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COX-2 is a widely studied biological target, since its activity is directly related to the
inflammation response. The design of COX-2 selective inhibitors is an ongoing topic in
drug design. We performed a quantitative structureeactivity relationship and docking
studies over a series of benzenesulfonamide derivatives on their inhibition towards COX-1
and COX-2, in order to rationalize their selectivity towards COX-2. Constitutional, topo-
logical and molecular property descriptors for the QSAR models and molecular docking
calculations were employed. The mathematical model highlighted that lipophilic character
and size are the most important features for COX-2 inhibition by benzenesulfonamides. A
second QSAR model revealed that the dipole moment, the number of hydrogen bond
donors and lipophilicity descriptors of benzenesulfonamides are crucial for their binding
to COX-1. Moreover, artificial neural networks were employed to improve the prediction
power of the COX-1 inhibition QSAR model. In this sense, we proposed new selective
potential inhibitors by introducing different halogens into the benzenesulfonamide scaf-
fold, improving their interactions with key residues of COX-2.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
1. Introduction

Cyclooxygenase (COX) enzyme catalyzes the conversion
of arachidonic acid into prostaglandins (PGs), which are
endogenous compounds that play several and important
functions within the cells [1,2]. At least two isozymes of
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COX are well identified: COX-1, the constitutive isoform,
which is mostly expressed under normal conditions and
COX-2, which is mainly expressed during inflammatory
responses [2,3]. Therefore, COX-2 has become one of the
biological targets of anti-inflammatory drugs. Non-
Steroidal Anti-Inflammatory Drugs (NSAIDs) inhibit COX
isozymes in a non-selective manner [2e4]. This lack of
selectivity towards COX-2 is related to undesired side ef-
fects: dyspepsia, ulceration and bleeding due to the use of
NSAIDs [2]. Side effects are due to COX-1 inhibition, which
implies the deletion of its physiologic functions [1e4].

The pursuit of selective inhibition of COX-2 led to the
discovery of the COX-2 selective inhibitors, for instance
celecoxib, rofecoxib and valdecoxib (called COXIBS) [2].
ll rights reserved.
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However, chronic use of these drugs is associated with
cardiovascular side effects; therefore, the search for safer
COX-2 selective inhibitors is an ongoing topic in drug
design [3]; COXIBS are diaryl compounds that contain sul-
fonamide or methyl sulfone groups. Besides COXIBS and
NSAIDs, some other compounds have been identified as
COX inhibitors derived from natural sources, for instance
resveratrol [5] and amarogentin [6].

By modifying the resveratrol structure [5], a series of 31
benzenesulfonamide derivatives (BzSAD) that showed
an increase in selectivity towards COX-2 with respect to
that of resveratrol were reported (Fig. 1). Quantitative
StructureeActivity Relationship (QSAR) models are able to
predict the biological activity of compoundsdeven before
they are synthesizeddimproving the rational drug design
and facilitating the comprehension of the mechanism of
the action and pharmacokinetics of biologically active
compounds [7].
Fig. 1. Benzenesulfonamide derivatives previously synthesized and tested as COX
QSAR studies employ the algorithms and techniques
developed by the computer sciences, like Genetic Algo-
rithms (GA) and Artificial Neural Networks (ANN) [8e10].
The GA method is inspired by Darwin's evolution concept
and consists of a stochastic generation of individuals
(mathematical models), followed by a random selection of
two individuals which will generate a new one. In order to
express the best parents' characteristics (biological activity),
this new individual must inherit the right genes (molecular
descriptors). The ANN technique seeks to mimic the human
brain mechanism. Its architecture consists of a set of inter-
connected neurons (basic units) that generates a response
(physicochemical properties or biological activity) according
to the environmental stimuli (molecular descriptors) [10].

The exchange of a Ph with a PheX is as useful a strategy
in drug design that increases binding affinity and improves
the pharmacodynamic profile; such an exchange favors
halogen bonding [11]. Halogen bonding refers to short
-2 selective inhibitors [5]. These compounds were employed in this work.
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contact interactions seen in drugs bearing the group PheX,
(F, Cl, Br, and I) where X acts as a Lewis acid allowing the
interactionwith the carbonyl within residues, which acts as
a Lewis base [12]. Halogen bonding is explained on the
basis of “s-hole” caused by the uneven electronic distri-
bution of the PheX functionality, forming a positively
charged region that interacts with a nucleophile such as
carbonyl observed in protein backbones [13].

Several QSAR studies of COX-2 inhibitors have been
done on a wide variety of molecular structures [14e22],
including studies on compounds that contain sulfonamide
and methyl sulfone groups [23,24]. In these studies,
BzSAD, phenylazobenzenesulfonamide [23] and resvera-
trol derivatives [24] were considered for obtaining a
structureeactivity relationship in a global context.

In this work, we performed a QSAR study using only
BzSAD previously reported [5] due to their improved
selectivity towards COX-2. Additionally, a molecular dock-
ing calculation was made in order to rationalize the BzSAD
selectivity towards COX-2. Furthermore, we used molecule
2 as a scaffold (Fig. 1) to construct novel and more potent
COX-2 selective inhibitors based on the halogen bonding
approach [11e13].

2. Computational details

2.1. Molecules preparation

The 31 benzenesulfonamide derivatives previously syn-
thesized [5] and three reference drugs (celecoxib, resvera-
trol and NS398) were employed in this work. Full geometry
optimizations, without symmetry constraints, for the 34
neutral compounds were performed with the PM3 [25]
semi-empirical method implemented in the SPARTAN'08
program [26]. Harmonic frequency analysis was performed
for all the compounds, in order to ensure that their geo-
metric are minima on the potential energy surface.

