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Abstract. When applied to binary solutions, thermal gradients lead to the generation of concentra-
tion gradients and thus to inhomogeneous systems. While being known for more than 150 years, the
molecular origins for this phenomenon are still debated, and there is no consensus on the underly-
ing physical models or theories that could explain the amplitude of the concentration gradient in re-
sponse to a given temperature gradients. Notably, there have been some attempts to relate this non-
equilibrium, steady-state manifestation, to equilibrium properties of these solutions, for example, to
the temperature dependence of the self-diffusion coefficient or to the solvation free energies of each
of their components. Here, we use molecular dynamics simulations on dilute solutions containing
molecular-size solutes, both in a thermophoretic setting as well as under equilibrium conditions, to
test the validity of such models. We show that these approaches are inadequate and lead to completely
uncorrelated estimates as compared to those based on the out-of-equilibrium measurements. Cru-
cially, they fail to explain the strong mass dependence (to which thermodynamics or single-particle
diffusion are insensitive) observed in the simulations and measured in the experiments. However, our
results suggest an interesting correlation between the amplitude of the short-time molecular motion
and that of the concentration gradient that would deserve future investigations.
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1. Introduction

When subjected to an inhomogeneous spatial tem-
perature distribution, a liquid mixture’s local com-
position usually becomes temperature- (and thus
space-) dependent. This phenomenon is known as
thermodiffusion, thermophoresis (especially when
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considering large particles in a solvent), or Soret ef-
fect [1–3]. In order to explain such experimental ob-
servations, that can be quantified with a wide range
of techniques [4], a typical phenomenological ap-
proach consists of considering a particle current that
is proportional to the concentration and to the tem-
perature gradient (through a factor known as “ther-
mal diffusion coefficient”) and which adds up with
the regular Fickian diffusion current, proportional
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(through the regular diffusion coefficient) to the con-
centration gradient [2]. At steady state, the absence
of net fluxes results in an exponentially distributed
concentration of particles as a function of tempera-
ture, which is consistent with the experimental mea-
surements. The temperature dependence of the con-
centration is called the Soret coefficient, and it corre-
sponds to the ratio of thermal and regular diffusion
coefficients. This phenomenon is observed for many
different systems, across many lengthscales, and the
present contribution will exclusively discuss and fo-
cus on molecular-size diffusing objects.

These considerations remain purely phenomeno-
logical. A vast body of experimental and compu-
tational work has attempted to go beyond this pic-
ture and characterise the molecular determinants
of thermodiffusion (see, e.g., [2]). While being an
“old” problem, this remains a partly open ques-
tion and a timely topic, with very recent work test-
ing phenomenological thermodynamic models using
molecular dynamics simulations of Lennard-Jones
particles [5–7].

It is now widely accepted that the Soret coefficient
can be decomposed as a sum of a purely chemical
component (which depends on the interatomic in-
teractions between the components of the mixture),
a mass-dependent component, sensitive to the dif-
ference in masses between the mixture particles, and
a component sensitive to the difference in the mo-
ments of inertia [2,8,9]. This decomposition was ex-
tensively studied through molecular simulations of
hard-spheres and Lennard-Jones binary fluids [7].
Very recent work completed this picture by highlight-
ing the effect of the mass dipole [10] (i.e., the first
moment of the mass distribution in the molecules).
If we take the example of aqueous mixtures, the so-
called chemical component has been related to the
hydrophobic/hydrophilic nature of the solutes, in
particular, to the strength of their hydrogen-bond in-
teractions with water [3,11,12].

Although interesting, making such connections
does not really provide an underlying molecular pic-
ture of the phenomenon. At the turn of the 20th cen-
tury, Einstein’s work paved the way for a molecular
understanding of single particle diffusion [13]. The
diffusion coefficient was thus connected to the mean
square displacement of molecules, as well as to the
atomistic details of the diffusing particle (e.g., its ra-
dius) and of the diffusing medium (e.g., its viscosity).

