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The basic model for thermal spin crossover (SCO) is discussed in its microscopic and
thermodynamic formulation. Compared to the basic model, its more elaborated forms
formulated in course of almost 50 years are briefly reviewed with emphasis on their
additional features. A separate section is devoted to the newer developments in the field of
modelling of the SCO nanoparticles. The presentation of models is led in a comparative
way to provide an accessible outline of the foundations of modern theoretical research on
SCO and a simple applicability in quantitative interpretation of experiments.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
1. Introduction

Spin crossover (SCO) systems have been the object of
intense research for almost nine decades, thanks to their
attractive switching ability [1]. SCO molecules can switch
between a low-spin (LS) and a high-spin (HS) state if an
external and controllable stimulus is applied. Usually, the
initiator of SCO is temperature. However, irradiation,
pressure and electric andmagnetic fields are also described
in the literature [1]. Such a change leads to important
modifications in physical properties of molecules, confer-
ring to SCO-based materials a high potential in future ap-
plications as sensors or new generation of nanodevices
[2,3].

Hand in hand with the rising knowledge base, the need
for description of the phenomenon has been going. The first
attempt to describe quantitatively the temperature-
induced SCO dates back to early 1970s [4,5]. Since then
various improvements have been formulated and alterna-
tive theoretical strategies have been used [6e8]. In the
present microreview, a brief introduction to the simple
models for quantitative interpretation of temperature-
d by Elsevier Masson SAS. A
induced SCO is offered. First, some necessary terms and
quantities are defined as they are used throughout the
work. Several more elaborated models are then recapitu-
lated; some of which proved their usability in the course of
time and are widely applied by the community. Some less
known models were chosen as good examples of original
development of the basic model. Some recent models that
demonstrate the shift in interest of the community from
the bulk compounds towards the nanomaterials are pre-
sented as well. The discussion on the increasingly afford-
able ab initio calculations is completely omitted because it
deserves a completely devoted review. Likewise, reference
to the studies based on computational statistics (e.g.,
Monte Carlo) is limited to the necessary minimum.

2. Fundamentals

The two most popular models for quantitative inter-
pretation of the SCO phenomenon are the Ising-like model
and the thermodynamic model. Wide abstraction and
generalization makes them a suitable standard, that is,
referred to by the other more elaborated approaches.

Within the Ising-like model, the centres are considered
to have only one degree of freedom, that is, their SCO state,
and the phenomenological intercentre interaction called
cooperativity is introduced there. In the microscopic
ll rights reserved.
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Fig. 1. Relationship between the model parameters; the ratio critical for the
presence of hysteresis is from left to right equal to 0, 0.4, 0.6, 0.8, 1.0 and 1.2,
respectively. The shaded area is bordered by a spinodal curve where the HS
and LS centres cannot coexist in a mixed state, i.e., the hysteresis appears.
Adapted from Ref. [12].
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representation, the operator algebra has to be adopted for
correctness. The quantity distinguishing the SCO states is
called fictitious spin or Ising spin and is formally defined via
the following characteristic equation:

bsjLS〉 ¼ �1jLS〉bsjHS〉 ¼ þ1jHS〉 (1)

where LS stands for low-spin and HS for high-spin state. The
term “spin” has nothing to dowith the genuinemicroscopic
spins, rather it is an abstract quantity distinguishing be-
tween discrete states of a system and its eigenvalues are
arbitrary integers.

The Ising-like Hamiltonian is then defined as [4,5]

bH ¼ D
2

X
i

bsi � J
X
ij

bsibsj (2)

where D is the energetic difference, J is the (short-range)
cooperativity constant and the summation runs over the
neighbouring sites. To find an agreement with experiment,
different degeneracies of SCO states have to be considered
in Eq. 2. So far, the exact solution of Eq. 2 is known only for a
one-dimensional (1D) chain of Ising spins [9]. The mean-
field approximation (MFA) can be used to face the mathe-
matical complexity of the approach. Within MFA, the cor-
rect summation over all interacting centres is replaced by
common interaction of interrogated centre with the mean
field of all other centres in the system. Much simpler one-
centre Hamiltonian results as follows [10]:

bH ¼ D
2
bs � qJ〈s〉bs (3)

where thermodynamic average of Ising spin is denoted as
〈s〉. This quantity is linearly related to the mole fraction of
the HS state (HS fraction), x, according to the relationship

x ¼ ð〈s〉þ 1Þ=2 (4)