Scior et al. discuss the many pitfalls that QSAP/QSPR
models have and the options that one as a researcher
possess to bypass them [27]. For instance, in order to avoid
the use of unnecessary descriptors that poorly describe the
biological activity and may correlate fortituisly, they sug-
gest to perform an exhaustive descriptor selection prior to
the construction of the mathematical model [27,28]. Thus
in this study, only constitutional, topological, and molecu-
lar properties and quantum molecular descriptor families,
from the optimized geometry of the BzSAD, were calculated
with the DRAGON ‘05 [29] and SPARTAN'08 [26] packages
Table 1
Molecular descriptors employed in the construction of the QSAR models.

Program Descriptor

DRAGON AMW; Sv; Mv; nAT ; nSK; nBT ; nBO;nBM; SCBO
ARR; nCIC; nCIR; RBN; RBF; nDB; nAB

ZM1V ; ZM2; ZM2V ; Qindex; SNar; HNar; GNar ;Xt;
Dz; Ram; Pol; LPRS; VDA; MSD; SMTI; SMTIV ;GMTI GMTIV
TI2; STN; HyDp; RHyDp; w; PW2; PW3; PW4; PW5

Ui; Hy; TPSAðTotÞ; MLOGP; MLOGP2;
ALOGP; ALOGP2

SPARTAN Dipole; HOMO; LUMO; Molecular Volume ðMVolÞ; PSA; MW
(Table 1). By selecting these descriptor families, we
attempted to correlate the lipophilicity, chemical group
accounts (number of carbons, nitrogens, rings, etc.), mo-
lecular size and electronic distribution of the BzSAD with
their inhibitory activity. The lipophilicity and molecular
size are molecular properties that determine the selectivity
towards COX-2 due to its bigger and more lipophilic active
sites in comparison to that of COX-1 [2,3]. Hence, for this
study, we calculated all themolecular descriptors (available
in DRAGON) that are related to lipophilicity: the hydro-
philic factor (Hy), topological polar surface area (TPSA),
linear and quadratic Moruguchi octanolewater coefficients
of partition (MLOGP andMLOGP2), and linear and quadratic
GhoseeCrippeneViswanadhan octanolewater partition
coefficients (ALOGP and ALOGP2). The LOGP quadratic term
has been successfully used before to explain the inhibitory
activity of several compounds (barbiturates, alkyl-
benzimidazoles, aliphatic primary amines, etc.) and their
selectivity towards P450 isoforms [30]. On the other hand,
the electronic character of sulfonamide derivatives and its
correlation with its inhibitory activity over the acetylcho-
linesterase protein has been properly studied by using
quantum chemical descriptors, such as HOMO, LUMO,
dipole moment, etc. [31]; hence, they were included in the
descriptor pool used in this study.

2.2. Mathematical model construction and validation

For the construction of the mathematical models, the
genetic algorithms technique (GA) was employed and car-
ried out in the MobyDigs 01 program [32]. All of the mo-
lecular descriptors and the half maximal inhibitory
concentration (IC50), of the BzSAD, were used as the inde-
pendent variables (X) and the dependent variable (Y),
respectively. In order to inspect all the possible mathe-
matical models, a variety of transformations over the
dependent variable (1=Y , logY , ðY þ 1Þ2, �ð1=logYÞ,
1=logY , 1=Y þ 1) were tested. The molecules were sepa-
rated into training and validation groups. 80% of all the
molecules were randomly selected for the training process,
and the rest 20% was used for the validation stage. The top
10 mathematical models, based on its Q2 value, were
chosen. The model with the best Q2 values was selected
and validated statistically by the QUIK rule.

To validate the QSAR model, we employed the QUIK
rule, which allows the rejection of models with high pre-
dictor co-linearity that can lead to casual correlation [33].
This rule is based on the K multivariate correlation index
Type

Constitutional

; Xu; SPI; W ; WA; Har; Har2; QW; TI1; Topological

Molecular properties

; HBD; Gº Quantum-Chemical
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that measures the total correlation of a set of variables,
defined as:

K ¼

P
j

"
ljP
j
lj
� 1

p

#
2ðp�1Þ

p

j ¼ 1;……; p and 0 � K � 1

(1)

where lj is the data from the joint Xðn; pÞ matrix eigen-
values, n is the number of objects and p is the number of
variables in the model. The total correlation in the set given
by the descriptors (XÞ plus the response Y (KXY ) should al-
ways be greater than that measured only in the set of de-
scriptors (KX); if Kxy � Kx <DK , the model is rejected; DK
may have values between 0.01 and 0.05 (in our case,
DK ¼ 0:01).

In addition, the standard deviation (s) and Fisher test (F)
values were calculated [33]. These parameters gave infor-
mation about how the correlation between the experi-
mental and calculated activities is affected by the number
of molecules in the study (Equation (2)), and what the
probability is for the mathematical model to casually occur
(Equation (3)).

s ¼
Pn

i¼1ðbyi � yiÞ2
n� 2

(2)

In Eq. (2), the n variable represents the number of
molecules in the study, byi represents the experimental
activity and yi is the calculated activity from the QSAR
model.

F ¼
Pn

i¼1ðbyi � yÞ2
.
dfMPn

i¼1ðbyi � yiÞ2
.
dfE

(3)

where dfM and dfE refer to the degrees of freedom of the
model (molecular descriptors in the model) and error,
respectively. Also, byi, y and yi refer to the experimental,
average value of experimental and calculated activities,
respectively.

dfE ¼ n� p� 1 (4)

In the mathematical model, s and F should have the
smallest and largest possible values, respectively, to ensure
that the QSAR model is reliable.