As opposed to regular diffusion, a major challenge is
that thermophoresis is, in essence, a phenomenon
out of thermodynamic equilibrium, which consider-
ably limits the theoretical framework and tools that
can be used. While many attempts have been made
for thermodiffusion [2,3,14–19] there is currently no
“universal”, widely-accepted theoretical model that is
able to quantitatively connect the Soret coefficient or
the thermal diffusion coefficient to the structural and
thermodynamical characteristics of the mixture, es-
pecially for molecular-size solutes. We note however
that models that contain at least some empirical or
phenomenological ingredients were shown to corre-
late well with the thermophoretic behavior of hard-
spheres and Lennard-Jones particles [7], although
some limitations were also pointed out [5].

Despite these practical limitations, several ap-
pealing models have been proposed that rely on
equilibrium considerations to explain the steady-
state of a liquid system under a thermal gradient.
For example, Eastman derived the following equation
(written here with modern notations) for a particle
immersed in a fluid [14]:

ST = 1

kBT

dG

dT
(1)

where G is the free energy of the particle in the solu-
tion. This idea was later reinforced by a number of ex-
perimental results from the Braun group on colloidal
suspensions [16,20,21] that were shown to agree with
such models, which therefore assume local equilibria
along the temperature gradient. In other words, the
particles in a solution would, therefore, tend to ac-
cumulate in the regions where the system can mini-
mize its free energy; that is, it follows the gradient of
solvation free energy. The validity of such a picture
has often been questioned, and it was shown that its
applicability could depend on the lengthscale of the
system considered [19].

Another interesting theory relates the Soret coef-
ficient of particle 2 in a solution with 1 to the differ-
ences in the activation energy for single-particle dif-
fusion Ea of the two particle types 1 and 2 in the mix-
ture [17]:

ST = E 2
a −E 1

a

RT 2 (2)

In other words, the molecules with the highest ac-
tivation energies for diffusion would tend to accumu-
late in the cold regions (positive Soret coefficients).
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This equation echoes a phenomenological expres-
sion where the diffusion activation energy is replaced
by the heat of transport of the species in the mixture.
It is important to note that there seems to be a sign
typo in the original publication [17], the final equa-
tion (7.9 in the original article) not being consistent
with the discussion in the text.

Measuring the single-particle diffusion of molec-
ular systems or their solvation free energy is not
straightforward in the experiments; the validity of
these models has often been discussed based on
some measured correlations, for example, with the
solute surface area [16,20], or based on theoreti-
cal arguments only [14]. For example, one obvi-
ous limitation of these models is that their ingre-
dients are mass-independent, i.e. they cannot ex-
plain, without further corrections, the mass depen-
dence of the Soret coefficient. In order to test these
models more thoroughly, we used molecular dynam-
ics in explicit solvent, replicating experimental ther-
mophoretic settings and equilibrium conditions. We
used two types of solutions, starting from binary mix-
tures of Lennard-Jones (LJ) particles as well as aque-
ous solutions. We focused on the dilute regime (from
the perspective of the solute).

We show that these equilibrium models are not
adequate. There is no obvious correlation between
the Soret coefficient and the solvation free energy
of the dilute particle or the difference between its
activation energy for diffusion and that of the sol-
vent. These models fail to reproduce qualitatively
the measured trend, and their predictions are some-
times off by one order of magnitude. We finish by
discussing some interesting correlations between the
Soret coefficient in these mixtures, which suggest
that, for very different systems ranging from the bi-
nary LJ solutions to several aqueous mixtures and
for a wide range of molecular masses that can be
artificially tuned in the simulation, the Soret coeffi-
cient is directly correlated to the relative difference
between the amplitude of the solute motion at short
timescales and that of the solvent.

