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a b s t r a c t

Binary systems containing supercritical CO2 þ hydrocarbons were used for modeling gas
esolid equilibrium by a combined method including a thermodynamic model and a meta-
heuristic algorithm. The PengeRobinson (PR) equation of state was used in the classical
solubility equation. In addition, WongeSandler (WS) mixing rules were used, and the van
Laar model (VL) was included in order to evaluate the excess Gibbs free energy that ap-
pears in these mixing rules. Then, a variant of particle swarm optimization (PSO), called
Frankenstein PSO (FPSO) was implemented for minimizing the difference between
calculated and experimental solubility values. The results showed that the FPSO algorithm
is a very powerful tool for parameter estimation on the PR-WS-VL model with good per-
formance and accuracy, and considerably low deviations. Therefore, values calculated by
the combined method (PR-WS-VL þ FPSO) are considered accurate enough for physical
and engineering calculations, among other uses.

© 2016 Acad�emie des sciences. Published by Elsevier Masson SAS. All rights reserved.
1. Introduction

The parameter estimation is highly significant in various
scientific areas for the development of mathematical
models that are based on parameters obtained from
experimental data, which applies particularly to thermo-
dynamic models [1]. The accurate prediction of physical
properties on phase equilibrium is one of the most
important applications for thermodynamic processes and it
is where parameter estimation is required [2]. Particularly,
an accurate prediction of phase equilibria of gasesolid
mixtures is required for separation processes involving the
so called supercritical fluid (SCF) [3].

Therefore, the best way to proceed is to adjust experi-
mental data for a thermodynamic model that describe the
gasesolid phase and to use the model obtained by the
adjusted parameters for predicting the properties of these
phases. However, the existing methods for solving the
phase equilibrium only obtain local solutions. In several
d by Elsevier Masson SAS. A
cases, optimum values for binary interaction parameters
have been proven to be dependent on search interval and
initial values [4]. Hence, it is necessary to develop new
parameter optimization methods for creating global solu-
tions and for determining the most suitable solution for a
problem under a given set of restrictions associatedwith an
objective function.

The current optimization problem lies, then, in an
intelligent search issue where agents for determining an
optimum value in a restricted search space can be used.
This has led to modern optimization techniques, also
known as meta-heuristic algorithms, that have caught
great interest within the scientific community due to the
great capacity of solving this kind of problem, and many
other highly nonlinear problems [1].

In this work, twenty-two gasesolid binary systems
containing supercritical CO2 þ hydrocarbons were used for
modeling the gasesolid equilibrium using a combined
method including a thermodynamic model and a meta-
heuristic algorithm. The PengeRobinson (PR) equation of
state [5] was used in the classical solubility equation.
ll rights reserved.
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Additionally, the WongeSandler (WS) mixing rules [6]
were used, and the van Laar model (VL) [7] was applied
for calculating the excess Gibbs free energy in the mixing
rules. Then, a variant of particle swarm optimization (PSO),
called Frankenstein PSO [8] was implemented in order to
minimize the difference between calculated and experi-
mental solubility values.
2. Thermodynamics of GSE

When using the fundamental equation of phase equi-
libria at a given pressure and temperature, the fugacity of
the component in the gas phase is equal to the fugacity of
the same component in the solid phase. Considering a
subscript “2” for the solid component, the following
equilibrium condition is obtained F

s
2 ¼ F

g
2, and

Ps
2f

s
2 ¼ Pg

2f
g
2 is obtained when considering a pure sub-

stance in the solid phase. Here, it can be assumed that
fs
2z1, and the solid volume is considered as pressure in-

dependent. Then, solid solute solubility (y2) at equilibrium
in a supercritical phase can be solved by the following
equilibrium condition:

y2 ¼ Ps
2f

s

PfSCF exp
�
V s
2

�
P � Ps

2

�
RT

�
(1)

This equation can be obtained from the equifugacity
between the solid component and the fluid phase; where
Ps
2 is the solid vapor pressure of the pure substance, Vs

2 is
the solid molar volume, T is the temperature, and fs is the
fugacity coefficient of solid at the pressure P. In this case,
the fugacity coefficient is calculated from standard ther-
modynamic relations, such as [7]:

RT ln fi ¼
X∞
V

"�
vP
vni

�
T ;V ;nj

� RT
V

#
dV � RT ln Z (2)

Note that, the fugacity coefficient of the solid compo-
nent can have considerably low values for these calcula-
tions (10�4 to 10�5) [9].