To evaluate the internal predictive ability of our models,
the leave one out technique was employed [34]. This
technique consists of evaluating each molecule within the
training set to determine as to how it corresponds to the
validation set. One by one, each molecule is evaluated and
its Y value is calculated (Eq. (5)):

Q2
LOO ¼ 1�

Pn
i¼1

�
yi � byi=i

�2

Pn
i¼1ðyi � yÞ2

(5)

As mentioned above, to test our model more rigorously
in terms of the predictive aspect, an evaluation of the
estimated error was performed on all the molecules that
were excluded from the training process.
2.3. Molecular docking methodology

Molecular docking calculations were performed by
using a Molegro Virtual Docker (MVD) 6.0 [35]. We used
the crystal structures of the COX-1 and COX-2 complexes
with celecoxib PDB:3KK6 [36] and PDB:3LN1 [37], respec-
tively. All water molecules were removed from the crystal.
The potential binding sites (defined as cavities) of both
COX-1 and COX-2 were detected by the expanded van der
Waals sphere method. The cavities found for COX-1
(87.5 Å3) and for COX-2 (84.5 Å3), where all the binding
calculations were performed, correspond to each isoform
binding site. We employed the minimal geometries of all
the BzSAD as a starting point. The partial charges usedwere
set from the PM3 calculations (electrostatic type). The
residues within a distance of 6 Å were set as flexible
totaling 20 for COX-1 and 15 for COX-2. If one of these
residues had four or more free rotating bonds, a zero
strength factor was assigned; for the rest of flexible resi-
dues, a one strength factor was set.

A Moldock SE (Simplex Evolution) search function for
both COX-1& COX-2 that uses genetic algorithm during the
search for thebest binding site of a givenenzymeor receptor
was employed. A 2000 minimization steps for each flexible
residue and 2000 steps of global minimization per runwere
set. For theMoldock SE, a total of 20 runswith amaximumof
2000 iterations using a population of 100 individuals per
run. For calculating the binding energy, we used the scoring
function Moldock Score [GRID]. We performed a rigid
docking approach. For both isoforms, the scoring function
GRIDwas set at 0.2 Å, the search sphere fixed as 15 Å radius.
For the energy analysis of the ligand, the electrostatic in-
ternal interactions, internal Hydrogen bonds and the
sp2esp2 torsions were considered for the scoring
calculation.

The method was validated by reproducing the experi-
mental bindingmode of the reference inhibitor, with a Root
Media Square Deviation (RMSD) of 0.77 Å for COX-1 and
0.52 Å for COX-2 (Figs. S1 and S2, see supporting infor-
mation). Rather than analyzing the overall biding energies,
we followed the method reported previously [38], and
searched for interactions with residues that are considered
key to selectively binding to each isoform.

All the structures of the proposed inhibitors COX-2 based
on 2 scaffold were fully optimized by the method described
previously (vide supra). In the same manner, the docking
methodology used for the proposed inhibitorswas the same
that the one described above.

3. Results and discussion

3.1. QSAR model for COX-2

The mathematical model that described the half
maximal inhibitory concentration (IC50) of the benzene-
sulfonamide derivatives over the COX-2 is shown below:

1=IC50 ¼ �4:36483 ½ALOGP� þ 0:83506 ½ALOGP�2

þ 0:00137 ½MVol � þ 5:44596 (6)
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In Eq. (6), ALOGP is the GhoseeCrippeneViswanadhan
octanolewater partition coefficient [39] and MVol is the
molecular volume obtained by a space-filling model,
intended to represent molecular shape and size [26]. The
DK value for the QSARmodel was 0.073, satisfying the QUIK
rule. According to the Pearson's correlation matrix, the
molecular descriptors of the model were not lineally
dependent among them (see Table S1, Supplementary
data). The values of R2 ¼94.23 and Q2

LOO ¼91.61 indicate a
good correlation and prediction ability of the QSAR model,
while s and F values (0.16 and 136.10, respectively)
confirmed the reliability of the statistical model.

All the molecular descriptors values that conforms
the mathematical models of the BzSAD are shown in
Table 2. Molecule 15 was identified as the most potent
COX-2 inhibitor according to the IC50 data, while also
possessing the lowest ALOGP value of all the
compounds.

All the values of the reciprocal experimental activity
“IC50” (1=Yexp), the reciprocal calculated and predicted ac-
tivity (1=Ycal and 1=Ypred) by the QSAR model are presented
in Table 3.

In addition, the absolute value of the differences be-
tween 1=Yexp and both 1=Ycal & 1=Ypred, are represented by
the residualcal and residualpred term respectively.
Table 2
Molecular descriptors values used on the QSAR models and the experimental IC

Molecule ALOGP ALOGP2 MVol

1 2.25 5.08 253.84
2 2.46 6.05 258.67
3 2.11 4.45 301.51
4 2.15 4.62 275.76
5 2.15 4.62 275.75
6 2.42 5.84 303.97
7 1.99 3.95 260.81
8 3.20 10.22 286.19
9 2.74 7.51 271.71
10 2.24 5.01 280.65
11 2.24 5.01 280.70
12 1.99 3.95 260.86
13 1.72 2.96 268.10
14 1.97 3.88 288.43
15 1.59 2.53 288.74
16 2.32 5.38 306.87
17 1.97 3.88 288.57
18 2.22 4.94 307.76
19 2.22 4.94 307.71
20 2.21 4.86 335.31
21 1.95 3.82 315.36
22 2.25 5.08 253.69
23 2.46 6.05 258.51
24 2.74 7.51 271.7
25 3.20 10.22 286.21
26 2.42 5.84 303.88
27 1.99 3.95 260.44
28 2.24 5.01 280.66
29 2.22 4.94 308.89
30 1.84 3.40 306.18
31 2.11 4.45 300.93
Celecoxib 4.55 20.72 336.21
Resveratrol 3.01 9.08 237.06
NS398 3.96 15.72 231.77
The (1=Ypred) versus ð1=YexpÞ activity plot is shown in
Fig. 2. The squared correlation coefficient (R2) includes the
molecules used for the external validation.