A numerical factor q is equal to the number of closest
neighbours of a site (e.g., q ¼ 6 for primitive cubic packing)
and for simplicity it will be absorbed to the constant J
hereafter. The derivative of canonical partition function
constructed from eigenvalues of Hamiltonian (3) with
respect to the parameter D gives straightforwardly the
implicit formula for the average Ising spin

〈s〉 ¼ �1þ r exp �½ bðD� 2J〈s〉Þ�
1þ r exp �½ bðD� 2J〈s〉Þ�

¼ �tanh½bðD=2� J〈s〉Þ � ðln rÞ=2� (5)

where b ¼ 1/(kBT) and r is another independent parameter
of the model called degeneracy ratio. In this simplest form,
the Ising-likemodel has three independent parameters:D, J
and r; all of them gain typically positive values (coopera-
tivity is thus denoted as ferroelastic-like). The order of
magnitude of D is hundreds to thousands of Kelvin and of J
zero to hundreds of Kelvin. The degeneracy ratio is
dimensionless and gains values in the range of tens to
thousands [11].

The spin transition is often characterized with the help
of the quantity called transition temperature T1/2 defined as
temperature at which 〈s〉 ¼ 0 (or, equivalently x ¼ 0.5), i.e.,
this quantity tells us at which temperature the transition is
centred. Within the limits of the Ising-like model there
holds true

T1=2 ¼ D
kB ln r

(6)

and it does not depend upon the cooperativity. Never-
theless, cooperativity strongly influences the shape of the
transition. Providing that the transition temperature is
kept constant, the higher the cooperativity, the more
abrupt the transition curve is. Above a critical value of J
two sudden jumps appear at the transition curve, each at
different temperature: one by heating up and the other by
cooling down (Fig. 1). As obvious from Fig. 1, the condition
for the presence of hysteresis within the limits of the
Ising-like model is as follows:

kBT1=2
J

<1 (7)

A drawback of this simple model is the low flexibility of
the shape of predicted transition curves.

To “translate” the presented microscopic parameters to
experimentally attainable macroscopic quantities an alter-
native formulation of the model can be easily derived. If the
SCO system is considered as a real solution (consistently
with the presence of the cooperativity interaction) its
molar Gibbs energy can be written in the form [13,14]

G ¼ xGHS þ ð1� xÞGLS � TDSmix þ Gint (8)

where GHS and GLS are partial molar Gibbs energies for
individual SCO states, Gint is the excess interaction term
accounting for the deviations from ideality of the solution
and DSmix is the mixing entropy. In the first approach, the
approximate formula valid for ideal solutions can be used
for mixing entropy
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DSmixz� Rðx ln xþ ð1� xÞ lnð1� xÞÞ (9)

The macroscopic counterpart of the mean-field coop-
erativity interaction is the BraggeWilliams (BW) approxi-
mation, which states for the interaction term

GintzDBWx� GBWx2 (10)

where DBW and GBW are parameters of the model that are
often considered equal to each other. If thermodynamic
equilibrium is reached at constant temperature and
pressure, the system tends to attain composition at which
Gibbs energy is minimal. Setting the derivative of Eq. 8
with respect to HS fraction equal to zero gives the
following implicit equation:

x ¼ 1

1þ exp
h
DtrHþDBW�2GBWx

RT � DtrS
R

i (11)

where all transition quantities of SCO are defined in a
following manner

DtrG ¼ GHS � GLS (12)

The transition enthalpy DtrH and transition entropy DtrS
are related to transition Gibbs energy as

DtrG ¼ DtrH � TDtrS (13)

The approach represented by Eq. 11 is called the ther-
modynamic model. Keeping Eq. 4 in mind, the comparison
with Eq. 5 shows that Ising-like model within the MFA and
thermodynamic model within the BW approximation are
mathematically completely equivalent. Nevertheless,
different point of view offers a useful physical insight; in
this case the relationships betweenmicroscopic (Ising-like)
and macroscopic (thermodynamic) parameters are ob-
tained as follows [8]:

