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The antiferromagnetic Heisenberg spin chain with integer spin has a short-range magnetic
order and an excitation energy gap above the ground state. This so-called Haldane gap is
proportional to the exchange coupling constant J of the Heisenberg chain. In this study, we
discuss recent results about the spin dependence of the Haldane gap and conjecture an
analytical formula valid asymptotically for large spin values. We then discuss the robust-
ness of the edge states of the spin-1 chain by studying a spin-1 ladder using the density
matrix renormalization group (DMRG) algorithm. We show that the peculiar hidden to-
pological order of the spin-1 chain disappears smoothly by increasing the ladder rung
coupling without any intervening phase transition. This is evidence for the fragile char-
acter of the topological order of the spin-1 chain.

Statistical mechanics
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1. The nonlinear ¢ model and the Haldane gap

It is well understood that the origin of exchange in-
teractions between magnetic ions in an insulator is essen-
tially of quantum mechanical nature. Indeed, it involves
electron delocalization and the Pauli principle as needed
for fermionic elementary constituents of matter. However,
the description of magnetic properties of solids at the
mesoscopic or macroscopic scale very often does not
involve a fundamental way quantum mechanics. In case of
ferromagnetic or antiferromagnetic chains, one can use
coarse-grained magnetization vectors to describe ordered
states that are perfectly classical quantities. Also excited
states above ordered ground states like magnons admit a
classical description, which has a wide range of applica-
bility. This classical line of thought has been applied for a
long time also in the realm of one-dimensional quantum
spin systems with some success in the case of systems with
rather large spin values. Therefore, it came as a surprise
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when Haldane [1-3] in the beginning of the 1980s made
the bold claim that integer-spin antiferromagnetic chains
have a gap to all excitations at odds with previous magnon-
based reasonings. The picture that emerges is that integer-
spin chains have only a short-range magnetic order even at
zero temperature with spin—spin correlations decaying
exponentially with a characteristic length, and there is a
gap to all excitations. On the contrary, half-integer-spin
chains have antiferromagnetic order with no character-
istic scale albeit decaying as a power law and no gap to
excited states. Interestingly, the first Haldane gap spin
chain NENP [4] was synthesized roughly at the same time
as Haldane's conjecture appeared. Since its synthesis, NENP
has been an extremely good platform [5—7] to investigate
Haldane gap physics. Quantitative comparisons between
theory and experiments have been successful [8—10].
Detailed investigations have confirmed the existence of the
Haldane gap close to 0.41], where J is the nearest-neighbor
antiferromagnetic exchange of the isotropic Heisenberg
chain [11-13].

The Haldane conjecture was originally based on the
derivation of an effective quantum field theory using an
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expansion of fluctuation about local antiferromagnetic
order of a spin-S chain. This derivation has been the subject
of much theoretical work and is now available in stream-
lined form in textbooks [14]. In this section, we propose a
quick presentation of the main arguments and proceed to
discuss the dependence of the Haldane gap on the spin
magnitude S, as there are now several numerical studies
[15] extending up to S = 4.

The starting point is the imaginary time representation
of the partition function in terms of spin coherent states:

B
S /f/ﬁ exp{isy w(] - / £Y 00 (1)
. i J 0 i

The spin operators S;** are written in terms of the
spin coherent states S}~ —»SQ , where the quantities Q;
are classical commutmg vect01s of unit norm and S is the
spin magnitude. In fact, the Haldane mapping is an
asymptotic expansion valid for large S and its quantitative
use for S =1 is not guaranteed. Numerical direct studies
down to S=1 have confirmed its applicability even in
this case. The first term ;0 [ ;] in the exponential is the
Berry phase contribution, which is a nontrivial function of
the imaginary time evolution of the coherent state. This
term is in fact responsible for the difference between
integer- and half-integer-spin chains. It is irrelevant to the
bulk physics of the integer-spin chain case and it is a
fortunate circumstance that provided this contribution
can be dropped then the field theoretical analysis of the
effective model we will derive is in fact well known. From
the point of view of the effective long-distance low-en-
ergy field theory, the spin—1/2 spin chain is much difficult
to understand even if this is the only case where exact
results are known for the eigenstates by the Bethe solu-
tion. Because we are discussing only the Haldane gap, we
will drop the Berry phase from now on (in the case of
integer spin the Berry phase term is responsible for the
appearance of edge spins S = 1/2, which is discussed in
Section 2). We now proceed to construct an effective
model valid for long distance and low energies. This re-
quires the identification of the modes that are pertinent
in this limit. We assume that these are antiferromagnetic
as well as ferromagnetic fluctuations as observed in all
approximation schemes used to study spin-chain physics.
We write the spin coherent states as