2. Methods

2.1. Systems

The simulations of the LJ binary mixtures consid-
ered Argon-like particles [22], with the solvent being

described with ϵ = 0.2381 kcal/mol, σ = 3.405 Å
and m = 39.94 u. Solute particles were identical
and only differed in their ϵ values and sometimes
their mass. The reference temperature was thus T =
ϵ/kB = 119.8 K, with a corresponding T ∗ = 1 in re-
duced units. As detailed below, simulations were
typically performed at reduced temperatures ranging
from T ∗ = 0.9 to 1.1 (107.82 to 131.78 K) and reduced
pressure P∗ = 0.8 (33.52 MPa). We have thoroughly
checked that the system remains in a liquid phase in
these conditions.

The all-atom molecular simulations of the binary
mixtures were performed at temperatures ranging
from T = 300 K to 360 K and a pressure of 1 bar.
The force field parameter models for trimethylamine
N-oxide (TMAO) [23,24], urea [25], methanol [26],
glucose [27] and water [28] were extracted directly
from the available literature which fulfill the work-
ing temperature and pressure conditions in aqueous
solutions.

Solvent particles were randomly integrated into
the simulation box through the utilization of the
Packmol package [29]. Simultaneously, the so-
lute particles were uniformly inserted along the z-
direction of the thermal gradient, leading to an initial
configuration characterized by a flat concentration
profile. The Coulombic cut-off was 8.5 Å and the LJ
cut-off was 9 Å, with particle–particle particle–mesh
(PPPM) [30] solver for the long-range electrostatic
forces, in the case of dilute aqueous solutions. The
particles were randomly generated using LAMMPS
software version 07-Aug-19’s [31] internal random
atom generator for the LJ systems. The cut-off for
non-bonded interactions was set to 2.5σ (9.534 Å) for
the LJ systems. Timesteps were 1 fs in all cases.

2.2. Thermophoretic simulations

All simulations under a thermal gradient were per-
formed following a protocol described before [32],
with 12 steps from preparation to production, using
the LAMMPS software version 07-Aug-19 [31] with
the eHex algorithm to generate a temperature gradi-
ent [33]. These include some energy minimizations,
equilibration steps in successive thermodynamic en-
sembles, activation of a heat exchange algorithm [33]
and a subsequent equilibration of the temperature
and concentration gradients, and finally a produc-
tion stage.
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For the LJ mixtures, we started with boxes of
7.65σ×7.65σ×50σ, containing 2048 atoms of the sol-
vent and 80 atoms of the solute. The same afore-
mentioned protocol [32] was performed on these sys-
tems, adapting the lengths of each step to their re-
duced time equivalents. The thermal gradient was
attained by applying the eHex algorithm of heat ex-
change [33] in two 4σ-long slabs over the z-axis; ki-
netic energy was removed from the atoms present in
the region between z = 10.5σ and 14.5σ and applied
to the atoms present in the region between z = 35.5σ
and 39.5σ. A scheme of the system and of the tem-
perature gradient is shown in Figure 1.

The thermophoretic simulations of the molecular
binary mixtures started with boxes with 25 Å length
along the x and y axes and 50 Å along z. They con-
tain 1024 molecules of water and 40 molecules of the
solute. The resulting systems are identical, in terms
of construction, to the LJ mixtures shown in Figure 1.
The thermostatted regions are positioned along the
z-axis at 12.5 Å and 27.5 Å with a thickness of 4 Å, cre-
ating two symmetrically located regions of 25 Å.

The exchanged heat flux in the eHex algorithm
was set such that the generated temperature differ-
ences between the cold and hot slab were 60 K for the
aqueous solutions (Q = 0.0375 kcal·mol−1·fs−1) and
0.2 reduced temperature-unit (23.96 K) for the LJ sys-
tems (Q = 5ϵ/τ, or 0.00054 kcal·mol−1·fs−1).

All presented error bars for the Soret coefficient
are calculated from the standard deviation of mul-
tiple simulations with different starting configura-
tions.