The presence of ALOGP and MVol descriptors in the
QSAR model indicates that lipophilic character and
molecular size are crucial for the COX-2 inhibition by
the BzSAD. This is in accordance to the experimental
data provided by the X-ray crystallographic structure of
COX-2 [40], where its active site mainly differs from that
of COX-1 in one residue, Val523 for the former and
Ile523 for the latter [4]. This subtle difference translates
to a more hydrophobic character and a larger volume in
the active site of COX-2. According to our QSAR model,
the relationship between the biological activity (IC50)
and the lipophilicity of the molecule was exponential
(ALOGP2).

However, due to the negative coefficient of the linear
term, the ALOGP of a molecule must be higher than one
but lower than two (1<ALOGP >2) in order to be a
potent COX-2 inhibitor, thus, minimizing the negative
contribution of the ALOGP linear term. On the other
hand, the QSAR model indicated that an inhibitor based
on the BzSAD scaffold could nullify the negative effect of
high lipophilicity with a large molecular volume (MVol).
The positive coefficient of MVol in the QSAR model
50 (mM) data for COX-1 and COX-2 proteins.

Dipole HBD COX-1 IC50 COX-2 IC50

4.38 1 108.34 2.87
2.66 1 159.07 2.22
1.50 1 183.5 2.73
4.52 1 141.25 3
7.82 1 105.63 6.75
5.95 1 195.74 3.36
5.01 2 148.20 3.42
3.99 1 182.19 4.60
5.85 1 190.47 4.94
5.21 1 313.83 9.88
4.59 1 383.36 5.45
6.54 2 38.20 2.78
7.72 3 23.15 2.85
4.92 2 78.20 2.95
7.64 3 85.13 0.74
5 2 47.91 3.69
4.46 2 43.80 3.50
5.59 1 110.27 3.09
4.45 1 109.69 3.40
4.24 1 167.69 2.93
4.58 2 155.95 2.71
4.91 1 63.59 3.11
3.57 1 80.20 4.38
5.31 1 63.22 4.62
2.89 1 43.89 6.54
5.24 1 64.42 1.95
5.13 2 51.83 5.09
4.81 1 60.74 4.14
4.34 1 31.27 4.28
3.56 2 23.99 3.13
2.74 1 56.73 3.72
3.71 1 23.47 0.30
0.51 3 4.12 34.61
3.42 1 35.68 0.61



Table 3
Values of the reciprocal experimental (1=Yexp), calculated (1=Ycal), and
predicted (1=Ypred) activities and residualcal and residualpred values are
shown.

Molecule 1=Yexp 1=Ycal residualcal 1=Ypred residualpred

1 0.35 0.20 0.15 0.18 0.17
2 0.45 0.12 0.33 0.09 0.36
3 0.37 0.37 0 0.37 0
4 0.33 0.30 0.03 0.30 0.03
5 0.15 0.3 0.15 0.31 0.16
6 0.30 e e 0.19 0.11
7 0.29 0.43 0.14 0.45 0.16
8 0.22 0.42 0.20 0.47 0.25
9 0.20 0.13 0.07 0.12 0.08
10 0.10 0.25 0.15 0.25 0.15
11 0.18 0.25 0.07 0.25 0.07
12 0.36 0.43 0.07 0.44 0.08
13 0.35 e e 0.78 0.43
14 0.34 0.48 0.14 0.49 0.15
15 1.35 1.01 0.34 0.82 0.53
16 0.27 0.23 0.04 0.23 0.04
17 0.28 0.48 0.20 0.50 0.22
18 0.32 0.29 0.03 0.29 0.03
19 0.29 0.29 0 0.29 0
20 0.34 0.34 0 0.34 0
21 0.37 e e 0.54 0.17
22 0.32 0.20 0.12 0.19 0.14
23 0.23 0.12 0.11 0.11 0.12
24 0.22 0.13 0.09 0.12 0.10
25 0.15 e e 0.42 0.27
26 0.51 0.19 0.22 0.16 0.35
27 0.20 0.43 0.23 0.46 0.26
28 0.24 0.25 0.01 0.25 0.01
29 0.23 0.29 0.06 0.30 0.07
30 0.32 e e 0.66 0.34
31 0.27 0.37 0.10 0.38 0.11
Celecoxib 3.33 3.34 0.01 3.36 0.03
Resveratrol 0.03 0.20 0.17 0.25 0.23
NS398 1.64 1.59 0.05 1.55 0.09
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suggested that an increase in the volume of a molecule
will increase its COX-2 inhibitory potency
(283 � MVol � 500); the MVol value range is in accor-
dance with Lipinski rules [41].
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Fig. 2. Reciprocal of the predicted activity versus the reciprocal of the
experimental activity. The squares represent molecules used of external
validation of the QSAR model.
3.2. QSAR model for COX-1

The mathematical model for the inhibition of COX-1
(IC50) by the BzSAD is the following,

�logð1=IC50Þ ¼ 0:06757 ½Dipole� � 0:44141 ½HBD�
� 0:27199 ½ALOGP� þ 2:86343 (7)

where the molecular dipole (Dipole), number of hydrogen
bond donors (HBD) and the lipophilicity are present. The
statistical parameters for this model are R2 ¼54.36,
Q2

LOO ¼39.70, s¼0.29, F ¼9.9 and DK ¼0.03. Although the
predictive ability of the QSAR model was deficient, it was
improved by incorporating back propagation artificial
neural network (BPANN). This method was previously used
by our group to combine the characteristics of the GA (for
descriptor selection) and the prediction ability of BPANN
[10].