Q= ()i [1-12 /5 L 2)

wheren; is a unit vector and L; is a vector perpendicular to

n;. This way of writing the spin coherent state leads

naturally to a 1 /S expansion. The nearest-neighbor Hei-

senberg coupling is expanded as follows:

~ o~ 1. .
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The Berry phase contribution in the path integral leads

to a coupling between the L vector and the imaginary time

derivative of the order parameter field 7;:
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where the susceptibility is given by y,' = 4Jcos?(qa/2),
with a being the distance between spins. Progress can be
made if we take the long wavelength limit g— 0 in the
susceptibility ! —4J=y,. Then, we can integrate the
ferromagnetic fluctuation vector L and obtain a simple
quadratic action:

7= / gn exp{ - %/:dﬂc/dx {Xo(arﬁ)z +ﬂs(axﬁ)z] }
(5)

where we have introduced a stiffness p, = JS?a. Now
Euclidean time and space are on an equal footing, pro-
vided we rescale by the velocity ¢ = /p,/y, At zero
temperature, f— oo; this field theory is in fact the well-
known nonlinear ¢ model (NLoM). It was introduced to
describe critical properties of classical Heisenberg ferro-
magnets at nonzero temperatures. Here, we observe the
consequence of the mapping of a 1+ 1 dimensional
quantum system onto a classical two-dimensional system.
In this new language, there is a very basic fact that there is
no order at any nonzero temperature for classical Hei-
senberg spins. In physical terms, spinwaves disorder the
system beyond a finite correlation length £ and spin cor-
relations decay exponentially with distance. We thus infer
immediately that the space correlations of the n vector
field decay exponentially. In addition, as we have com-
plete equivalence between space and (Euclidean) time,
the time correlations also decay exponentially:

(1(0,%)71(7,x)) = exp( — (c1)E ") (6)

It is a classic result in Euclidean quantum mechanics
that the imaginary-time decay of correlations is governed
by the energy gap of the system. Thus, we conclude from
Eq. 6 that the spin chain has a gap A = ¢t~ If we rewrite
the effective action in terms of the conventional NLcM, we
find the action as follows:

1 ~
Friam = 3¢ / dr dx (8,71)? 7)
with the coupling constant g = ¢/p, = 2/S. Renormaliza-

tion group calculations have shown that the correlation
length of this model has a known dependence upon g:

21
E= C? exp(—2m/g)(1 + 0(g)) (8)
where C is a pure number. Because we know the spin

dependence of the velocity ¢ = 2JSa, we deduce that the
gap depends upon the spin value as

As /] = CoS? exp(~7S)(1+ 0(1/S)) (9)
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with a prefactorCy, which is a pure number independent of
the spin. This formula should be understood as being
asymptotic, that is, valid when S— co. The case S = 2 has
been studied experimentally [16] and theoretically [17].
More recent theoretical estimates are available for S = 3
[18] and even for S = 4.10 cm [15].

The pure number in factor of the ¢ model formula for ¢ is
known and is C = e/8 for a specific choice of the renorm-
alization procedure. The renormalization procedure corre-
sponding to the quantum lattice model cannot be easily
related to the standard ways of renormalizing the ¢ model.
Because we are not yet able to make this correspondence
precise, we choose to make an extrapolation from known
values of the Haldane gap up to S =4 (see Table 1). The
Shanks extrapolation for three numbers a,b,c is simply
calculated by the ratio (ac — b?) /(a + ¢ — 2b) and is given in
the last column of Table 1. After some trial and error, we are
led to propose that the limiting value is 2exp(2) =
14.778... close to 14.525. We thus conclude this section by
conjecturing the asymptotic formula for the Haldane gap

As /] =252 exp(2 — mS)(1 + 0(1/S)) (10)

It remains to be confirmed whether methods like those
of ref. [19] can relate the renormalization schemes and
confirm this prefactor.

2. Edge states of a Haldane ladder

Another important feature of the spin-1 chain is the
existence of a hidden magnetic order, which is long range.
We have already commented on the fact that ordinary spin
correlations decay exponentially with a finite correlation
length. However, there is nevertheless a hidden order in the
system. The nearest-neighbor Heisenberg S = 1 spin chain is
not a solvable system, and hence one has to use numerical
methods to study its quantitative properties. However, it is
possible to perturb the Hamiltonian and obtain a new
model [20] called AKLT whose ground state wavefunction
can be found by elementary means, although it is still not
solvable. The trick is to add a biquadratic spin coupling:

1
T aar =Y _Si-Siu +§(Si'5i+1)2~ (11)
i

Table 1
Gaps of the spin-S Heisenberg chain using state-of-the-art numerical re-
sults [15].