D ¼ ðDtrH þ DBW � GBWÞ=NAzDtrH=NA (14)

r ¼ expðDtrS=RÞ (15)

J ¼ GBW=ð2NAÞ (16)

The characteristic temperature derived from Eq. 6 re-
sults in the form

T1=2 ¼ DtrH þ DBW � GBW

DtrS
z
DtrH
DtrS

(17)

and the condition for the presence of hysteresis is given by

DtrH
DtrS

<
GBW

2NA
(18)

3. Extensions of the basic model

One of the most popular improvements was motivated
by analysis of the nature of the degeneracy ratio. It was
shown that besides the simple ratio of spin multiplicity of
HS and LS states (i.e., value of 3 for Fe(III) SCO systems and 6
for Fe(II) SCO systems), the inclusion of vibrational degree
of freedom of SCO states is necessary to approach for the
much higher experimental values [15]. For this sake,
Bousseksou et al. considered the vibrations of the coordi-
nation environment and approximated them as indepen-
dent harmonic oscillators. The form of Ising-like model is
still preserved; however, novel effective quantities replace
the original ones, namely [16]

reff ¼
�
gel
HS

gel
LS

� Y3n�6

i¼1

1� exp �½ bhnLS;i�
1� exp �bhnHS;i�½ (19)

and

Deff ¼ Dþ �
ε
vib
HS � ε

vib
LS

�
(20)

where n is the number of atoms in the relevant coordi-
nation environment (i.e., n ¼ 6 for octahedron), ni are the
frequencies of the normal vibrationmodes and ε

vib are the
zero-point energies of the oscillators. If a mean frequency
for each SCO state is introduced then the effective de-
generacy ratio turns to

reff ¼
�
gel
HS

gel
LS

��
1� exp �½ bhnLS�
1� exp �½ bhnHS�

�3n�6

(21)

and if temperature is high enough (or, equivalently, if all
vibration modes are considered equally populated) it
collapses to

lim
T/∞

reff ¼
�
gel
HS

gel
LS

��
nLS
nHS

�3n�6

(22)

These adjustments provide elegant explanation for
experimental values of transition entropy (related to
parameter r) and allow coping with description of more
gradual spin transitions than it was allowed by the original
Ising-like model. Using this model the transition temper-
ature has to be calculated iteratively

T1=2 ¼ Deff

kB ln reff
�
T1=2

� (23)

The hysteretic features of the Ising-like model can be
improved by introduction of the distribution model as pro-
posed by Bo�ca and co-workers [7,17]. A large set of equi-
distant values of cooperativity parameter J1, J2, …, Jp is
introduced and a weight factor is assigned to each of them.
If the normal distribution is chosen theweight factor can be
defined as

wi ¼ 1
d

ffiffiffiffiffiffiffi
2p

p exp �
h �

Ji � J
�2.

2d2
i

(24)

with mean value J and a newly introduced parameter, the
distribution variance d. Corresponding set of average Ising
spin values is obtained by using the implicit equation of
the basic Ising-like model as discussed above, i.e.,

〈s〉i ¼ �tanh½bðD=2� Ji〈s〉iÞ � ðln rÞ=2� (25)

and the overall average Ising spin is constructed with
respect to the chosen distribution

〈s〉 ¼
Pp

i¼1wi〈s〉iPp
i¼1wi

(26)
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Ideally, a fine grid shall be used (p / ∞) to avoid
possible unphysical features of the model. In comparison
with the basic Ising-like model, the parameter of cooper-
ativity J is replaced here by the mean cooperativity J and
one extra parameter (the distribution variance) appears.
Obviously, for a very small value of variance the distribution
model collapses to the original Ising-like model. Introduc-
tion of presented distributionmanifests itself in the angling
of the walls of the hysteresis loopdan experimentally
observed feature that cannot be achieved within the
genuine Ising-like model. Moreover, the wider the distri-
bution variance, the stronger is the tendency to form
incomplete transition (Fig. 2). The formula for transition
temperature preserves the form given by Eq. 6 within this
model.