2.3. Free energy perturbation

We first detail the hydration free energy calculations
for the solute molecules in dilute aqueous solutions.
The simulation process involved employing cubic
simulation boxes of 33.15 Å-side, filled with solvent
molecules inserted randomly without spatial con-
straints. The system was minimized, the velocities
were set to correspond to the target median temper-
ature followed by an isobaric-isothermal NPT equili-
bration of 200 ps at 100 kPa. The decoupling process
involved progressively reducing Coulombic and LJ
interactions over 40 steps using soft-core potentials
by introducing a tunable parameter (λ). These simu-
lations were performed without an induced temper-
ature gradient.

Simulations were executed using both the
LAMMPS software version 07-Aug-19 [31], with
its FEP package, and the GROMACS package ver-
sion 2019.4 [34] to validate the results. LAMMPS
simulations were performed at 8.5 Å Coulombic
cutoff, 9 Å LJ cutoff and using the particle–particle
particle–mesh (PPPM) solver for long-range elec-
trostatic forces. The damping parameters for the
Nose–Hoover [35,36] barostat and thermostat are
Pdamp = 1 ps and Tdamp = 0.1 ps respectively, with
3 Nose–Hoover chains and the velocity Verlet algo-
rithm. Then, Coulombic interactions were switched
off (λCoul) over 20 steps (δλCoul = −0.05). Once the
Coulombic term was completely decoupled, the LJ
potential was decoupled in the same way over the re-
maining windows. During this process, intermolec-
ular non-bonded interactions were also affected, so
another decoupling simulation was performed in the
gas phase, and the desolvation free-energy was ob-
tained as a difference between these two processes.

GROMACS simulations were performed at 9 Å
Coulombic cutoff, 9 Å LJ cutoff and the particle–
mesh Ewald (PME) solver [37]. The damping param-
eters for the Parrinello-Rahman [38] barostat and the
Nose–Hoover thermostat at 2 ps, and the barostat
compressibility were set at 4.46 × 10−5 bar−1, using
the leap-frog integrator and 1 Nose–Hoover chain.
The Coulombic and LJ interactions were decoupled
over 14 steps. First, the Coulombic interactions were
switched off (λCoul) over 4 steps (δλCoul = −0.25).
Once the Coulombic term was completely decou-
pled, the LJ potential was decoupled, where (λLJ) de-
creased over 10 steps (δλLJ =−0.1).

For GROMACS simulations, the Alchemical Analy-
sis tool was employed [39], capable of handling vari-
ous free-energy methods, including BAR (Bennet ac-
ceptance ratio, [40]), MBAR (Multistate Bennett ac-
ceptance ratio, [41]) and TI (thermodynamic integra-
tion [42]), while LAMMPS simulations utilized a sep-
arate tool within the FEP package [43], with our own
adaptations made to facilitate compatibility with the
Alchemical Analysis tool.

For the LJ binary mixtures, the analyses of free
energy perturbation method were done using the
FEP-package on the LAMMPS software version 07-
Aug-19 [31]. As in the molecular mixtures, the sys-
tem was initially minimized, then the velocities were
then set to the target temperatures. This was fol-
lowed by a NPT equilibration step of 1000 reduced
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Figure 1. Schematic representation of a thermophoretic simulation (here, for LJ binary mixture). Cold
and hot regions are shown in blue and red, respectively. They are positioned at one-fourth and three-
fourths of the simulation box along its long z axis so as to generate the temperature gradient “dT ” twice,
thanks to periodic boundary conditions. This in turn generates a concentration gradient “dCs” of solute
particles (magenta) in the solvent (blue particles).

time units (2.180 ns) with T ∗ = 1.0 and P∗ = 0.8.
The damping parameters for the Nose–Hoover baro-
stat and thermostat were P∗

damp = T ∗
damp = 1 re-

duced unit time. The LJ potential in this method
is modified by a soft core to avoid singularities
while annihilating atoms [44]. The simulations were
performed with a LJ cutoff (rc ) of 2.5σ (9.534 Å).
Contrary to the method used for the molecular mix-
tures, there was no need of two decoupling steps, as
there were no Coulombic interactions. The LJ po-
tential was decoupled through the factor λLJ in 20
steps (δλLJ = −0.05). As in the aqueous solution sys-
tems, these simulations were performed without an
induced temperature gradient. In both the aqueous
solution systems and the LJ systems, the presented
error bars for the desolvation energies are calculated
from the standard deviation of multiple simulations
with different starting configurations.