S Gap[J NLoM

1 4104800 x 107!
2 8916000 x 1072
3 1.002000 x 1072
4 7.990000 x 104

Gap/NLeM  Shanks

4321392 x 1072 9.499 —
7.469771 x 1073 11.936 —
7.262957 x 10~%  13.796 19.787
5.579748 x 107> 14.320 14.525

The first column gives the spin value, the second column the most accu-
rate known values of the dimensionless gap, and the third column the
bare ¢ model number from which we compute ratio in the fourth column.
It should extrapolate to a constant for infinite spin. The extrapolation is
performed in the last column using the simple three-term Shanks
extrapolation.

The motivation is formal, because in the real world, a
superexchange theory leads to negligible higher-spin cou-
plings. However, with the very special choice of the 1/3
coefficient for the biquadratic term, the spin operator is
now the projector onto the total spin S = 2 of the pair i,i+
1. This can be checked by elementary means (a bit tedious).
Now we proceed to exhibit a wavefunction, which is an
exact zero-energy eigenstate of Hamiltonian (Eq. 11). Each
local spin-1 can be viewed as the triplet state of two spin-1/
2 residing at the same site i. In the case of NENP, this cor-
responds to microscopic physics, because spin-1/2
elementary electrons in the nickel ions are coupled by
Hund's coupling with a triplet state. Now, we make singlet
bonds between neighboring sites (ions) and construct the
wavefunction by capturing all spins in the following way:

[Wager) =...®{|Tilip1) = [Liti)} ©4
X [Tidi) =i Ti2)}®... (12)

If we consider two neighboring spins, then the total spin
of such a pair can only be 0 or 1 but not 2, because the
central spins 1/2 are already engaged in a singlet state.
Thus, we see that all projectors onto the S = 2 state for any
pair gives simply zero and hence, this wavefunction is an
exact zero-energy eigenstate of the Hamiltonian (Eq. 11). In
fact, this is the exact ground state of the AKLT Hamiltonian.
Although this construction may seem artificial, we note
that this Hamiltonian can be viewed as a perturbation of
the usual Heisenberg Hamiltonian provided “1/3 is small”
meaning that the biquadratic operator does not change the
physics of the system. Indeed, we are lucky and it has been
shown in detail that this is the case [21]. As a consequence,
reasonings based on the model AKLT state are likely to be
correct for the real world dominated by the Heisenberg
exchange. A very simple inference from the AKLT descrip-
tion is that if we consider an open chain, then there are
dangling spins 1/2 at the end. Of course real materials al-
ways involve open chains and we thus can predict that local
probes should detect effective spin 1/2 degrees of freedom
at the end of NENP chains. The experiment has been done
[22] using NMR of a zinc impurity breaking the chain and
the number of NMR lines is exactly in agreement with the
prediction of the spin 1/2 instead of 1 as one may guess
naively. For an open chain, we expect that the two end
spins 1/2 appear as almost degenerate singlet and triplet
states due to a coupling through the bulk of the chain that
should go exponentially to zero when the chain length
increases. So the spectrum of an open chain should display
quasidegenerate S = 0 and S = 1 states and, above a (Hal-
dane) gap, an S = 2 excitation will be obtained by creating a
magnon-like state [23]. If we look at the magnetization
profile of the S = 1 member of the triplet, it should display
nonzero magnetization only close to the edges of the chain.
This is indeed what is observed numerically for the S = 1
chain using the density matrix renormalization group
(DMRG) algorithm [13,24].