All the values of the negative logarithm of the experi-

mental �log
�

1
Yexp

�
, calculated �log

�
1
Ycal

�
, and predicted

�log
�

1
Ypred

�
activities by the multi-linear QSAR model and

the predicted activity �log
�

1
YpredANN

�
by the BPANN are

shown in Table 4. In addition, rescal, respred and respredANN
are displayed. These terms represent the absolute value of
the differences between �log

�
1

Yexp

�
and �log

�
1
Ycal

�
,

�log
�

1
Ypred

�
and �log

�
1

YpredANN

�
, respectively.

The reciprocal of the predicted activity against the
experimental biological activity is shown in Fig. 3. The R2 in
the graphic represents the squared correlation coefficient

between the �log
�

1
YpredANN

�
and the �log

�
1

Yexp

�
, where the

molecules used for the external validation are included.
The coefficient of the HBD descriptor in the QSARmodel,

indicated that this feature is crucial for the inhibition of
COX-1. Consequently, a COX-1 inhibitor must possess HBD
groups. The negative sign in the coefficient of the ALOGP
descriptor was related to the HBD value, which precludes
the addition of “too many” HBD groups; the molecule must
have an equilibrium between its hydrophobic and hydro-
philic character in order to diffuse well in blood and across
the cell membrane. Finally the increase of the dipole
momentda large dipole is related to a low lip-
ophilicitydwill negatively affect the inhibitory activity of
this type of compounds. The descriptors gleaned from the
previously reported QSAR models are similar to our results
[23,24]. However, our QSAR model found descriptors that
provided insights into the pharmacodynamic profile of the
BzSAD compounds.
3.3. Molecular docking

We discussed the interactions with the residues located
in the regions that are relevant to the selectivity towards
both isoforms: the Lateral Pocket (LP: Ala527, Leu531,
Ser530 & Val349), Constriction Channel (CC: Arg120,
Glu524& Tyr355), Lipophilic Pocket (LiP: Val523), and with
Arg513 & His90 [42,43]. We compared the interactions of



Table 4

Values of the negative logarithm of the reciprocal experimental �log
�

1
Yexp

�
, calculated �log

�
1

Ycal

�
, and predicted �log

�
1

Ypred

�
activities by the multi-linear

QSAR model and the predicted activity �log
�

1
YpredANN

�
by the BPANN. Also the rescal , respred and respredANN values are displayed.

Molecule �log
�

1
Yexp

�
�log

�
1

Ycal

�
rescal �log

�
1

Ypred

�
respred �log

�
1

YpredANN

�
respredANN

1 2.03 e e 2.10 0.07 2.03 0
2 2.20 1.93 0.27 1.90 0.30 2.06 0.14
3 2.26 1.95 0.31 1.85 0.41 2.17 0.09
4 2.02 2.14 0.12 2.14 0.12 2.08 0.06
5 2.15 e e 2.37 0.22 1.97 0.18
6 2.29 2.17 0.12 2.15 0.14 1.99 0.30
7 2.17 1.78 0.39 1.75 0.42 1.85 0.32
8 2.26 1.82 0.44 1.78 0.48 2.00 0.26
9 2.28 2.07 0.21 2.05 0.23 2.17 0.11
10 2.50 e e 2.17 0.33 2.09 0.41
11 2.58 2.12 0.46 2.09 0.49 2.03 0.55
12 1.58 1.88 0.30 1.92 0.34 1.75 0.17
13 1.36 1.59 0.23 1.69 0.33 1.48 0.12
14 1.89 1.78 0.11 1.77 0.12 1.94 0.05
15 1.93 1.62 0.31 1.50 0.43 1.77 0.16
16 1.68 1.69 0.01 1.69 0.01 1.73 0.15
17 1.64 1.75 0.11 1.75 0.11 1.69 0.05
18 2.04 2.20 0.16 2.21 0.17 2.14 0.10
19 2.04 2.12 0.08 2.12 0.08 2.01 0.03
20 2.22 2.11 0.11 2.10 0.12 2.00 0.22
21 2.19 1.76 0.43 1.73 0.46 1.90 0.39
22 1.80 e e 2.14 0.34 2.06 0.36
23 1.90 1.99 0.09 2 0.10 2.02 0.12
24 1.80 2.04 0.24 2.06 0.26 2.13 0.33
25 1.64 1.75 0.11 1.76 0.12 1.75 0.11
26 1.81 e e 2.12 0.31 2.02 0.21
27 1.71 1.79 0.08 1.79 0.08 1.86 0.15
28 1.78 2.14 0.36 2.16 0.38 2.04 0.26
29 1.49 2.11 0.62 2.15 0.66 2.01 0.52
30 1.38 1.72 0.34 1.76 0.38 1.56 0.18
31 1.75 2.03 0.28 2.08 0.33 1.89 0.14
Celecoxib 1.37 1.43 0.06 1.49 0.12 1.36 0.01
Resveratrol 0.61 0.75 0.14 0.98 0.37 0.64 0.03
NS398 1.55 1.57 0.02 1.58 0.03 1.57 0.02
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Fig. 3. Values of the negative logarithm of the reciprocal predictive activity
by BPANN versus the negative logarithm of the reciprocal experimental
activity. The squares represent the molecules used to external validation of
the QSAR model.
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BzSAD 2 and 15 with LP, CC, LiP, Arg513 & His90 to those of
celecoxib and NS-398, and to resveratrol (Table 5). The in-
teractions of 15with the LPweremore favorable than those
of celecoxib, which explains its increase in COX-2 selec-
tivity index. Specifically the interaction of 15 with Leu531
was �7.27 whereas that of celecoxib was �1.45 (kcal/mol).
In the same manner, molecule 2 showed a more favorable
interaction with Leu531 (�4.21 kcal/mol) than celecoxib.

Since Leu531 is a key residue e its correct conforma-
tional arrangement allows the substrates and inhibitors to
accommodate into COX-2 active sitee the interaction value
Table 5
Interaction energies (kcal/mol) of 2, 15, celecoxib (Cel.), NS-398 and
resveratrol (Resve.) with COX-2 residues.