2.4. Mean square displacement calculations

A cubic box (33.15 Å-side) was considered for the
molecular binary mixtures. The equilibration part
is replicated from thermophoretic simulations [32],
which are steps 1 to 8, in order to obtain a system
in the microcanonical NVE ensemble with a volume
and total energy corresponding to the averages in the
NPT ensemble, such that the average pressure and
temperature matched the targets of the chosen ther-
modynamic conditions. The diffusion coefficients
were determined by measuring the mean squared

displacements (MSD) of the centers of mass for the
solute and the solvent molecules/particles at the me-
dian temperature of 330 K. An equivalent protocol
was followed for the LJ binary mixtures, with a start-
ing simulation cubic box of size 25σ, at their me-
dian temperature of T ∗ = 1.0. As it is well estab-
lished [45], the diffusion coefficient is expected to
be slightly box size-dependent because of periodic
boundary effects. However, assuming that the dif-
fusion coefficient of these molecular species can be
described by the Debye–Stokes–Einstein model, the
size correction is temperature-independent [45], and
therefore, the activation energy for diffusion is ex-
pected to be size-independent. For the determina-
tion of error bars, we used 5 replicas of 5 ns each, an-
alyzed by blocks of 1 ns.

3. Results and discussions

3.1. Determination of Soret coefficients

We first study the thermophoretic behaviour of di-
lute aqueous solutions and of dilute LJ binary mix-
tures. In both cases, we systematically vary the so-
lute nature and/or interaction parameters in order
to simulate a range of different chemical properties
for the solutes while keeping the solvent nature in-
tact. Because these two types of solutions obviously
have very different phase diagrams, we adapted the
reference temperature, density and temperature gra-
dients to remain in the liquid phase.
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In silico thermophoretic settings were modelled as
detailed in the Methods section. In short, we used
a heat exchange algorithm [33] in the microcanon-
ical ensemble, which pumps kinetic energy in one
portion of the simulation box (which becomes colder
than the average) and injects it in another region,
which becomes the hot section of the system (Fig-
ure 1). In between, a temperature gradient is gen-
erated. The affected regions are chosen such that
the gradient is unidirectional along one axis of the
system (typically chosen as the z axis). In general,
the temperature-gradient is established after a short
equilibration timescale on the order of a few tens
of picoseconds for the investigated systems [32]. A
subsequent and much longer equilibration time [32]
is then required to establish the concentration gra-
dient, and only then is data acquired to determine
the Soret coefficient. As shown previously, these
timescales correspond to those of the heat and mass
transport dynamics, respectively [32]. Simulations
were replicated several times (typically 10 or more)
in order to determine converged values and statisti-
cal uncertainties.

The Soret coefficient is determined after fitting the
concentration profile with the following expression:

dlnCs

dT
=−ST (3)

As shown before, under the conditions employed
here, the log-scale plot of the solute concentration
(defined here as its molality) is typically linear out-
side the thermostatted regions [32].