When the fugacity coefficient is used in both phases, the
method for the solution of the phase equilibrium problem
is known as “the equation of state method”. In order to ex-
press the fugacity coefficient as a function of temperature-
pressure-concentration an equation of state (EoS) with a
set of mixing rules is needed [7]. In this context, cubic
equations derived from van der Waals EoS are the most
common EoS used for correlating phase equilibrium in
mixtures at high and low pressures [9]; among these EoS,
the PengeRobinson equation of state (PR EoS) has proven
to be capable of combining simplicity and accuracy
required for the prediction and correlation of volumetric
and thermodynamic properties of several compounds [3].
Commonly in GSE, van der Waals (vdW) mixing rules for
both the energy and co-volume parameters are employed
with one or two interaction parameters. However, an
alternative to vdWmixing rules is the use of EoS/GE mixing
rules, which combine the advantages of successful cubic
EoS and GE models [9]. A good example of these alternative
mixing rules are the WongeSandler mixing rules [6]. Here,
the PengeRobinson EoS [5] and WongeSandler mixing
rules [6], are used as a thermodynamic model for calcu-
lating the fugacity coefficient f.

The PR EoS can be formulated as follows [5]:

P ¼ RT
V � b

þ a
VðV þ bÞ þ bðV � bÞ (3)

with

a ¼ 0:457235
R2T2

c

Pc
aðTrÞ (4)

b ¼ 0:077796
RTc
Pc

(5)

aðTrÞ ¼
h
1þ k

�
1�

ffiffiffiffiffi
Tr

p 
i2
(6)

k ¼ 0:37646þ 1:54226u� 0:26992u2 (7)

where Tr ¼ T/Tc is the reduced temperature. Note that,
PengeRobinson EoS is a two-parameter EoS (a and b), and
it is completely predictive (in this form) once the critical
temperature Tc, critical pressure Pc, and acentric factor u,
are given [5].

For a mixture:

P ¼ RT
V � bm

þ am
VðV þ bmÞ þ bmðV � bmÞ (8)

where am and bm are the EoS constants to be calculated
using defined mixing rules. To this end, WongeSandler
(WS) mixing rules are used here and can be expressed as
follows: [6]:

bm ¼

PN
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where am and bm are the equation of state constants, lij is an
adjustable parameter, U is equal to 0.34657, and AE

∞ðyÞ is
calculated assuming that AE

∞ðyÞzAE
0ðyÞzGE

0ðyÞ.
For a binary mixture:
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where GE
0ðyÞ is calculated using the van Laar model (VL).

Note that, the VL model has proven to be capable of good
performance in high pressure phase equilibrium calcula-
tions [3]. In the case of a binary mixture, the VL model for
GE

0ðyÞ is as follows [7]:

GE
0

RT
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RT
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�
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(15)

where A12 and A21 are the binary interaction parameters
into the van Laar GE-model. At this point, the problem is
reduced in order to determine the interaction parameters
A12, A21, and parameter l12 into the combined thermody-
namic model (PR-WS-VL), from TePey data of GSE at a high
pressure. Using an optimization algorithm, these optimal
interaction parameters were calculated for minimizing the
following objective function:

min f ¼ 100
ND

XND

i¼1

����ycalc2 � yexp2

yexp2

����
i

(16)

where ND is the number of points in the experimental
dataset and y2 is the mole fraction of the solid solute in the
gas phase. The superscript denotes the experimental (exp)
data point and the calculated (calc) values.

In this work, a variant of particle swarm optimization,
called “Frankenstein PSO” is used for the minimization the
objective function. Details of this meta-heuristic algorithm
are present in the following section.

