Composition, aetiology and consequences of micro-
calcifications in kidney allografts are unclear. Widely
different incidences of crystal deposits have been
described, ranging from 4 to 78% [1e8]. First descriptions
were in favour of calcium oxalate deposits as a conse-
quence of delayed graft function and serious tubular ne-
crosis [1,9]. More recently, studies have pointed out the
responsibility of mineral disorder present after renal
transplantation in the constitution of calcium phosphate
deposits [4,10]. The impact of such deposits in renal
outcome is conflicting. Inconsistencies in studies are in part
explained by different biopsy protocols and histological
evaluation. Staining procedures give different information
about crystals in renal transplant biopsies. Pathologists
take advantage of Von Kossa staining to highlight the cal-
cium deposits [11]. Note that a recent investigation has
underlined some drastic limitations regarding such stain-
ing procedures [12]. The Pizzolato staining is generally
used for the demonstration of calcium oxalate crystals in
paraffin [13]. Polarized light permits distinction between
calcium phosphate and calcium oxalate crystals [6]. But
none of these techniques are able to distinguish the
chemical nature in different phases as spectrometry can.
Infrared microspectroscopy (IR-MS) is now available to
study accurately crystals in human tissue [14e16]. This
technique permits to screen the presence of micro-
calcifications in a sample biopsy and to determine their
chemical compounds [17]. The present study aims to
illustrate the contribution of IR-MS in (a) the physico-
chemical characterisation of crystal deposits, (b) the un-
derstanding of the circumstances of such depositions, and
(c) the outcomes of allografts with microcalcifications.

2. Materials and methods

2.1. Study population

We performed a retrospective single-centre observa-
tional study: 118 biopsy samples were retrospectively
retrieved from a key-word search of the computed data-
base of the Department of Pathology of the University
Hospital of Lille. The selection terms consisted of “calcifi-
cation”, “crystal” and “graft kidney”. The selection criteria
included availability of the paraffin-embedded kidney
allograft biopsy tissue. These 118 biopsies were performed
in 72 allograft recipients. One hundred patients without
crystals in their biopsy were randomised as controls. All
patients consented to participate in the protocol. Patients
were treated with double immunosuppressant of calci-
neurin inhibitor and mycophenolate mofetil, and prednis-
olone was added in case of sensitisation. This study was
approved by our local ethics committee. Informed consent
was obtained for biopsy and for the use of clinical data and
secondary use of histological materials for research.

2.2. Biopsy analysis

2.2.1. Histopathological analysis
The study population consisted of protocol biopsies

performed 3 months after transplantation and biopsies for
renal dysfunction. Two tissue cylinders were obtained by
percutaneous renal transplant biopsy using a biopsy gun
with a 16-gauge needle. One cylinder was fixed in buffered
formalin and embedded in paraffin for routine light
microscopic examination. Slices of biopsy samples in
paraffin were routinely stained by Massons' trichrome,
HES, PAS, and Jones methods. The other tissue cylinder was
frozen for immunofluorescence microscopy analysis. All
biopsies were evaluated according to the updated BANFF
classification. In case of visualisation of crystalloid deposits
during microscopy examination, biopsies were submitted
to IR-MS analysis.

2.2.2. IR-MS analysis
IR-MS was performed on an IN10MX microscope

(Thermo Scientific, ZA Courtaboeuf, Les Ulis, France). Tissue
samples were deposited on Low-e microscope slides (Mir-
rIR, Kevley Technologies, Tienta Sciences, Indianapolis) and
then chemically treated with xylene to remove paraffin in
order to improve crystal detection. All spectra were
collected in ultrafast mode using a 50 mm� 50 mmaperture.
The spectra were collected in the 4000e800 cm�1 mid-IR
range at a resolution of 16 cm�1 with one spectrum per
pixel. Data analysis of IR spectra and chemical images was
performed using OMNIC software. Infrared spectroscopy
was also carried out on a PerkinElmer Spotlight 400 FTIR
microspectrometer fitted with a liquid nitrogen cooled, 16-
element linear array mercury cadmium telluride (MCT)
detector. All IR spectra were collected in the mid-infrared
from 4000 cm�1 to 650 cm�1 using 16 cm�1 spectra reso-
lution and 64 accumulations for each collection by the
array. The different compounds were identified by
comparing them to reference spectra [18]. Results were
classified in pure or mixed chemical deposits, with an in-
tensity range of spatial distribution in the sample tissue
from 1 to 4.

http://creativecommons.org/licenses/by-nc-nd/4.0/
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2.3. Sample collection and analyses

All relevant clinical and biochemical data of both donors
and recipients were collected prospectively in a database.
Serum and urine sample analyses were performed at the
first ambulatory consultation (day 18) and at months 3, 6,12
and 24 after transplantation. Serum concentrations of PTH
were determined by third generation chemiluminescence
assay. This assay detects full-length and not the N-terminal
truncated fragments with a normal range of 15e68 pg/ml.