In Table 1, we show the values of the simulated
Soret coefficients for several dilute aqueous solutions
and binary LJ mixtures. The values are typically on
the order of 10−3–10−2 K−1. Although Soret coeffi-
cients are most often measured for polymer or hy-
drocarbon mixtures [8,46–48] or large colloidal parti-
cles [16,20,21,49], there are a few experimental mea-
surements for aqueous solutions, including urea [11,
12] and ethanol [50–53] (which is expected to be very
close in behavior to methanol) that suggest that the
Soret coefficient of the solute in these mixtures is in-
deed close to the values found here. Similar observa-
tions can be made for LJ mixtures [15,54]. This com-
parison thus validates our approach and we thereby
consider the simulated values as the reference that
will now use to test several theoretical models.

Table 1. Molecular masses and Soret coeffi-
cients of molecular and LJ solutes

Solute M (g·mol−1) ST (10−3 K−1)

Methanol 32.0 1.5 ± 0.7

Urea 60.1 4.4 ± 0.7

TMAO 75.1 5.0 ± 0.9

Glucose 180.2 3.1 ± 1.1

LJ Spheres (ϵ= 0.5) 39.9 −7.6 ± 0.7

LJ Spheres (ϵ= 1.5) 39.9 7.5 ± 2.9

Data for molecular solutes is reported at the me-
dian simulation temperature of 330 K in water,
while that for LJ solutes is in a binary mixture of
LJ particles with solvent particles of the same size
and with ϵ= 1 at T ∗ = 1.0.

3.2. Solvation free energy

In order to determine the solvation free energy at
several different temperatures, we used standard ap-
proaches based on the progressive decoupling of the
interactions between the target molecule and its en-
vironment. Simulations were performed by different
simulation codes. For the aqueous solution simula-
tions, as a natural choice, we first used the same soft-
ware that was employed for thermophoretic simula-
tions, but we also complemented our study with sim-
ulations performed with Gromacs [34]. For each ap-
proach, we compared three different algorithms in
order to estimate the free energy cost associated with
the process: TI, BAR and MBAR. Further details on
these can be found in the Methods section.

We first take the example of a dilute aqueous so-
lution of TMAO to compare the results from these
different approaches (Figure 2A). Even when using
the same raw data from the simulations, we notice
that different algorithms give slightly different val-
ues, but the employed simulation codes give consis-
tently similar answers. All these variations are typi-
cally within error bars, and lies within 0.4 kcal/mol
from each other at 300 K and less than 1 kcal/mol
at 330 and 360 K. Noticeably, they all quantitatively
agree for the observed trend upon increasing tem-
perature, with a ≈2 kcal/mol increase in the solvation
free energy.

A second important step is to verify that our sim-
ulations agree with previous simulations and ex-
perimental data when available. Because we were
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Figure 2. Solvation free energy approach. (A) Desolvation free energy of TMAO as a function of temper-
ature in the dilute aqueous solution. Two different programs, as well as different algorithms, are com-
pared. (B) Desolvation free energy of methanol in the dilute aqueous solution as a function of tempera-
ture, comparing results from this work (yellow) to those of previous ones (green and red, using two dif-
ferent forcefields) as well as the experimental estimate (black line). (C) Desolvation free energy for the
solute particles as a function of temperature for the binary LJ mixtures. (D) Comparison between the di-
rect estimate of the Soret coefficient in the investigated dilute solutions (vertical axis) and the predictions
from the free energy model (horizontal axis).

lacking such data for TMAO, we do this compari-
son for methanol, using the LAAMPS code as the
reference method (Figure 2B). Our simulations are
in excellent agreement with previous simulation re-
sults using the OPLS force field for methanol [55],
and are smaller in absolute value than the experi-
mental values [56] (by about 0.5 kcal/mol). However,
a very good agreement with experimental data was
reported using a specifically reparametrized force
field [55]. Despite these small differences, a critical
aspect is that the experimental temperature depen-
dence is very well reproduced by the previous simu-
lations and the current ones. This provides a further
validation of our approach.