3. Frankenstein PSO

Frankenstein's particle swarm optimization (FPSO) was
proposed byMontes de Oca and co-authors [8]. This variant
of particle swarm optimization [10] consists of three main
algorithmic components, such as: 1) a population topology
reducing connectivity over time; 2) a fully informed par-
ticle swarm (FIPS) as a mechanism for updating the particle
velocity, and; 3) a linearly decreasing inertia weight. These
components are taken from adaptive hierarchical PSO [11],
fully informed PSO [12], and the lineally decreasing inertia
weight PSO [13], respectively.

In this meta-heuristic algorithm, each particle can move
through a multidimensional search space, adjusting its
position according to its own experience and the experi-
ence of neighboring in order to find an optimum solution
[14]. Thus, in a d-dimensional objective function f : ℝd/ℝ,
a population of particles P ¼ {p1,/,pn} is randomly initial-
ized in the solution space, and the performance of each
particle is evaluated using a fitness function that defines
the optimization problem [3, 15]. At any time step t, a
particle pi is associated with a position vector sti and a ve-
locity vector vti , and a personal best vector pbti saves the best
position that the particle has visited. If the particle pi has a
topological neighborhood N i4P of particles; then, the best
personal best vector in a particle's neighborhood, called
local best is a vector lbti such that f ðlbti Þ � f ðpbtj Þcpi2N i [8].

For a given particle pi, 4 can be decomposed into
4k ¼ 4=jN ij; cpk2N i [12], and the velocity of each par-
ticle can be expressed as follows [8]:

vtþ1
i ¼ wtvti þ

X
pk2N i

4kU
t
i

�
pbt

k � sti



(17)

where wt is the time-dependent inertia weight [13]; Ut
i are

d � d diagonal matrices with indiagonal elements distrib-
uted in the interval [0; 1) uniformly at random and
generated at every iteration; 4k are the acceleration co-
efficients [10]; 4 (i.e., the sum of the acceleration co-
efficients) is equally distributed among all the neighbors of
a particle [12]; sti is the current position of the particle, and
vtþ1
i is the new velocity at time tþ 1; pi

t is one of the the best
solutions that this particle has reached [14].

The new particle position is computed by adding the
velocity vector to the current position. Thus, the position of
each particle at each generation is updated according to the
following equation:

stþ1
i ¼ sti þ vtþ1

i (18)

where stþ1
i is the new particle position at time t þ 1 [10].

Variable w (inertia weight) in Eq. (17) is in charge of
adjusting the equilibrium between local and global
searches [13]. Note that, a high value of inertia weight
implies a global search, while a low value leads to a local
search [14, 11]. The following weighting function is used for
Eq. (17):

wt ¼ wtmax � t
wtmax

ðwmax �wminÞ þwmin (19)

where wtmax marks the time at which wt ¼ wmin; wmin and
wmax are the minimum and maximum values the inertia
weight can take, respectively. Normally, wtmax is consistent
with the maximum time allocated for the optimization
process [8]. Note that, a decreasing w would counterbal-
ance the exploratory behavior that the chosen topology
change scheme could induce [15]. In FPSO, the time-
varying topology starts as a fully connected one and de-
creases its connectivity until it ends up being a ring to-
pology [16]. This topology transformation is performed in
n�3 elimination steps [8] (please see [8, 15] for more de-
tails of the topology update). The pseudo-code for the FPSO
algorithm is listed in Table 1.

The performance of the FPSO algorithm for global
optimization is tested on 3 benchmark multimodal func-
tions. The description of the functions used is listed in Table
2 (please see [17] formore details on benchmark functions).
These functions are multimodal with a global minimum at
the origin. Note that, finding the minimum for these
functions is a very difficult problem due to its large number
of local minima and its large search space. The search space
values of xi for these functions are listed in Table 2.



Table 1
Scheme of the FPSO algorithm (taken from [8]).