2.4. Statistics

SPSS statistical software package, version 22.0 (SPSS Inc,
Chicago, Illinois, USA), was used for the statistical analyses.
Results are expressed as mean ± SD. Numerical data were
compared with the student t-test or the ManneWitney U-
test, depending on the results of analysis for a normal
distribution using the ShapiroeWilk test. Comparisons of
categorical data between groups were performed with the
Chi-square test or the Fischer exact-test as indicated. Graft
survival Kaplan Meier-curves were compared with the log-
rank test. Differences with p < 0.05 were considered as
being statistically significant.

3. Results

3.1. IR-MS

118 biopsies from 72 patients were analysed by IR-MS
(Fig. 1). Biopsies were performed in the first two years of
transplantation in 88 (74.5%) cases, between 2 and 5 years
Fig. 1. (a) Optical micrograph image of the allograft kidney biopsy. (b) Spatial dis
calcium phosphate deposit made of a mixture of amorphous carbonated calcium p
where the infrared spectrum shown in (c) was recorded.
in 19 (16.1%) cases and after 5 years in 11 (9.3%) cases. In 3
biopsies, deposits visualized in optic microscopy were not
found in IR-MS. IR results are listed in Table 1. Micro-
calcifications had mixed constitution in 54%. Calcium
phosphate deposits were present in 92% of all biopsies.
Only 6 biopsies were calcium phosphate free: one with 2,8-
dihydroxyadenine (DHA) crystals in an adenine phosphor-
ibosyltransferase (APRT) deficiency transplanted recipient
[19], 3 with Whewellite (WW), and 2 with undetermined
deposits. The calcifications were considered moderate in
80% (score 1e2) and high in 20% (score 3e4).

3.2. Case-control study

Among the 72 patients with allograft calcification there
were 3 children and 69 adults. Crystals were found in bi-
opsies performed within the first 2 years of transplantation
in 55 out of 69 adult patients. Consequently, we compared
these 55 adult patients with microcalcifications (Cþ) to 100
patients without microcalcifications (C�) in order to
identify the determinants of allograft crystal deposits dur-
ing the 2 years following transplantation. Micro-
calcifications were calcium phosphates in 50 patients (CA
27 (49%), and ACCP 23 (42%)). In three patients (5.5%) cal-
cifications were Whewellite and DHA in one (1.8%). The
intensity score of crystal deposits was consideredmoderate
(1e2) for 45 (82%) patients and high (3e4) for 10 (18%)
patients.

3.2.1. Clinical values
No difference was found between the two populations

for age, sex, body mass index, nephropathy, type of dialysis,
tribution of crystals obtained from FTIR spectra. (c) The FTIR spectrum of a
hosphate and carbapatite. The red cross in (a) and (b) indicates the position



Table 1
Chemical composition of crystals as given by IR-MS. CA ¼ carbonated
calcium apatite; ACCP ¼ amorphous carbonated calcium phosphate;
WW ¼ Whewellite; X ¼ undetermined; DHA ¼ Dihydroxy adenine;
MPS ¼ mucopolysacharides; OCP ¼ Octacalcium phosphate.

Composition Pure Mixed Total

CA 25 (21.7%) 54 (46.9%) 79 (68.7%)
ACCP 22 (19.3%) 57 (49.5%) 79 (68.7%)
WW 3 (2.6%) 10 (8.7%) 13 (11.3%)
X 2 (2.6%) 3 (1.7%) 5 (4.3%)
DHA 1 (0.8%) 0 1 (0.8%)
Calcite 0 3 (2.6%) 3 (2.6%)
OCP 0 1 (0.8%) 1 (0.8%)
MPS 0 10 (8.7%) 10 (8.7%)
TOTAL 53 (46%) 62 (54%) 115 (100%)

Fig. 2. Comparison of serum PTH levels between patients with and without
calcification at first consultation (day 18), 3, 6, 12 and 24 months after
transplantation.

Fig. 3. These KaplaneMeier survival curves illustrate graft survival of 100
patients without calcification (C�) in kidney allograft biopsy. Cþ with
moderate score of calcification (n ¼ 40 patients); Cþ with an high score of
calcification (n ¼ 10 patients).
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parathyroid hormone concentration before trans-
plantation, cold ischemia time and donor features. Immu-
nosuppression was the same in the 2 groups mostly based
on the association of Tacrolimus and Mycophenolat Mofetil
with equivalent decreasing dosages during the follow up
(data not shown). Compared to the control group, trans-
planted patients with calcification within grafts experi-
enced similar delayed graft function (Cþ 40%; C� 29%
p ¼ 0.2), pyelonephritis (Cþ 9.3%; C� 11%), and acute
rejection (Cþ 11%; C� 13%).