We now turn to the determination of the temper-
ature dependence of the solvation free energy for

a variety of solutes. Figure 2C shows the tempera-
ture dependence for LJ solutes as a function of tem-
perature. In addition to TMAO and methanol, we
also performed simulations on aqueous solutions of
urea. Overall, we notice that the solvation free en-
ergy becomes favorable as temperature increases,
i.e., the solvation entropy is negative. In aqueous so-
lutions, this is typically what is observed in the exper-
iments [56] and in previous simulation work [57–59],
as there is an entropic cost to create a cavity accom-
modating the solute, and also a reduced entropy due
to sometimes strong interactions between the water
molecules and some of the solute chemical groups
(for example, H-bond acceptors).

The positive slope of the free energy as tem-
perature increases is thus compatible with the
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thermophobic nature of these solutes; however, test-
ing Equation (1) reveals that the amplitude of these
variations with temperature (Figure 2D) would lead
to Soret coefficients at least one order of magnitude
higher to what is measured in the thermophoretic
simulations. We do not observe strong variations of
the results by changing the algorithm used to esti-
mate the free energies, and similar results are ob-
tained for a range of solutes. In addition, we checked
that performing the simulations with two different
programs gave the same qualitative answer. There-
fore, such a model does not seem appropriate to
explain thermodiffusion and the value of the Soret
coefficient.

3.3. Temperature dependence of single-particle
diffusion

We then examine, for the same solutions, the temper-
ature dependence of the translational single-particle
diffusion coefficient of both the solute and the sol-
vent particles or molecules. As done for the solva-
tion free energy calculations, we simulated the dif-
ferent systems under equilibrium conditions at sev-
eral temperatures (see Methods). Diffusion coeffi-
cients were obtained from mean square displace-
ment calculations. Their temperature dependence
was very Arrhenius-like, enabling the determination
of the corresponding activation energies to test the
Equation (2) model.

Starting with the aqueous solutions, we find that
the activation energy for the solute diffusion is gener-
ally higher than that of water. As typical solutes dis-
play positive Soret coefficients, i.e., they accumulate
in the cold regions: this is consistent with the original
idea of Prigogine’s work that a higher activation en-
ergy for diffusion would imply that molecules would
be more easily trapped in the cold regions [17]. For
the investigated solutes, the differences in the diffu-
sion activation energy with the solvent are on the or-
der of RT , which gives rise to the right orders of mag-
nitude for ST . However, as evidenced in Figure 3,
we fail to find any correlation between the magni-
tude of the difference between the activation ener-
gies for the diffusion of the solute and of the solvent
and the Soret coefficient, and Equation (2) therefore
does not appear to be valid for these solutions. Us-
ing the same methodology, we reach similar con-
clusions for the investigated LJ dilute mixtures (Fig-

Figure 3. Activation energy for diffusion ap-
proach from Equation (2). Comparison be-
tween the direct estimate of the Soret coeffi-
cient in the investigated dilute solutions at T =
330 K (molecular solutes) and T ∗ = 1 (LJ solu-
tions) (vertical axis) and the predictions from
the activation energy for diffusion model (hori-
zontal axis).

ure 3), albeit in obviously very different temperature
conditions.

As suggested before, Prigogine’s model is not
able to explain the effects of mass on thermophore-
sis [18]. In particular, diffusion coefficients of a di-
lute particle in a given solvent are in principle mass-
independent (note, however, that changing the sol-
vent’s mass could alter the solvent’s viscosity and
thus the diffusion coefficients of both the solute and
the solvent). However, observations made from ex-
perimental and simulation measurements suggest
that the mass-dependencies of thermophoresis fol-
low phenomenological relationships in which one
component of the Soret coefficient is proportional
to the relative mass difference between the com-
ponents of the binary mixtures [2]. The asymme-
try between a change of mass in the solvent and
a change of mass in the solute from the perspec-
tive of the diffusion coefficient (the first one hav-
ing a small effect, the later one no effect) is a first
hint that the Prigogine model would not be able to
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explain the phenomenological mass-dependencies.
Moreover, the variations of the diffusion coefficient
temperature-dependence are too small to match the
large effects of mass found before.