J.A. Lazzús / C. R. Chimie 19 (2016) 630e638 633
Considering this difficulty, simulations were carried out to
obtain a comparative performance analysis between the
FPSO and other two meta-heuristic algorithms such as:
basic particle swarm optimization (PSO) [10], and standard
Table 2
Benchmark functions used.

Function Mathematical formulation

Rastrigin f1ðxÞ ¼
PD

i¼1½x2i � 10 cosð2pxiÞ þ 10�

Griewank f2ðxÞ ¼ 1
400
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i¼1x

2
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i¼1

cos
�
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i

p
�
þ 1

Ackley f3ðxÞ ¼ �20 exp

 
� 0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
D

Pn
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2
i

q !
� exp

 
1
D

PD
i¼1c
genetic algorithm (GA) [18]. From this analysis, the
parameter settings of FPSO were carried out using this test.
Table 3 shows the parameter configurations for all algo-
rithms used on benchmark functions. These configurations
Search space min f

[�5.12;5.12]D 0

[�600;600]D 0

os2px2i

!
þ 20þ e [�32;32]D 0



Table 3
Configurations for all algorithms used on benchmark functions.

Algorithm Parameters settings

GA Crossover probability ¼ 0.8, mutation probability ¼ 0.1
PSO wmax ¼ 0.9, wmin ¼ 0.4, 41 ¼ 42 ¼ 2.0, Vmax ¼ ±Smax

FPSO wmax ¼ 0.9, wmin ¼ 0.4, 4 ¼ 4.0, Vmax ¼ ±Smax
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are based on a trial-and-error procedure for FPSO, and
based on common values used in the literature for PSO and
GA [19].

For benchmark functions, the mean squared error (MSE)
between estimated and real responses for a number of
given samples are considered as the fitness of estimated
model parameters (min f). For a function of D-dimension,
200 separate runs were executed on each algorithm, and
the standard deviation and the average best-of-run value
were obtained. Several maximum generations Gen were
used according to the complexity of the problem. In addi-
tion, three population sizes P were applied on each func-
tion, and the stopping criterionwas set as reaching a fitness
of 0.001. The number of generations run for each function
was set to 1000, 1500 and 2000 corresponding to the di-
mensions 10, 20 and 30, and to populations 50, 100 and
150, respectively. Table 4 summarizes the results from this
comparison. In addition this table shows the standard de-
viation and the mean deviation of the best-of-run solution.
From the results present in Table 4, it is clear that FPSO
performs better than PSO and GA. The significant
improvement achieved by FPSO can be attributed to
combining the best component of PSO variants.

The test results have demonstrated that the FPSO can be
applied for parameter estimation with good accuracy, and
the next step is to use the FPSO for estimating parameters
on the thermodynamic model for GSE. Thus, the FPSO al-
gorithm was implemented to optimize the PR-WS-VL
model discussed above (see, Section 2).

The step-by-step to calculate the GSE using the FPSO is
described below:

1) To start, the FPSO parameters must be defined (see Table
3). And the search space for the PR-WS-VL model is
defined as SS1 to l12 [e0.1; 0.4], SS2 for A12 [0; 10], SS3 to
A21 [0; 10], and to SS4�logPs [1; 5]. Note that, in order to
provide a substantial margin of safety, the range for the
Table 4
Average and standard deviation of the best-of-run solution obtained for 200 run

f D P Gen Average

PSO-ACO

f1 10 50 1000 0.0166 (
20 100 1500 0.0309 (
30 150 2000 0.0448 (

f2 10 50 1000 0.0298 (
20 100 1500 0.0103 (
30 150 2000 0.0087 (

f3 10 50 1000 0.0089 (
20 100 1500 0.0144 (
30 150 2000 0.0084 (
interaction parameters (A12, A21, and l12) was defined by
thermodynamic considerations [3].

2) The initial population is generated with P ¼ 50 particles
associated with the positions si. Where SVect and VVect
save a particle position and its corresponding velocity in
the search space, respectively. These vectors contain the
possible values of the thermodynamic parameters: l12,
A12, A21, and Ps.

3) The vector PVect is created. This vector contains the best
current position of particle.