The flexibility of the curve of transition can be signifi-
cantly improved using the disorder model that was intro-
duced by Chernyshov et al. [18]. A coupling of the SCO
switching with a structural disorder (e.g., due to a lattice
solvent) is supposed, leading to Hamiltonian in the form

bHi ¼ D
2
bs i � J

X
jsi

bs i$bsj þ D
2
bsi � K

X
jsi

bsi$bsj � I
X
jsi

bsi$bsj (27)

where ŝ denotes the Ising spin associated with the disor-
dered positions of a solvent. In its most complete form
three novel parameters are introduced: D, K and I. The first
two are counterparts of the Ising-like parameters D and J
and the last one grasps the possible coupling of the Ising
spins related to SCO and disorder. Within the MFA a
Fig. 2. The effect of distribution of cooperativity on the SCO transition. The param
variance equals to 10�5 (top left), 10�2 (top right), 0.1 (bottom left) and 1.0 (bottom
system of two coupled implicit equations has to be solved
iteratively:

〈s〉 ¼ �tanh½bðD=2� J〈s〉� I〈s〉Þ � ðln rÞ=2� (28)

〈s〉 ¼ �tanh½bðD=2� K〈s〉� I〈s〉Þ� (29)

The transition temperature cannot be given explicitly;
instead following implicit relation has to be obeyed [18]

T1=2 ¼
D� 2I〈s

�
T1=2

�
〉

kB ln r
(30)

The typical transition curves provided by this approach
initially increase gradually and towards their completion
ascend abruptly. The hysteresis loop tends to be centred
above the transition temperature (Fig. 3).

The Ising-like model was also extended to encounter
experimentally observed bi-step SCO transitions by Bous-
seksou and co-workers [19,20]. In order to achieve this, the
model of two penetrating sublattices, A and B, with intra-
lattice and interlattice cooperative coupling was postu-
lated. Because bi-step transitions are often (but not
necessarily) observed in binuclear systems, an intra-
molecular cooperativity can be introduced on top of the
previous parameters. The complete Hamiltonian for the bi-
step model within the MFA adopts the form

bH ¼ D
2
ðbsA þ bsBÞ þ J1ðbsA〈bsA〉þ bsB〈bsB〉Þ þ J2ðbsA〈bsB〉

þ bsB〈bsA〉Þ þ JABðbsA$bsBÞ (31)
eters were set as D ¼ 2144 K, J ¼ 452 K and r ¼ 205, and the distribution
right). Adapted from Ref. [17].
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where J1 is the cooperativity parameter acting between
equivalent sites, J2 the same between non-equivalent sites
and JAB quantifies the intramolecular cooperativity. To
simplify its solution the symmetrically adapted quantities
can be introduced as

m ¼ 〈sA〉þ 〈sB〉
n ¼ 〈sA〉� 〈sB〉

(32)
〈s〉 ¼ r2 exp �½ bðDþ 4J〈s〉Þ� � exp½bðDþ 4J〈s〉Þ�
r2 exp �½ bðDþ 4J〈s〉Þ� þ exp½bðDþ 4J〈s〉Þ� þ 2r exp½2bJAB� (36)
and symmetrically adapted parameters as

Jþ ¼ J1 þ J2
J� ¼ J1 � J2

(33)

The quantity m is proportional to the overall spin state
value, whereas n indicates the breaking of symmetry in
the SCO state between the sublattices. The system of two
coupled implicit equations finally results

m ¼ 2r2 exp �½ bðDþ JþmÞ� � 2 exp½bðDþ JþmÞ�
D

n ¼ �4r sinh½bJ�n� exp½2bJAB�
D

(34)

with the denominator

D ¼ r2 exp �½ bðDþ JþmÞ� þ exp½bðDþ JþmÞ�
þ 2r exp½2bJAB� cosh½bJ�n� (35)