Residues Cel. 15 2 NS-398 Resve.

Ala527 �14.77 �21.23 �12.73 �12.12 �5.3
Arg120 �2.53 �3.02 e �8.22 e

Arg513 �4.61 �4.42 �4.42 e �4.21
Glu524 �0.45 e e e e

His90 �9.16 �6.8 �7.12 �2.05 �7.87
Leu531 �1.45 �7.27 �4.12 �0.90 e

Ser530 �2.22 �5.33 �5.04 �2.80 �4.7
Tyr355 �10.68 �3.92 �4.07 �8.99 �7.2
Val349 �8.98 �10.73 �10.6 �9.05 �0.9
Val523 �20.68 �11.21 �11.25 �17.20 �14.5



Fig. 4. Binding modes of 15 (A), 2 (B), celecoxib (C) and resveratrol (D) into COX-2. Hydrogen bonds are depicted as blue dashed lines. Residues are colored
according to their hydropathy index value; red represent hydrophilic residues, blue hydrophobic and purple amphiphilic.

Table 6
Interactions energies (kcal/mol) of 2, 15, celecoxib (Cel.), NS-398 and
resveratrol (Resve.) with COX-1 residues.

Residues Cel. 15 2 NS-398 Resv.

Ala527 �14.19 �21.45 �14.0 �12.80 �7.59
Arg120 �1.88 �2.46 e �10.30 e

Glu524 �0.49 e e 0.50 e

Ile523 �23.03 �15.17 �16.70 �17.30 �21.41
Leu531 �2.70 �6.36 �4.43 �4.20 e

Ser530 �1.88 �4.51 �6.13 �1.00 �1.44
Tyr355 �12.1 �6.82 �7.18 �11.70 �5.45
Val349 �6.63 �7.87 �6.89 �5.80 �1.67
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of 15 with this residue provided a rationale to its increased
selectivity index [44]. The binding modes of 15, 2, celecoxib
and resveratrol are shown in Fig. 4.

The sulfonamide moiety within 2, 15 and celecoxib was
oriented similarly, which allowed the electrostatic in-
teractions with Arg513 and His90 and the formation of HB
to several residues. Binding mode of 15 (Fig. 4A) is stabi-
lized by the formation of HB to Ala527, Ile517, Leu352,
Gln192, Phe518 and Ser353. On the other hand, molecule 2
and celecoxib (Fig. 4B and C) formed a HB to Gln192, Ile517,
Leu352 and Ser353. Additionally celecoxib formed a HB to
His90. Neither the BzSAD nor celecoxib formed HB to CC
residues. This is in agreement with the reported data
regarding COX-2 selective inhibitors, which are less prone
to form HB to CC residues [3,4,45].

The presence of Val523 in COX-2 forms a lipophilic
pocket whose access is controlled by His90 [42]. Hence, a
COX-2 selective inhibitor needs to interact with His90 and
Arg513 to gain access to the LiP and interact with Val523.
The energy (kcal/mol) of the interactions of 15 (11.21) and 2
(11.25) with Val523 are less favorable than those of cele-
coxib (20.68). However, their electrostatic interactions with
His90 and Arg513 imply a tight and durable binding to COX-
2; such interactions are only achieved by non-time
dependent inhibitors such as COXIBS [42,45]. In compari-
son with celecoxib, compounds 2 and 15 formed less
favorable electrostatic interactions with His90; however,
their interactions with Arg513 are similar in energy; these
two important interactions provided a rationale to their
selectivity towards COX-2. The interaction energy of 2 and
celecoxib with Arg513 helped to explain why molecule 2 is
akin to celecoxib in terms of COX-2 selectivity.

The interactions of molecules 2,15 and reference ligands
(celecoxib, NS-398 and resveratrol) with the residues that
form the LP, CC and Ile523, which are relevant to the
selectivity towards COX-1 [3], are presented in Table 6;
their binding modes are shown in Fig. 5.

The interaction energy of molecule 2 and 15with LP and
CC residues showed important differences: molecule 15
formed a HB to Ala527 and also interacted more energeti-
cally with Leu531, Val349 and Arg120 than 2 (Fig. 5AeB).
Binding of compounds 15 and 2 to COX-1 was ruled out by
the formation of HB; in accordance with our QSAR COX-1
model where dipole and HBD groups defined the selec-
tivity towards COX-1. The interaction energy achieved by 15
with Ile523 was 7.86 kcal/mol less favorable than that ob-
tained by celecoxib with the same residue. This provided a
rationale to the increase in the selectivity index (SI¼115) of
15 in comparison to that of celecoxib (SI¼78). Celecoxib,
which is a more potent COX-1 inhibitor (IC50¼23.47) than
2 and 15, showed the highest interaction energy with
Ile523 (�23.03 kcal/mol), the interaction of 2 with Ile523
was �16.7 kcal/mol (IC50¼159.07), in contrast to 15
(IC50¼85.13) whose interaction valuewas�15.77 kcal/mol.
According to the docking calculations, comparison of 2 and



Fig. 5. Binding modes of 15 (A), 2 (B), celecoxib (C) and resveratrol (D) in COX-1 active site. Hydrogen bonds are depicted as blue dashed lines. Residues are
colored according to their hydropathy index values; red, blue and purple represent hydrophilic, hydrophobic and amphiphilic residues.
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15 to resveratrol (�21.4 kcal/mol and IC50¼ 4.12) also
correlated with experimental data. Molecules 15 and 2
interacted less energetically than resveratrol (6.0 kcal/mol
and 4.7 kcal/mol, respectively) with the Ile523.

COX-1 inhibition is ruled out by a conformational
change achieved by Ile523, which requires a high energy
spend, that allows an inhibitor to bind into the active site of
COX-1 [46]. In this regard, celecoxib is a non-competitive
and reversible COX-1 inhibitor and a tight time-
dependent COX-2 inhibitor.