4) The objective function is evaluated for each parameter
set (l12, A12, A21, Ps). The evaluation is carried out by
calculating the solubility by using the PR-WS-VL model
for each value of the parameter set. Thus the vector
containing the deviations between experimental and
calculated values of solubility ObjFun is generated.

5) If the evaluation of the objective function does not meet
the suggested criteria (Eq. (16)), then the vectors SVect
and VVect are updated. Now the new position of the
particles is calculated by adding the velocity to the cur-
rent position (Eqs. (17) and (18)). This process is
repeated until the criterion condition is satisfied (Eq.
(16)), or until the maximum number of iterations is
exceeded tmax ¼ 100.

6) To complete the process, the vector containing the
optimal values of the thermodynamic parameters
Sol ¼ [l12, A12, A21, Ps] is created.
4. Database used

Seven binary gasesolid phase mixtures of supercritical
CO2 þ hydrocarbon containing: naphthalene [20], biphenyl
[20], 2,3-dimethylnaphthalene [21], 2,6-dimethylnaph-
thalene [21], anthracene [22], phenanthrene [22], and
pyrene [22] are considered in this work. The experimental
GSE data of 22 systems taken from the literature [20e22]
are presented in Table 5. For these systems, pressure and
temperature cover wide ranges from 8 to 45 MPa and from
308 to 338 K, respectively. Table 6 shows the thermody-
namic properties (Vs, Tc, Pc, and u) of the substances used
s for FPSO, PSO, and GA.

(standard deviation)

GA PSO

0.0496) 4.3688 (3.1574) 2.3681 (1.9553)
0.0281) 15.5721 (5.8548) 12.7331 (5.6188)
0.3057) 36.5219 (10.0374) 34.1266 (4.3796)
0.0321) 1.1416 (1.0157) 0.1012 (0.0253)
0.0576) 1.0328 (1.2335) 0.2025 (0.2141)
0.0145) 1.0934 (1.2786) 0.1679 (0.2264)
0.1391) 1.3746 (2.0271) 0.3268 (1.0528)
0.0242) 1.6542 (3.9597) 0.3999 (2.0988)
0.0111) 2.9388 (3.2579) 1.0662 (2.1461)



Table 5
Details of GSE data used in this study.

Mix. CO2þ Syst. ND T(K) DP (MPa) Dy2 � 104

1 Naphthalene [20] 1 8 308.15 9e26 75e192
2 16 328.15 8e29 13e538
3 19 333.55 10e29 52e980
4 7 338.05 15e23 247e790

2 Biphenyl [20] 5 8 308.95 10e44 104e154
6 8 318.55 15e45 156e272
7 8 322.65 15e48 178e361

3 2,3-Dimethylnaphthalene [21] 8 5 308.15 10e28 22e64
9 5 318.15 10e28 12e72

10 5 328.15 10e28 3e90
4 2,6-Dimethylnaphthalene [21] 11 5 308.15 10e28 19e45

12 5 318.15 10e28 7e68
13 5 328.15 10e28 3e92

5 Anthracene [22] 14 30 313.15 11e34 0.2e1
15 30 323.15 12e35 0.2e1.5
16 30 333.15 13e36 0.2e2

6 Phenanthrene [22] 17 26 313.15 10e35 4e24
18 30 323.15 11e34 2e31
19 30 333.15 11e35 2e41

7 Pyrene [22] 20 32 313.15 10e35 0.5e3.6
21 32 323.15 11e35 0.4e4.5
22 32 333.15 11e35 0.2e5.5
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[23]. Note that, these substances and their mixtures are of
interest for several applications of chemical industries, and
other uses.

In addition, the binary system data were selected only if
they met two conditions: (i) GSE data must correspond to
“true” gasesolid data. All data obtained from theoretical
methods, correlations, or extrapolations of any kind were
not considered; and (ii) GSE data must be accurate enough
and pass a test of thermodynamic consistency. This method
was based on the GibbseDuhem equation in combination
with the PR-WS-VL model [24].