The model provides rich family of transition curves,
with or without two steps and with the hysteresis loop
present in the lower step or in both steps. For the case of
symmetric binuclear systems a simplified version of the
model is suitable where the two cooperativity parameters
Fig. 3. The effect of lattice solvent disorder coupled with SCO transition. The
SCO parameters were set as D ¼ 400 K, J ¼ 20 K and r ¼ 400, and the dis-
order parameters were set as D ¼ 350 K, K ¼ 0 K and I ¼ 370 K. Adapted from
Ref. [18].
J1 and J2 are considered equal (if, furthermore, JAB is omitted
it collapses to the Ising-like model). Such an intervention
excludes the presence of symmetry breakings (n ¼ 0).
Nevertheless, the ability to model the bi-step SCO transi-
tions is preserved. The cost is only one extra parameter
compared to the original Ising-like model [21]. The implicit
equation for the mean Ising spin is then
For this simplified version of a bi-step model for binu-
clear systems the transition temperature obeys again for-
mula 6. However, the SCO state of a binuclear system is not
uniquely characterized by T1/2 because it is not necessarily
formed by molecules in the intermediate molecular SCO
state, i.e., LSeHS or HSeLS; some LSeLS and HSeHS pairs
can occur at the transition temperature, as well. The
maximum concentration of the intermediate state mole-
cules can be used to define second characteristic tempera-
ture THL, which is within the simplified model given by [21]

THL ¼ D

kB ln r þ kB ln
ffiffiffiffiffiffiffiffiffiffiffi
Dþ4JAB
D�4JAB

q (37)

Apparently, THL is equal to T1/2 only if the intramolecular
cooperativity is absent. The simplified bi-step model was
also developed to cope with the possible presence of
magnetic exchange interaction between the SCO centres in
the HSeHS state [21]. Such an effect leads, in general, to
smearing of the bi-step shape of the transition curve.

As alreadymentioned, the exact solution of Hamiltonian
given by Eq. 2 for a special case with SCO particles arranged
into chain can be derived exactly resulting in formula [9]

〈s〉 ¼ sinh½bðD=2Þ � ðln rÞ=2�
ðsinh2½bðD=2Þ � ðln rÞ=2� þ exp �4bJ�Þ1=2

h (38)

Unlike the approximate solution given by Eq. 5, which
does not take into account the geometry of the system, this
exact solution predicts correctly that hysteresis cannot
occur in a 1D cooperative system if the short-range inter-
action alone is present. Taking into account that by the SCO
event the elastic strains can spread across the crystal
inducing thus a long-range cooperative interaction, Linares
et al. introduced an extra mean-field cooperative interac-
tion to the basic model. The Hamiltonian of such a long-
range Ising-like model possesses the form [9]

bH ¼ D
2

X
i

bsi � J
X
ij

bsibsj � G
X
i

bsi〈bs〉 (39)

where G is the parameter of the long-range cooperative
interaction. Indeed, if solved within MFA, there is not any
novelty brought to the basic Ising-like model (except that J
is recast as Jþ G). The advantage is, however, that inclusion
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of the last term enriches the flexibility of the originalmodel
when preserving correct limiting behaviour. For instance, if
long-range cooperativity is included into the exact solution
of the Ising-likemodel for the 1D system, resulting implicit
formula is alreadyable to describe hysteretic behaviour and
collapses to correct form for G / 0 [9]

〈s〉 ¼ sinh½bðD=2Þ � ðln rÞ=2�
ðsinh2½bðD=2� G〈s〉Þ � ðln rÞ=2� þ exp �4bJ�Þ1=2

h
(40)

The incidence of physical stimuli during the
temperature-induced SCO affects the thermal transition
curve. It can be easily shown that if ðpiE=kBTÞ≪1, with pi
being the electric dipole moment of a molecule in the
respective SCO state and E the applied electric field, holds
true, then the shift in the equilibrium temperature within
limits of the basic Ising-like model is [22]

DT1=2z

�
p2
HS � p2

LS

�
E2

2kBD
(41)

Because usually pHS > pLS the electric field stabilizes the
LS state and shifts the transition temperature to higher
values. For a shift of 1 K the electric field of approximately
13 kV cm�1 is necessary [23]. Similarly, if ðcB=m0kBTÞ≪1 is
fulfilled, a simple estimation of the effect of magnetic field
upon the SCO can be derived as [24]

DT1=2z� ðcHS � cLSÞB2

2m0kB ln r
(42)

In contrast to the electric field, the HS state is favoured
by the magnetic field as cHS > cLS. The decrease in transi-
tion temperature by 1 K is induced by magnetic field in-
duction of approximately 22 T.