3.2.2. Biopsy findings
Biopsies were performed at 5.2 ± 6 months and 6.9 ± 7

months after transplantation respectively in C� and Cþ
groups. Half of biopsies in group C� and 55% in group Cþ
were done for renal dysfunction. Using optical examination
acute tubular necrosis was similar in group Cþ and group
C� (23.6% versus 20.3%, respectively). Tubular epithelial
cell vacuolization was detected more often in case of
microcalcifications (Cþ 58% versus C� 37%; p ¼ 0.004). We
also foundmore thrombotic microangiopathy lesions in the
group with microcalcifications (Cþ 16% versus C� 5%;
p ¼ 0.004).

3.2.3. Biological values
Biological parameters and graft function were

compared between patients Cþ and C� at the first
consultation (18±7 days) and at months 3, 6, 12 and 24.
Prevalence of hypercalcemia (total Ca >105 mg/l) at the
first consultation was more frequent in group Cþ (Cþ 14%
versus C� 4%; p ¼ 0.02) with higher serum PTH levels
during the first year (Fig. 2). Serum phosphorus and 25-
OH vitamin D did not differ between patients with or
without calcification. The bone remodelling was also
higher in the group with calcification: crosslaps were
higher at the beginning of the transplantation
(12,000 pmol/l) and until 3 months (11,000 pmol/l) than
in the control group (9000 and 8000 pmol/l; p ¼ 0.006
and 0.008). The osteocalcin rate was also higher in group
Cþ at 3 months (Cþ 70 versus C� 50 ng/ml; p ¼ 0.004)
and 6 months (Cþ 85 versus C� 54 ng/ml; p ¼ 0.02). We
did not observe any differences between the two groups
for bone specific alkaline phosphatase. Serum creatinine
and the estimated glomerular filtration rate (eGFR) did
not differ between patients with and without
calcification. The variation between eGFRs within the
third month after transplantation and the one-year value
was also calculated with identical results for the two
groups. But there was a trend to a greater increase in
eGFRs for patients without calcification (C� 3 ± 13 ml/
min; Cþ �1.6 ± 12.9 ml/min; p ¼ 0.5), suggesting that
calcification could have a negative effect on the outcome
but only for some patients.

3.2.4. Allograft outcome
Using the KaplaneMeier method, the 75-month graft

survival (Fig. 3) rates were significantly lower in patients
with marked calcifications (score 3e4) than in patients with
moderate (score 1e2) or without calcifications (p ¼ 0.04).
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4. Discussion

Physicochemical characterisation of crystal deposits in
kidney allograft biopsy samples by IR-MS gives important
information to understand their pathogenesis. In excep-
tional cases, the FTIR spectra can show 2,8-
dihydroxyadenine crystals and restore the diagnosis of
APRT deficiency in transplanted recipients [20]. The mi-
nority of the calcium oxalate component in the crystals of
our patients suggests that oxalate disorders, such as an
excess of plasma oxalate at the time of transplantation [21]
or enteric hyperoxaluria due to antibiotic use [22], have
limited impact on crystal deposition. In contrast, the
overwhelming presence of calcium phosphate crystal de-
posits in our biopsies (92%) underlines the key role of
mineral metabolism disorder.

Hypercalcemia, hypophosphatemia and renal phos-
phate wasting are commonly encountered early after
kidney transplantation. They are related to hyperpara-
thyroidism and high levels of FGF-23 [23,24]. As a result of
hypercalcemia and hyperphosphatoninism, calciuria and
phosphaturia concentrations could increase along the
nephron and the luminal calcium phosphate product
could exceed the limit of solubility leading to crystal
precipitation. Animal models strengthen this hypothesis
[25] but clinical human data are more conflicting. In our
case-control study, hypercalcemia with a higher serum
PTH level is more frequent in group Cþ than C�. Both
Evenepoel and Gwinner found higher levels of calcemia,
PTH and bone alkaline phosphatases in patients with than
without graft calcification [2,4]. Moreover, the level of
calciuria was reported to be higher in patients with cal-
cifications compared to patients without calcifications,
though urine calcium concentrations were lower than
levels usually found in urine of stone formers [26]. Even-
epoel et al. reported lower phosphate plasma levels with
more frequent oral phosphate supplement therapy. But
Gwinner failed to find an association between graft
calcification and the serum phosphorus level. Daily
phosphaturia (mg/d) was similar in the two groups with
slight differences in urinary concentration (mg/l) and
fractional excretion of phosphate, which were faintly
higher in the group with calcifications [4]. These obser-
vations point the fact that other parameters than calciuria
and phosphaturia are needed for crystal formation. Uri-
nary pH and concentrations of inhibitors such as citrate,
magnesium, pyrophosphate and urinary proteins could
determine crystal formation. Note that hypocitraturia is
common after kidney transplantation in part caused by
acidosis or proximal tubular dysfunction by the calci-
neurin inhibitor [21]. However Evenepeol et al. reported
low urinary magnesium and citrate concentrations in a
similar range both in patients with and without calcifica-
tion [2]. Kidney graft tubular damage could also promote
crystal formation and deposits. Tubular dysfunction can
facilitate acidosis, hypocitraturia, and a lack of local in-
hibitor production [27e30].