We now turn to the question of the robustness of the
formation of these end spin states. They are due to the
special ordering pattern described by the AKLT wave-
function [20,25], and it is still present for the realistic
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Heisenberg exchange Hamiltonian. It is known that several
physical effects can destroy the Haldane gap, such as too
strong anisotropies either local on-site or exchange, and also
an applied magnetic field can close the Haldane gap. If we
cross a phase transition by such a mechanism, we do not
expect edge states to survive because the peculiar long-
range correlations of the AKLT state are destroyed. It has
been noted some time ago that in fact there is no need for a
sharp phase transition to kill the hidden order and the edge
states. This is very clear in the case of the magnetization
process of the Heisenberg S = 1 chain. Indeed, under an
applied field the Haldane gap goes to zero at some critical
field H. and the magnetization remains zero up to this value.
When the critical value is exceeded, the magnetization starts
to increase continuously up to full saturation and the edge
states disappear right at Hc. If now we consider a realistic
material like NENP, then there are small but nonzero an-
isotropies that break the spin rotation symmetry. As a
consequence, the magnetization transition [26] is now
rounded and is no longer sharp. Magnetization appears
immediately for infinitesimal applied fields and edge states
disappear when going to saturation without any phase
transition. This phenomenon has been dubbed [27] “sym-
metry protected topological order”. It leaves open the pos-
sibility that the hidden order and accompanying edge states
may disappear even without breaking any symmetry and
without any phase transition. We now show that this is the
case by studying a coupled S = 1 ladder system. We thus
envision a plausible molecular magnet in which neighboring
Haldane chains of spins S = 1 are coupled along the rungs of
a ladder by some independent exchange J,. A spin Hamil-
tonian can thus be written as follows:

A ladder = zsmsnm + Zsi_35i+1,3 +h25i,ASi,B (13)
7 7 7

where the sites along the two chains are labeled by i and A,
B label the two coupled chains. We have taken the ex-
change along the chain as the unit of energies so the only
remaining parameter is the ratio of exchange interactions
along and across the chains called J,. We note that recent
experiments have shown that the organic molecular mag-
net BIP-TENO is precisely a spin-1 ladder [28,29]. However,
the exchange interactions in BIP-TENO are more complex
than our simple Hamiltonian (Eq. 13).

If we consider a ladder with periodic boundary condi-
tions, then it has been established that there is no phase
transition [30,31] between the J;, = 0 decoupled chain limit
and the J; = oo with extremely strong rungs. This strong
rung limit is simple to analyze: the ground state is made of
singlet states involving two spins that are related by the
rung coupling and the total state is just the tensor product
of such singlets. The first excited state is made by breaking
arung bond from singlet to triplet, and this triplet will have
a dispersion along the chain whose magnitude is given by
the (relatively) small coupling along the chains. The small
J1 limit is two weakly coupled Haldane chains and because
they are gapped, they will be resilient to any small local
perturbation like a small rung coupling. Even if there is no

transition between these two limits, it remains unclear
what happens to the edge states of an open ladder.

We first enumerate the low-lying states of this spin
system starting from our knowledge of the S = 1 chain. We
know that each chain will have a singlet and a triplet of
low-lying states separated by the Haldane gap from the
higher excitations [23]. With two chains, this means a total
of 16 states that can be classified as two S = 0 singlets, three
S =1 triplets, and one S = 2 quintuplet. When adding a very
small J,, these will no longer be degenerated and first-
order perturbation theory will lead to an order O(J,)
splitting of the states. Their edge nature can be revealed by
computing the magnetization profile (S7) along one of the
coupled chains. We have performed DMRG calculations of
this system to obtain the ground state wavefunction.
Convergence becomes problematic when J, is very small
J1 <0.001, but results are reliable for higher values of the
coupling. We use up to 1500 states per block and chain
length up to 200 spins.

If we consider the low-lying S? = 0 (where 7 is the total
spin) state, we observe nothing remarkable. The magneti-
zation is uniformly vanishing and this does not change from
the decoupled limit J, = 0 tillJ, reaches a very large number
as expected. We now compute the ground state wave-
function in each sector $* = 1,2, 3; we expect that $* = 1,2
display only edge modes whereas S$* = 3 should capture a
bulk magnon state. We vary the rung coupling in the $* = 1
sector in Figs. 1-3. For small J,, we observe very clear edge
mode oscillations of the local magnetization and when the
chain is long enough, the bulk magnetization is zero (green
line in the figure), see Fig. 1. If we increase J,, there is
coexistence of edge oscillations and bulk magnetization (see
Fig. 2). Finally, at large enough J, values, all edge phenomena
are washed out and we observe a single bump of the
magnetization. We interpret this state as a single magnon
state of the infinite rung limit that propagates as a particle in
a box as reported in a study by White and Huse [13]. The

0.5
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0 10 20 30 40 50
site index n

Fig. 1. The magnetization profile (S;) for site n along the first 50 spins of an
S = 1 Heisenberg ladder of 100 sites long (for a total of 200 spins). The
expectation value is computed in the lowest-lying $? = 1 state, which be-
longs to the manifold of edge states. The rung exchange coupling is J, =
0.003. The green line is zero magnetization. The bulk is not magnetized,
proving the edge nature of the excitations.
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Fig. 2. The magnetization profile (S%) in the lowest-lying $* = 1 state for site
n along the S = 1 Heisenberg ladder of 50 sites long (total 100). The rung
exchange coupling is now J; = 0.5; we observe that the magnetization is
now essentially in the bulk and there are still edge oscillations of the
magnetization.

important information is the gradual disappearance of the
edge modes without any level crossing.