For the effect of pressure a simple macroscopic formula
applies [10]

DT1=2z
pDtrV
DtrS

(43)

where DtrV stands for the difference in volume for the HS
and LS phase. By insertion of typical values of the quanti-
ties, the formula predicts a shift by 1 K when the system is
compressed by approximately 400 MPa.

Finally, let us emphasize that a rich class of vibronic
models [25] and mechanoelastic simulations [2,26] were
omitted in this article. Nevertheless, the interested reader
should be able to get alongwith the basic principles and the
vocabulary surveyed herein when studying a majority of
the modern works on the SCO modelling.
4. Recent developments

Recent interest in SCO is mostly focused on the study of
lithographic systems and nanoparticles [2,3]. Unlike the
〈s〉 ¼ 3
4
� 1
4
ðcosh½bðD=2� 2JÞ � ðln rÞ=2� þ exp �½ 2bJ�Þ sinh½bðD=
ðcosh½bðD=2� 2JÞ � ðln rÞ=2� þ exp ½�2bJ�Þ2�2 exp
older models, which did not account for the size of studied
systems, the behaviour of definite-sized SCO lattices ap-
pears to be dependent upon their precise dimension and
shape [27]. Consequently, besides the Hamiltonian the
lattice and boundary conditions also have to be specified.
Usually the MFA is no more a satisfactory tool for their
investigation and some more sophisticated techniques are
to be adopted. Most popular ones are Monte-Carlo
Metropolis (MCM) and Monte-Carlo Entropic Sampling
(MCES). In simpler words, the MCM simulates the
behaviour of interacting centres by random switching of
their states. If the energy of new configuration is lower
than the previous one, it is accepted, if it is higher, the rate
of acceptance is given by the Boltzmann factor of the en-
ergy difference. By inspecting all sites of a system and
repeating the step many times, the equilibrium value of
any quantity can be calculated. This method was adapted
for the SCO by Linares et al. who studied the basic Ising-
like model [28] and the bi-step Ising-like model [29] for
cubic lattices. Similarly to MCM, the nature of MCES lies in
Monte-Carlo inspection of possible configurations; their
occurrence is however biased, so that even the less
probable configurations are accounted for. In this way, the
degeneracy of each energy state is measured, and the
partition function can be easily constructed from
weighted Boltzmann factors. Having partition function
determined, any desired quantity can be calculated. The
MCES was adapted for needs of study of SCO phenomena
by Shteto et al. [30] and Linares et al. [31] who researched
the basic Ising-like Hamiltonian for 1D and 2D lattices.
Besides the traditional transition curve, the methods
based on the statistical physics can provide also the
spatiotemporal picture of the transition, allowing thus the
study of SCO phase nucleation and growth processes [2].
Discussion on such effects exceeds, however, the scope of
the present work and interested reader is referred to
specialized reviews in this journal.

Although the SCO behaviour upon reduction in size of
the system is somehow inconclusive, the most often re-
ported is the incompleteness of transition, the shifting
down of transition temperature and narrowing or disap-
pearance of hysteresis, which sometimes reappears at an
ultrasmall scale [32]. Justified by the lower elastic strain
felt by the surface sites, Muraoka et al. [33] fixed the
permanent HS state for all peripheral SCO centres of an
l � l square lattice and studied the basic Hamiltonian 2
(Fig. 4). For the simplest non-trivial sizes of this fixed-
edge Ising-like model, the exact formula for Ising spin can
be derived, namely, for l¼ 3 (i.e., one SCO active site) there
holds true

〈s〉 ¼ 8
9
� 1
9
tanh½bðD=2� 4JÞ � ðln rÞ=2� (44)

and for l ¼ 4 (i.e., four SCO active sites) there results
2� 2JÞ � ðln rÞ=2�
½�2bJ� sinh2½2bJ�

(45)



Fig. 4. Square lattice with l ¼ 6 illustrating the fixed-edge model. The blue edge centres are fixed in the HS state, whereas the central sites can acquire both, HS
(black) or LS state (white, left picture). Calculated thermal dependence of the HS fraction for different sizes of the lattice; from left to right l ¼ 4, 7, 10, 40, 200
(right picture). Adapted from Ref. [33].
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The transition temperature is site-dependent and differs
for centres neighbouring with two, one or none edge

centre. In the first approach, the overall transition tem-
perature can be derived as weighted average of the
mentioned three values of T1/2, resulting then in the
following relationship:

T1=2 ¼ D
kB ln r

� 8J
kB ln r

1
l� 2

(46)

The model offers a consistent prediction of the shift in
the transition temperature to lower values for decreasing
the nanoparticle size (Fig. 4). For large systems (l/∞), Eq.
46 collapses to Eq. 6. The bigger lattices (l > 3) were studied
using the MCM technique and showed that the main fea-
tures of the experimental behaviour of SCO nanoparticles
can be qualitatively reconstructed. As a less expected
consequence of the model, a non-monotonous dependence
of the width of the hysteresis loop upon the particle size
was found.

Rather than imposing a particular SCO state, Enachescu
and coworkers, Linares and coworkers and Boukheddaden
and coworkers modelled in series of very recent works the
effect of the surface by appending a matrix interaction term
to the long-range Ising-like model for 1D [34], 2D [35e37]
and 3D lattices [38e41]. The Hamiltonianwas postulated as
follows:

bH ¼ D
2

X
i

bsi � J
X
ij

bsibsj � G
X
i

bsi〈bs〉� L
X
k

bsk (47)

where L is the parameter of matrix interaction (the index k
runs only over the surface centres). One can immediately
see that thematrix interactionmodel collapses to the fixed-
edge model when L diverges. Unlike the previous one, this
model is too complicated to provide analytical solutions
even for the smallest square lattices; this was studied by
MCM and MCES methods. The model provides enormous
varieties of multistep transitions with or without hysteresis
loops [35]. Using similar arguments like those from the
fixed-edge model the transition temperature can be esti-
mated as [37]

T1=2 ¼ D
kB ln r

� 8L
kB ln r

l� 1
l2

(48)

This formula is equivalent to Eq. 46 when near-edge
cooperativity L is set equal to the bulk cooperativity J and
l includes edge sites. Choosing appropriate parameter
values and MCES technique, it was demonstrated that in
contrast to the long-range Ising-like model the matrix
interaction model predicts appearance of hysteresis by
decrease in the system size [36] (Fig. 5). This model was
further studied for the case of ensemble of nanoparticles
with distributed size [38e40].

Basic features of SCO in spherical nanoparticles can also
be described with the non-extensive thermodynamic core
eshell model within BW approximation. F�elix et al.[42]
defined the Gibbs energy of a nanoparticle as

G ¼ xGHS þ ð1� xÞGLS � T
�
DSbmix þ DSsmix

�
þ S0ðxssHS

þ ð1� xsÞsLSÞ þ Gxð1� xÞ
(49)

where superscripts s and b distinguish between surface
and bulk quantities, respectively; S0 stands for the unit-
cell molar surface of the nanoparticle and sHS and sLS
are the respective surface energies. It is convenient to also
define the fractions of molecules on the surface and in the
bulk, denoted as cs and cb, respectively. The overall HS
fraction is then

x ¼ cbxb þ csxs (50)

In this model, different interaction constants, GHS and
GLS, are considered for individual SCO states, which are
related to the average parameter through

G ¼ GLSð1� xÞ þ GHSx (51)



Fig. 5. SCO in square nanoparticles of various sizes simulated by the long-range Ising-like model (left) and the matrix interaction Ising-like model (right). The
common parameter values were set as D ¼ 840 K, J ¼ 10 K, G ¼ 115 K and r ¼ 992; for the latter L ¼ 120 K. Adapted from Ref. [36].