On these systems, the combined method (PR-WS-VL
model þ FPSO algorithm) was used, for considering the
deviations between experimental and calculated values of
solid hydrocarbon solubility in the high-pressure super-
critical CO2.

5. Results and discussion

The fugacity coefficient is calculated by the PR-WS-VL
model (see, Eq. (16)). The other properties of the solid
component (sublimation pressure Ps

2, volume V s
2) can be

obtained from third party information or independent data
(see, Eq. (1)). Note that, the sublimation pressure values are
usually small, and the experimental techniques cannot be
Table 6
Thermodynamic properties of the substances involved in this study [23].

Substance Formula Tc (K)

Naphthalene C10H8 748.4
Biphenyl C10H12 773.0
2,3-Dimethylnaphthalene C12H12 785.0
2,6-Dimethylnaphthalene C12H12 777.0
Anthracene C14H10 873.0
Phenanthrene C14H10 869.0
Pyrene C16H10 936.0
Carbon dioxide CO2 304.2
used to obtain accurate values in many cases [1]. Consid-
ering the valuable information that may be derived either
directly or indirectly from sublimation data, it is rather
surprising that there is so little quantitative information
available in the literature on the sublimation process [1,3].
For this reason, Ps was considered as a fourth parameter to
estimate in addition to binary interaction parameters (l12,
A12, A21, Ps) in this method.

Thus, an accurate modeling of the solubility is very
important in order to obtain optimal values of l12, A12, A21,
and accurate value of Ps. The following deviations were
considered to evaluate accuracy:

j%Dy2j ¼ 100
ND

XND

i¼1

����ycalc2 � yexp2

yexp2

����
i

(20)

j%DPsj ¼ 100
ND

XND

i¼1

����Ps;calc � Ps;exp

Ps;exp

����
i

(21)

In these equations, ND is the number of points in the
experimental dataset, y2 is the mole fraction of the solid
solute in the gas phase, Ps is the sublimation pressure, su-
perscripts exp and calc denote the experimental data point
and calculated values, respectively.
Pc (MPa) u Vs (m3/kmol)

4.05 0.3020 0.1100
3.38 0.4029 0.1312
3.22 0.4240 0.1547
3.17 0.4177 0.1547
2.90 0.4857 0.1430
2.90 0.4707 0.1528
2.61 0.5074 0.1591
7.38 0.2236 e
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Fig. 1. (a) Calculated values of binary interaction parameters (A12 and A21) by
minimization of the objective function using the FPSO algorithm. (b)
Calculated values for the k12 parameter by FPSO algorithm.
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Table 7 shows the calculated parameters l12, A12, A21
using the combined method (PR-WS-VL þ FPSO) for the
systems used in this work. In addition, this table presents
the deviations for y2 and Ps for each solid hydrocarbons
calculated by Eqs. (20) and (21).

The results found using the combined method (PR-WS-
VL model þ FPSO algorithm) show low deviations between
experimental and calculated values for y2 and Ps. Clearly, for
y2 the deviations j%Dy2jwere lower than 6%, and deviations
j%DPsj were lower than 7.5% for the calculations of Ps.

The range for the interaction parameters (A12 and A21)
was defined as [0; 10] in order to provide a substantial
margin of safety. This range was based on thermodynamic
considerations [3], it will extremely likely contain the
optimum parameter values. Fig. 1a shows the binary
interaction parameters calculated using the FPSO algo-
rithm and based on the minimization of Eq. (16). Also, the

range for the l12 parameter of
�
b� a

RT



12

(Eq. (13)) was

defined as [e0.1; 0.4] with theoretical bases [6]. Fig. 1b
shows the best values for the l12 parameters of the PR-WS-
VL model.

Fig. 2 shows an example of the combined method per-
formance (PR-WS-VL model þ FPSO algorithm) on a binary
mixture of supercritical CO2 þ hydrocarbon. Fig. 2a shows
the minimization of the objective function (Eq. (16)) as a
function of the number of iterations for CO2 þ Naphthalene
(mixture 1, see Table 7). Fig. 2b shows a comparison be-
tween experimental values and calculated values of y2 for
these systems. Fig. 2c shows the comparison between
experimental values and calculated values of Ps. This figure
ratifies the capabilities of the algorithm presented above
(see, Table 7).