3.4. Structure based design of new COX-2 selective inhibitors

We designed new selective COX-2 inhibitors based on
the compound 2 scaffold, found in the COX-2 QSAR mod-
eldin which the lipophilicity and MVol define the selec-
tivity towards COX-2, whereas Dipole and HBD define that
Fig. 6. Binding modes of molecule 2 (black) & celecoxib (green) into COX-2.
Celecoxib conformation corresponds to the one experimental binding from
its complex with COX-2.
towards COX-1dand docking results. Also, we have
selected molecule 2 due to (i) its similarities to celecoxib in
binding orientation to the COX-2 active site (Fig. 6) and that
(ii) it possesses less HBD groups than molecule 15. The
expanded van derWaals sphere representation of molecule
2 and celecoxib (Fig. 6), depicts that the former occupies a
smaller volume than the latter.

Conformation of molecule 2 is the one obtained by
molecular docking calculations. The expanded van der
Waals surfaces are shown as a purple grid for 2 and a blue
grid for celecoxib. Celecoxib is filling the three pockets that
are key to the selective inhibition of COX-2. Another
important feature observed in molecule 2was the presence
of a PheF moiety (where F can be exchanged with Cl, Br,
and I). Fluorine has been defined as the only halogen that
may present electronic repulsion with a carbonyl back-
bone; thus, its exchange with iodine, bromine or chlorine is
an accepted improvement in drug design [13]. On this basis,
we proposed compounds (36e53) as new COX-2 selective
inhibitors (Table 7). We have docked 36e54molecules into
COX-1 and COX-2 active sites.

Our results demonstrated that the exchange of fluorine
for chlorine and the addition of iodine in 52 increased the
energy interaction with COX-2 and lowered that of COX-1.
Another important feature observed in molecule 2 was
the presence of a Ph-F moiety (where F can be exchanged
with Cl, Br, and I). Fluorine has been defined as the only
halogen that may present electronic repulsion with a
carbonyl backbone; thus, its exchangewith iodine, bromine
or chlorine is an accepted improvement in drug design [13].
On this basis, we proposed compounds (36e53) as new
COX-2 selective inhibitors, Energy interaction values (Etotal)
between the proposed inhibitors and COX isoforms are
presented in Table 7. Also the internal energy of ligands



Table 7
Structural modifications of the benzenesulfonamide scaffold are shown. Energy values: Etotal, Einternal and LE obtained from molecular docking calculations
are presented.

Molecules X Y COX-2 COX-1

Etotal LE Einternal Etotal LE Einternal

36 Cl H �144.9 �7.6 �4.6 �97.4 �5.1 13.3
37 Br H �143.9 �7.6 �3.7 �141.9 �3.5 �7.5
38 I H �142.2 �7.5 �4.2 �135.9 �7.2 �4.2
39 F F �159.7 �8.0 �11.9 �147.8 �7.4 �12.6
40 F Cl �155.7 �7.8 �8.2 �149.1 �7.5 �8.0
41 F Br �150.7 �7.5 �4.1 �141.7 �7.1 �4.0
42 F I �150.4 �7.5 �2.6 �138.4 �6.9 �2.4
43 Cl F �153.7 �7.7 �6.7 �145.5 �5.0 �7.3
44 Cl Cl �151.3 �7.6 �4.6 �141.3 �7.3 �8.5
45 Cl Br �149.9 �7.5 �3.5 �138.4 �6.9 �3.3
46 Cl I �150.5 �5.8 �3.1 �139.0 �6.9 �4.1
47 Br F �149.5 �7.5 �3.17 �137.2 �6.9 �5.1
48 Br Cl �148.0 �7.4 �0.82 �140.0 �7.0 �4.7
49 Br Br �148.7 �6.2 �7.4 �137.4 �6.7 �7.3
50 Br I �152.7 �7.6 �6.6 �143.3 �7.2 �7.7
51 I F �147.1 �5.8 �3.15 �138.4 �5.0 �2.4
52 I Cl �147.4 �7.4 �4.9 �129.7 �6.5 0.2
53 I Br 150.0 �7.5 �7.5 �142.0 �7.4 �14.6
54 I I �150.7 �7.5 �6.4 �149.3 �7.5 �7.6
2 F H �150.0 �7.9 �7.1 �143.0 �7.5 �7.1
Cele d d �195 �7.5 0.8 �168.4 �6.5 �2.1

Table 8
The values of DEtotal, DLE, and DEinternal for the proposed inhibitors, 2 and
celecoxib, are presented.

Molecules DEtotal DLE DEinternal

36 �3.7 �0.2 1.5
37 �2.0 �0.1 �0.2
38 �6.3 �0.33 �0.03
39 �11.9 �0.6 0.6
40 �6.7 �0.3 �0.2
41 �8.9 �0.4 �0.1
42 �12.0 �0.6 �0.2
43 �8.2 �0.4 1.6
44 �10.0 �0.5 1.3
45 �11.5 �0.2 �0.6
46 �11.2 �0.6 1.0
47 �12.3 �0.6 1.9
48 �8.0 �0.4 3.9
49 �11.4 �0.6 1.1
50 �9.5 �0.5 1.1
51 �5.2 �0.04 �0.3
52 �17.7 �0.9 �5.1
53 �8.0 �0.4 �5.0
54 �1.4 �0.1 1.2
2 �7.1 �0.4 0.03
Cele �27.1 �1.0 2.9
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(Einternal) e i.e. the energy held by ligand conformation due
to the interaction with the target e and the ligand effi-
ciency (LE, the ratio of Etotal and number of heavy atoms,
excluding hydrogen's, of the ligand) are displayed.