Acute tubular necrosis (ATN) may induce an up regula-
tion of crystal binding molecules (such as osteopontin,
hyaluronic acid/) [31,32] and membranous cellular debris
in the nephron lumen may provide a matrix for crystal
growth and aggregation [33]. Very little clinical data sup-
port this hypothesis. Boom et al. reported calcification one
week after transplantation in 27% patients with and 11%
patients without delayed graft function (DGF), suggesting
that ATN would lead to calcification [9]. For Pinheiro et al.,
ATN is present in 47% of patients with microcalcification
versus 24% without calcium deposits [1]. Nevertheless, in
agreement with Evenepoel et al., we did not show differ-
ence in renal function between patients with and without
calcifications, though microscopic analysis detect more
often tubular epithelial cell vacuolization and thrombotic
microangiopathy in case of microcalcification. These le-
sions could be related to renal toxicity of the calcineurin
inhibitor. Moreover, Evenepoel et al. observed that acute
graft rejection was associated to calcification occurrence.
This was not supported by our result and Bagnasco's study
[6]. Acute rejection could involve different parts of kidney
parenchyma, not only tubules but also interstitium, capil-
lary, glomeruli or vessels. Also rejection episode can occur
without any tubular dysfunction. These particularities
probably need to distinguish the patterns of rejection from
other circumstances of microcalcification discovery.

It is difficult to establish a cause-and-effect relationship
between tubular cells injuries and crystals deposits as they
could be either a cause or a consequence. Besides
obstructive nephron damage, crystals are directly impli-
cated in tubular cells injury. They can promote tubular cells
death by oxygen-free radicals-mediated necrosis or
apoptosis [31,32]. Crystals indeed induce inflammation and
a pro-fibrotic factor secretion and by this way may
contribute to chronic allograft nephropathy [34].

To date clinical evidence between microcalcification
and poor long-term allograft survival are lacking. Bag-
nasco et al. demonstrated a worst allograft outcome in the
case of microcalcification at one year but not at 2 years of
follow-up [6]. Pinheiro et al. reported a better 12-year
survival allograft rate in the absence of micro-
calcification [1]. These two studies analyzed only biopsies
performed for renal dysfunction. In a protocol biopsy
program Schwarz et al. identified microcalcification
detection at 12 weeks as an independent predictor for
chronic allograft nephropathy at 26 weeks [35]. But
Evenepoel et al. found a similar renal function after a
mean follow-up of 33 months in patients with and
without calcification during their protocol biopsy pro-
gram. Explanations for these controversial results could
be the different chemical nature and intensity of micro-
calcification deposits. IR-MS permits an accurate charac-
terization of microcalcifications. Our work demonstrated
an association between intensity of microcalcification
deposits and graft outcome. Patients with marked calci-
fications have worsened outcome (77%) than patients
with moderate (90%) or without calcifications (97%) at 75
months (p ¼ 0.04). IR-MS allowed us to identify grafts
with microcalcifications and worst outcome and conse-
quently patients who need therapeutic intervention.
Additional studies with larger numbers of patients and
longer follow-up are required to settle this promising
issue.
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5. Conclusion

IR-MS is a high-performance tool for detection and
identification of crystal deposits within allograft kidney
biopsies. In our population, most microcalcifications (92%)
contain calcium phosphate deposits. These deposits are
associated with a higher post-graft parathyroid hormone
concentration and increased tubular epithelial cell micro-
vacuolisations, thus suggesting that hyperparathyroidism
and epithelial cell damage are required for calcium phos-
phate crystal occurrence. Moreover, IR-MS enables a
quantification of crystal deposits. The burden of crystal
deposits within biopsies (quantified by IR-MS) seems to be
correlated with the allograft outcome. Though our findings
require validation by a large prospective study, IR-MS
analysis represents an interesting tool to detect and iden-
tify crystals within kidney allograft biopsies in order to
target patients requiring specific therapies acting on min-
eral homeostasis.
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