A comparison was made between the results in the
correlation of y2 by the PR-WS-VL model and the results
obtained from three other thermodynamic models re-
ported in the literature [25] (for clarity, FPSO is not used
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Fig. 2. (a) Example of convergence by minimization of the objective func-
tion for CO2 þ naphthalene. (b) Experimental (dots) and calculated values
(dashed line) of solubility y2 as a function of pressure for CO2 þ naphthalene
(systems 1 to 4 [20]). (c) Experimental (dots) and calculated values (dashed
line) for the Ps as a function of temperature for naphthalene.

Table 7
Binary interaction parameters (l12, A12, A21), and deviations for y2 and Ps

obtained by the PR-WS-VL model þ FPSO algorithm.

Syst. l12 A12 A21 j%Dy2j Ps,calc(Pa) j%DPsj
1 0.0716 2.7873 4.0978 3.03 28.399 0.58
2 0.0368 3.1752 0.6968 5.70 156.610 0.02
3 0.0923 2.3283 0.7834 5.80 240.120 0.15
4 0.0825 2.5742 0.8335 3.78 337.000 0.33
5 0.0651 3.1119 3.9742 5.03 4.175 0.17
6 0.0872 2.5289 2.3889 0.60 11.000 0.42
7 0.0943 2.3595 1.6574 1.62 16.500 0.41
8 0.1104 3.4514 2.3094 2.11 1.250 1.34
9 0.0665 4.1733 2.7115 5.02 3.477 0.06
10 0.0650 4.0938 1.7899 4.97 8.941 0.51
11 0.1001 4.4171 2.8696 4.98 1.213 5.57
12 0.0803 4.3035 2.1979 2.30 3.458 5.46
13 0.0770 4.2435 3.1872 5.36 9.150 3.94
14 0.2059 5.5907 0.1270 2.97 0.009 0.00
15 0.1852 5.2431 0.5796 1.56 0.026 0.00
16 0.1575 5.5070 1.9611 4.92 0.075 0.00
17 0.1585 5.0025 0.2708 2.26 0.110 0.00
18 0.1435 4.6240 0.4022 4.77 0.297 7.48
19 0.1373 5.1451 0.2493 5.53 0.944 0.11
20 0.2473 6.9176 2.1123 2.01 0.010 0.00
21 0.2090 6.3852 1.7488 3.48 0.020 0.00
22 0.1798 6.1121 1.4004 3.20 0.048 2.04



Table 8
Solubility deviations j%Dy2j between three thermodynamic models reported in the literature [25] versus the PR-WS-VL model implemented in this study.

Mixture
CO2þ

PR-vdW
Ref. [25]

PR-WS-UNIQUAC
Ref. [25]

PR-WS-NRTL
Ref. [25]

PR-WS-VL
This work

Naphthalene 34.6 8.2 9.02 4.58
Phenanthrene 20.3 7.4 8.06 4.19
2,3-Dimethylnaphthalene 13.5 7.2 6.42 4.03
2,6-Dimethylnaphthalene 8.9 7.6 7.25 4.21
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on these other models). This comparison involved the
following models: PengeRobinson equation of state and
van der Waals mixing rules (PR-vdW); PengeRobinson
equation of state combined with WongeSandler mixing
rules and Universal-Quasi-Chemical theory GE-model (PR-
WS-UNIQUAC); PengeRobinson equation of state com-
bined withWongeSandler mixing rules and Non-Randon-
Two-Liquid GE-model (PR-WS-NRTL); and the PR-WS-VL
model used in this study. Table 8 shows the results of
this comparison applied on four mixtures with common
datasets [20,21,25]. This table shows solubility deviations
higher than 5% ðj%Dy2j>5Þ for the three models reported
in the literature [25], and j%Dy2j<5 for the PR-WS-VL
model used in this study. Particularly, the average de-
viations for the four mixtures were: 19.33% for the PR-
vdW model, 7.60% for PR-WS-UNIQUAC, 7.69% for PR-
WS-NRTL, and 4.25% for the PR-WS-VL model (for inter-
ested readers, all binary interaction parameter values of
these models can be obtained from the original study
[25]). From these results, the accuracy of the results ob-
tained using the PR-WS-VL model is better than the ac-
curacy obtained from the other models with binary
interaction parameters. It has been shown that the com-
bined method (PR-WS-VL þ FPSO) is able to give a good
representation of the solubility of a solid component in a
supercritical fluid.
Table 9
Deviations obtained for the estimation of sublimation pressure using: Coutsikos