Fig. 6. The effect of size of the spherical nanoparticle simulated by the non-
extensive thermodynamic coreeshell model where the SCO parameters
were set as DH ¼ 18 kJ mol�1, DS ¼ 61 J K�1 mol�1 and
(sHS � sLS) ¼ �0.1 J m�2. For the 4 nm nanoparticle parameters were set as
KLS ¼ 40 GPa and KHS ¼ 38 GPa; for the other sizes it applies KLS ¼ 24 GPa
and KHS ¼ 18 GPa. Adapted from Ref. [42].

Fig. 7. The size effect for the cubic SCO nanoparticle simulated by the LMFA
Ising-like model. The parameters were set as D ¼ 1220 K, J ¼ 60 K and r ¼ 63
for the core sites when r ¼ 6568 for the surface sites. Adapted from Ref. [44].
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Implying the concurrent condition of minimal Gibbs
energy for surface and bulk, the following system of two
coupled implicit equations results

xb ¼ 1

1þ exp
h
DtrHþGþðGHS�GLSÞxð1�xÞ�2Gcbxb�2Gcsxs

RT � DtrS
R

i (52)

xs ¼ 1

1þexp
h
DtrHþGþðGHS�GLSÞxð1�xÞ�2Gcbxb�2GcsxsþDðsHS�sLSÞS0

RT � DtrS
R

i
(53)

A huge advantage of this approach is that the thermo-
dynamic parameters are in principle measurable and often
known. For example, the interaction terms are directly
proportional to the bulkmodulus of the material within the
limits of BW approximation [43]. As apparent from Fig. 6,
the total HS fraction evolves in qualitative accordance with
expectation by decrease in the size. As shown by
M€ossbauer spectroscopy [42], the bulk modulus for
ultrasmall nanoparticles is higher than that for the
macroscopic systems. If this fact is taken into account, the
reappearance of the hysteresis loop is predicted for nano-
particles. The transition temperature is derived as

T1=2 ¼ DtrH
DtrS

� G

DtrS
cs (54)

Again the transition temperature shifts down with in-
crease in the fraction of particles forming the surface, i.e.,
by decrease in the radius of the sphere. For macroscopic
systems it converges to Eq. 17 (Fig. 6).

Mikolasek et al. [44] solved Hamiltonian 2 in the local
mean-field approximation (LMFA). The key idea behind this
technique is averaging of Ising spins of only those centres
that directly neighbour to interrogated centre, rather than
averaging over the entire system. The solution of Hamil-
tonian 2 leads to following coupled system of implicit
equations:

〈si〉 ¼ �tanh½bðD=2� JMiÞ � ðln rÞ=2� (55)

where 〈si〉 is the thermodynamic average of Ising spin of
ith site and the quantityMi is the local mean field at this site
defined as



J. Pavlik, J. Linares / C. R. Chimie 21 (2018) 1170e11781178
Mi ¼ 1
qi

Xqi
j

〈sj〉 (56)

where j runs over the qi neighbours of site i. To mimic a
cubic system with primitive packing of molecules, qi was
set equal to 6 in the core, whereas at the surface, edges and
corners, it was set equal to 5, 4 and 3, respectively.
Furthermore, for the surface sites the degeneracy ratio was
enhanced. The LMFA Ising-like model predicts decrease in
transition temperature and hysteresis width with decrease
in the size of the cube, eventually turning to smooth
incomplete transition when the level of nanoparticles is
reached (Fig. 7).

5. Conclusions

Various models on the temperature-induced SCO tran-
sitions have been reviewed with the focus on simplicity. It
has been shown that the phenomena like hysteresis and bi-
step transitions can be in the simplest cases satisfactorily
modelled with three empirical parameters. In the more
elaborated models the effect of vibrations, effect of crystal
solvents, multistep transition or size extensiveness are
included extending thus significantly the range of their
applicability. The basic features of temperature-induced
SCO in nanoparticles are successfully grasped within the
frame founded by the Ising-like model and its derivatives.

To sum up, the Ising-like model and its derivatives form
a very handy working tool for exploration of SCO-related
phenomena and even sophisticated interpretations of
macroscopic SCO behaviours keep the vocabulary intro-
duced by them.
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