It can be appreciated that celecoxib showed the highest
Etotal value for COX-2 and COX-1 (Table 7). Nonetheless, LE
of celecoxib for COX-2 ranges within the lowest values; this
means that it is not the best in terms of efficiency per atom
interaction. In addition, its Einternal value is higher than
those of some the proposed inhibitors 36, 39, 41, 42, 46, 50,
52, 53, 54 and molecule 2; which implies that celecoxib is
less energetically “comfortable” into COX-2 active site than
the mentioned proposed inhibitors. We selected the “best
proposed inhibitor” based on differences (D) between the
interaction energies of COX-2 and COX-1 (Eqs. (8)e(10)).
According to Table 8, we selected compound 52 because of
its value of DEtotal and DLE. Also, compound 52 possessed a
negative DEinternal, which means that the molecule was
more “comfortable” bound to COX-2 than to COX-1.

DEtotal ¼ Etotal�COX�2 � Etotal�COX�1 (8)

DLE ¼ LE�COX�2 � LE�COX�1 (9)

DEinternal ¼ Einternal�COX�2 � Einternal�COX�1 (10)

The binding of molecule 52 into COX-2 (Fig. 7) showed
that its sulfonamide moiety is oriented similarly to that of
celecoxib and compound 2 (Fig. S3 and Table S2).
The van der Waals sphere representation of molecule
52, with COX-2 (Fig. 7), depicts that it was able to reach a
similar volume to that of celecoxib, occupying the “three
interaction points” (i.e. the three key binding pockets: LP,
LiP and CC). The exchange of fluorine to iodine and the



Fig. 8. Binding modes of 52 (black) & celecoxib (green) compounds into
COX-1. Celecoxib conformation corresponds to the experimental binding
from its complex with COX-1. Conformation of molecule 52 is the one ob-
tained by molecular docking calculations; iodine is represented in purple
and chlorine in orange. The expanded van der Waals surfaces are shown as a
grid: purple for 52 and blue for celecoxib.

Fig. 7. Binding modes of 52 (black) & celecoxib (green) into COX-2. Cele-
coxib conformation corresponds to the experimental binding from its
complex with COX-2. Conformation of 52 (in black) was the one obtained by
molecular docking calculations; iodine is represented in purple and chlorine
in orange. The expanded van der Waals surfaces are shown as a grid: purple
for 52 and as a blue for celecoxib.
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addition of chlorine (in Y substituent) is inherently
related to an increase in MVol. The increase in affinity (a
lower Etotal) towards COX-2 of molecule 52 is in accor-
dance with our QSAR model, which defines MVol as a key
descriptor to achieve COX-2 selectivity. Another impor-
tant feature introduced by the addition of a halogen
functionality is a moderate increase in lipophilicity due
to the presence of iodine [13], which is also related to
COX-2 selectivity [3,4].

The binding mode of molecule 52 into the COX-1 active
site (Fig. 8 and Fig. S4) showed that its interactions with
Leu531 and Ile523 diminished (3.93 kcal/mol and 1.40 kcal/
mol) with respect to those displayed by molecule 2 (Table
S3). The van der Waals sphere representation of com-
pound 52, with COX-1, depicted that it possessed a similar
volume to that of celecoxib, occupying the three interaction
points. The orientation of iodine towards the LP explained
why the interaction with Leu531 diminished.

In contrast to COX-2 the binding orientation of molecule
52 with COX-1, showed that chlorine orients and sees the
CC, which favored the interaction with Tyr355 and Arg120
(�0.70 and �6.9 kcal/mol).

While the newly proposed inhibitors may be
conceived as resveratrol-scaffold based compounds, they
differ from it in two key structural aspects: (i) the imine
bond instead of an olefin and (ii) the lack of hydroxyl
groups bound to the phenyl rings. Recent studies have
documented compounds known as Pan Assay Interfer-
ence Compounds (PAINS) that cannot be considered as
good leads or scaffolds for drug design; resveratrol is
among them [47]. PAINS may display a variety of bio-
logical activities; however, they are not specific or se-
lective to any biological target, rather they display such
activities by other mechanisms. Resveratrol is a stilbene
that bears hydroxyl groups resembling a polyphenol
moiety and displays antioxidant activity, which relies on
such groups [48]. The OH groups are bound to the phenyl
rings of resveratrol and make it prone to form reactive
quinones that may interfere in biological assays; the
plethora of biological activities attributed to resveratrol
are related to its antioxidant activity [47]. The exchange
of hydroxilhydroxyl groups may account to reduce that
promiscuity in biological assays and broadens the utili-
zation of stilbene as a drug scaffold [48]. Studies report-
ing on the synthesis of new compounds based on
resveratrol scaffolds suggest that such compounds may
be viable in drug design [48,49].

4. Conclusion

According to the COX-2 QSARmodel, selective inhibition
exhibited by BzSAD is ruled out by the ALOGP term, where
an increase in the hydrophobic character of a molecule is
disadvantageous to its inhibition. However, the combina-
tion of certain lipophilic characters (1<ALOGP >2) with an
appropriate molecular volume (283 Å

3 � MVol � 500 Å
3
)

results in a selective COX-2 inhibitor. The COX-1 QSAR
model indicates that the presence of HBD determines COX-
1 inhibition because of the importance of the formation of
HB to Arg120, as anti-inflammatory drugs commonly do.
From a theoretical point of view, the presence of iodine and
chlorine within molecule 52 increased its selectivity to-
wards COX-2. The binding features of molecule 52 corrob-
orates that a drug based on the selected scaffold represents
an important candidate to be considered in the design of
new selective COX-2 inhibitors. In addition, the results
showed as to how the insertion of halogens within BzSAD
scaffold may be a useful approach to improve drug-
candidate COX-2 inhibitory properties. We leave the syn-
thesis and biological experiments of the proposed de-
rivatives as a future endeavor.
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