We expect that the same scheme applies for the lowest-
lying S? = 2 state. Its behavior is displayed in Figs. 4—7. We
again observe clear edge modes exponentially localized at
the end of the ladder with no bulk magnetization at small
J..There is a smooth crossover to a regime that we interpret
as a two-magnon state (see Fig. 7).

The situation should be different for the S* = 3 sector
because in the decoupled limit J, = 0, one is forced to
excite at least one magnon in one of the chains. This
magnon will be delocalized and its total magnetization
should spread all over the chain. This is exactly what we
observe in Figs. 8 and 9. The bulk is always magnetized
even when J;, — 0. In addition to this magnon contribution,
there are also edge oscillations. When increasing the
coupling, the magnon contribution becomes clearer
(see Fig. 9). Finally, for very large rung coupling, Fig. 10, we
are left with only rung magnon excitations and no edge

0.020

0.015

&< 0.010

0.005

0.000§
site index n
Fig. 3. The magnetization profile as in Fig. 2. The rung exchange coupling is

J1 = 4; the state can be interpreted as a single magnon state clearly defined
from the infinite rung limit. There is no reminder of the edge modes.

0.5
0.4
0.3
0.2

5 0.1H4

= 0.0 WWMVJ 73 “*MM

—0.2H H

~0.3 L L L L
0 20 40 60 80 100

site index n

Fig. 4. The magnetization profile (S3) for site n along the S = 1 Heisenberg
ladder of 100 sites long. The expectation value is computed in the lowest-
lying S? = 2 state, which belongs to the manifold of edge states. The rung
exchange coupling is J, = 0.003; there is zero bulk magnetization and only
edge modes.
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—-0.02
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site index n

Fig. 5. The magnetization profile (S7) as in Fig. 4. The rung exchange
coupling is J; = 0.015; there is now coexistence of a small bulk magneti-
zation and edge modes.
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0.000 1 1 1 .
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site index n

Fig. 6. The magnetization profile (S;) as in Fig. 5. The rung exchange
coupling is J; = 0.5; the bulk excitations display a two-rounded-peak
structure.
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Fig. 7. The magnetization profile (S7) as in Fig. 6. The rung exchange
coupling is J, = 4; edge modes have disappeared completely and we
observe two magnons with characteristics of a particle-in-a-box
wavefunction.
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Fig. 8. The magnetization profile (S;) in the lowest-lying $* = 3 state. The

rung exchange coupling is J; = 0.003; although there are edge oscillations,
we note that the bulk magnetization is nonzero. This is not a pure edge state.
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Fig. 9. The magnetization profile (S;) in the lowest-lying S = 3 state. The
rung exchange coupling isJ, = 0.5; edge oscillations are still present but the
three-peak structure appears.
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Fig. 10. The magnetization profile (S3) in the lowest-lying $* = 3 state. The
rung exchange coupling is J, = 4; we observe a pure three-magnon state.

modes. This is a gradual phenomenon with no physical
discontinuity.

In principle, NMR on well-chosen chain-breaking im-
purities should be able to measure these physical effects.

3. Conclusion

Antiferromagnetic spin chains are a fascinating play-
ground for states of magnetic matter that do not fit into the
usual symmetry-breaking views of magnetism. The crafting
of molecular magnets has allowed chemistry and physics to
join forces and investigate experimentally the Haldane
conjecture that predicts a fundamental difference between
integer- and half-integer-spin chains. In the case of integer-
spin chains, the so-called Haldane weakens with the spin
value, and we have proposed here a conjecture for its
asymptotic behavior for large spin S. Another very special
feature of the Haldane gap state is the existence of long-
range correlations that lead to edge modes, which have
been observed in experiments [22]. These correlations are
fragile and can be destroyed even without crossing any
phase transition. We have given an explicit mechanism for
the destruction of the hidden order by showing that an
S = 1 spin ladder interpolates between a haldane-style
phase and a simple tensor product phase with no kind of
long-range order. The crossover we describe should be
accessible to NMR measurements, provided one finds the
appropriate molecular magnet. In this respect, the recent
studies of BIP-TENO [28,29] or other magnets [32] show
that it is indeed feasible to study spin-1 ladders and
observe the interesting crossover between the Haldane
phase and the rung singlet phase.
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