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An effective, regioselective, and novel strategy to the access of 2,4,6-trisubstituted pyrido
[2,3-d]pyrimidines is developed from the corresponding 2,4,6-trihalogenopyrido[2,3-d]
pyrimidine through a SuzukieMiyaura coupling reaction involving a novel regioselective
halogen discrimination.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
1. Introduction

The evolution and continuous discovery of the Pd-
catalyzed cross-coupling reactions [1] greatly helped to
form and synthesize highly arylated heterocycles. As a
result, heterocyclic scaffolds with various functions, which
can be alternated into a variety of functionalized hetero-
cycles by using regioselective and efficient reactions, have
become more attractive [2].

In the search for novel biocompatible heterocycles with
nitrogens, pyridopyrimidine appears to be a very important
molecule. Inclusion of this heterocycle in more complex
structures has guided to a diverse interval of molecules that
can be useful as antibacterial [3], antifolate [4], anti-
inflammatory [5], antiviral [6], antimicrobial [7] and anti-
cancer agents [8]; antihypertensives [9]; antileishmanials
[10]; anticonvulsants [11]; potassium diuretics and pre-
servatives [12]; antiaggressives [13]; and tyrosine kinase
, gerald.guillaumet@
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[14] and antitumor derivatives [15] with selective proapo-
ptotic activity [16]. This shows the interest of chemists in
developing versatile methods for obtaining and function-
alizing this heterocycle [17].

Because of our experience with these heterocycles [18],
we decided to use this methodology to access the trisub-
stituted pyrido[2,3-d]pyrimidines at positions C2, C4, and
C6 in the isomeric position by SuzukieMiyaura coupling
reactions (Scheme 1). Herein, we report the preparation of
new trihalogen derivatives 6 and 7 and both regiose-
lectivity functionalized by two different classes of
reactions.
2. Results and discussion

The trichlorination of heterocycles has been observed
with pyrido[3,2-d]pyrimidine [19] and quinazoline [20,21];
however, to our knowledge, the direct trichlorination in a
single step of pyrido[2,3-d]pyrimidine has not yet been
described. We, therefore, performed a halogenation of
nicotinic acid before obtaining the final trihalogenated in-
termediate by cyclization and chlorination.
ll rights reserved.
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The halogenation of 2-aminonicotinic acid is now well
known [22]. It involves the reaction of chlorine or bromine
with 2-aminonicotinic acid in acetic acid medium (Scheme
2) [23].

The cyclization and chlorination of the halogenated 2-
aminonicotinic acid has been previously described by re-
action with urea for cyclization and POCl3 for chlorination
[18c].

Products 2 and 3 were heated to 280 �C in the presence
of urea to yield compounds 4 and 5 with good yields [24].
Chlorination at positions C2 and C4 was then performed
using phosphorus oxychloride and a few drops of DMF at
reflux to give intermediates 6 and 7 in good yields (Scheme
3) [25].
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Scheme 4. Trihalogenated pyridopyrim
Compounds 6 and 7 were first engaged in a Suzuki
coupling reaction [26]. Then, we carried out a regioselective
arylation at C4, by reacting the dichloride compound 6with
1 equiv of p-methoxyphenylboronic acid using 5 mol % of
Pd(PPh3)4, potassium carbonate, and toluene as solvent
under reflux (Scheme 4). After completion of the reaction,
the monoarylated derivative 8was obtained in a good yield
(83%) (Table 1, entry 1).

For compound 7, a mixture of monoarylated 9 and
biarylated 10 was obtained in a relatively low global yield
(43%) (Table 1, entry 2). Therefore, we chose to treat com-
pound 7 with 2 equiv of boronic acid to produce the dia-
rylated products (Table 1, entries 3e5) [27]. The heteroaryl
(Het)Ar1 was introduced and the diarylated products were
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Table 1
Reactivity of halogenated products 6 and 7 with different boronic acids.

Entry X Ar1 Amount of
boronic acid
(equiv)

Substitution (yields, time)a

At position
C4

At positions
C4 and C6

1 Cl 1 8 (83%, 3 h) e

2 Br 1 9 (7%, 3 h) 10 (36%, 3 h)
3 Br 2 e 10 (76%, 3 h)
4 Br 2 e 11 (71%, 3 h)

5 Br 2 e 12 (75%, 3 h)

a Yield of isolated product. Reaction conditions: Ar1B(OH)2, K2CO3 (1.5
equiv), Pd(PPh3)4 (5 mol %), toluene, 110 �C.
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Table 2
Heteroarylation of compounds 13e15.

Entry (Het)Ar1 (Het)Ar2 Products Yielda (time)

1 13 71% (3 h)

2 14 67% (2 h)

3 15 72% (2 h)

a Yield of pure product. Conditions of reaction: Ar2B(OH)2 (1.05 equiv),
Na2CO3 (2 equiv), Pd(PPh3)4 (5 mol %), toluene/ethanol, 110 �C.
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successfully obtained after purification on silica gel using
column chromatography. Compounds 10e12 were ob-
tained after 3 h in good yields (71e76%) (Table 1).

Chlorine at position C2 of compounds 10e12 was then
engaged in a Suzuki coupling and the last (Het)aryl was
introduced in the presence of a second boronic acid
(Scheme 5, Table 2) [28].

The expected products 13, 14, and 15 were obtained
after purification on silica gel using column chromatog-
raphy in good yields of 71%, 67%, and 72%, respectively
(Table 2).

We then engaged compound 8 in a second hetero-
arylation at the position C2 without any influence on the
chlorine atom at position C6. For this second arylation we
used ethanol as cosolvent and sodium carbonate as base to
achieve the best yield (Scheme 6) [29]. The 3-
thienylboronic acid reacted with compound 8 after 2 h to
obtain the di(arylated) compound 16 in good yield of 83%.
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We then engaged the compound 16 in a third arylation
at the C6 position. The best result was obtained in the
presence of sodium carbonate and ethanol as cosolvent
(Scheme 7) [29].

The diarylated compound 16 reacted in the presence of
3-furylboronic acid to afford the tri(arylated) compound 17
in only a few hours with good yield of 83%.

Usually the Pd-catalyzed site selective arylation re-
actions occur first at the more electron-deficient site. The
selectivity of the site can be clarified by the fact that posi-
tion C2 of 2,4,6-trihalogenopyrido[2,3-d]pyrimidine is less
electron deficient than position C4, and position C6 is less
electron deficient than position C2 (Fig. 1) [21,30].

Based on the studies performed by Handy and Zhang
[31], we can justify the order and site of the cross-coupling
reaction using the 1H NMR chemical shift values of the
parent nonhalogenated heterocyclic compound. Indeed, we
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found that Suzuki coupling reactions were performed
successfully in the order C4, C2, and finally C6 (Fig. 2),
which means that the carbon with the most deshielded
proton is the most reactive carbon.

In this article, we have developed the first access to 2,4-
dichloro-6-halogeno-pyrido[2,3-d]pyrimidine and its use
to prepare two series of substituted pyridopyrimidine using
an efficient and novel strategy.

Next, we reported an efficient and simple cross-
coupling method for highly trisubstituted-pyrido[2,3-d]
pyrimidines, which can help in the orchestration of regio-
selective palladium-catalyzed cross-coupling reactions for
the synthesis of focused libraries of biologically active
scaffold.
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