Compound T (K) Ps,exp (P
Ref. [23

Naphthalene 308.15 28.236
328.15 156.637
333.55 239.762
338.05 338.122

Biphenyl 308.95 4.168
318.55 11.046
322.65 16.433

2,3-Dimethylnaphthalene 308.15 1.267
318.15 3.479
328.15 8.987

2,6-Dimethylnaphthalene 308.15 1.149
318.15 3.279
328.15 8.803

Anthracene 313.15 0.009
323.15 0.026
333.15 0.075

Phenanthrene 313.15 0.110
323.15 0.321
333.15 0.945

Pyrene 313.15 0.010
323.15 0.020
333.15 0.049
In addition, a comparisonwasmade between the results
obtained in the estimation of Ps by the combined method
(PR-WS-VL þ FPSO) and the results obtained by a group
contribution method (GCM) to predict the sublimation
pressure [26]. Table 9 shows this comparison and shows
that the deviation for the sublimation pressures j%DPsj
obtained from Coutsikos's GCM [26] were greater than that
obtained from the combined method (PR-WS-VL þ FPSO).
These results show a tremendous increase in accuracy for
estimating Ps. Note that, the Ps estimation may be consid-
ered as a difficult problem in different physico-chemical
processes, since nearly no experimental determinations
available under 0.1 (Pa) [26]. Also, consider that of all
properties involved in the solubility calculation at high
pressure, Ps has received low attention in the literature
although the latter considered to be directly related to
solubility [3].

All these results showed that the FPSO algorithm is a
very powerful tool for parameter estimation on the PR-WS-
VL model and has a good performance and accuracy, and
considerably low deviations. Therefore, values calculated
using the combined method PR-WS-VL model þ FPSO al-
gorithm are considered to be accurate enough for physico-
chemical calculations, among other uses. In addition, the
FPSO algorithm can be applied to optimize other thermo-
dynamic models with good accuracy and performance.
's GCM [26], and the combined method (PR-WS-VL þ FPSO).

a)
]

j%DPsj
Coutsikos's GCM [26]

j%DPsj
This work

17.23 0.58
20.12 0.02
21.35 0.15
23.63 0.33
13.87 0.17
14.37 0.42
15.18 0.41
21.12 1.34
18.39 0.06
16.61 0.51
25.50 5.57
24.63 5.46
23.00 3.94
6.34 0.00
7.15 0.00
7.57 0.00

22.61 0.00
21.88 7.48
21.00 0.11
10.71 0.00
11.12 0.00
11.89 2.04
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6. Conclusions

Based on the Results and Discussion Section (see, Sec-
tion 5), the following main conclusions were drawn: (i) the
thermodynamic model PR-WS-VL is appropriate to
describe the gasesolid equilibrium of binary systems (su-
percritical CO2 þ hydrocarbon) at high pressure; (ii) Fran-
kenstein PSO algorithm is a good tool to minimize the
difference between calculated and experimental solubility
of a solid solute y2; (iii) the results showed that the Fran-
kenstein PSO algorithm is a very powerful tool for esti-
mating binary interaction parameters with low deviations;
(iv) the values calculated using the complete method (PR-
WS-VL model þ FPSO) are considered to be accurate
enough for physico-chemical calculations, and other uses;
and (v) Frankenstein PSO algorithm can be applied in order
to optimize other thermodynamic models with good ac-
curacy and performance.
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