In order to account for the mass dependencies, a
correction to the original Progogine model has been
suggested and tested on binary LJ mixtures [18]. The
Soret coefficient of particle 2 in a mixture with 1 was
written as [18]:

ST = E 2
a −E 1

a

RT 2 + M 2 −M 1

M 1 +M 2

E 2
a +E 1

a

RT 2 (4)

(we note that Prigogine’s original expression seems
to be written with the wrong sign, but was taken
as such when the derivation of this expression was
made, we also corrected their expression when writ-
ing it here). This model was again tested for our solu-
tions and largely overestimated the measured Soret
coefficients. Indeed, for molecular solutes that are
typically several times the mass of a water molecule,
the mass correction simply becomes the sum of the
activation energies divided by RT 2. However, since
the activation energies for diffusion are often sev-
eral times the thermal energy, the correction typically
amounts to several times 1/T , whereas ST is on the
order of 1/T for the dilute molecular solutes studied
here.

3.4. Correlation with short-term molecular mo-
tion

As we failed to quantitatively explain the Soret co-
efficients in dilute LJ mixtures and aqueous solu-
tions with some of the previous theoretical equilib-
rium models, we tried to investigate possible corre-
lations between ST and other equilibrium observ-
ables at a given temperature. Keeping in mind Pri-
gogine’s conceptual ideas, i.e., that an imbalance in
the temperature dependence of the molecular mo-
tion of molecules/particles would explain the onset
of a concentration gradient, but seeking for quanti-
ties that would depend on mass, we focused on the
initial regime of the molecular motion. For exam-
ple, we looked at the average root mean squared dis-
placement at a time interval corresponding to the on-
set of the diffusive regime after the initial ballistic
region. In order to generate more data points, we
(artificially) varied the solute masses and repeated
the simulations for several solutes. As seen in Fig-
ure 4A, ST is inversely correlated to the amplitude of

this motion, with molecules faster molecules associ-
ated with a lower ST value.

By taking a different perspective, we can also look
at the average time it takes for a molecule to travel
a certain distance. Because this picture probably
makes more sense for particles of similar sizes, we
performed these measurements on simulations of bi-
nary LJ mixtures for which we systematically varied
the masses and the interaction energies of the solute
particles. As shown in Figure 4B, we again find a clear
correlation between ST and the timescale of a short-
range initial motion covering 1σ. Interestingly, the
crossover between positive and negative ST values
quantitatively agrees with the timescale of this initial
motion being slower or faster as compared to that of
the solvent particles. While a correlation does not im-
ply that two quantities are directly connected to each
other, we found that these observations, made here
for very different types of dilute solutions, are en-
couraging and would deserve future investigations.

4. Conclusions

In this work, we investigate the validity of some of
the models that have been proposed to explain ther-
mophoresis based on equilibrium considerations,
working here exclusively on dilute binary mixtures
(where the dilute particle is considered as a solute
and the concentrated one as the solvent). The first
of these models is based on an idea first put forward
by Eastman in the 1940s [14], and which has gained
considerable attention in the last 15 years thanks to
important results from the Braun group [16,20,21].
Based on experimental measurements on small col-
loidal particles, it has been suggested that the Soret
coefficient could be explained in terms of the tem-
perature dependence of the solute’s solvation free en-
ergy. The second investigated model connects the
Soret coefficient to the temperature dependence of
the diffusion coefficients of the solute and of the sol-
vent molecules and was originally suggested by Pri-
gogine [17], with some later refinements [18].

We use molecular dynamics to compute both
non-equilibrium properties (such as thermodiffu-
sion) and equilibrium ones (such as translational dy-
namics and solvation free energies) and to compare
them. As already shown in our own work on dilute
aqueous solutions [32], as well as in previous con-
tributions focusing on LJ particles mixtures [15,54],
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Figure 4. Correlation between the measured Soret coefficients for the investigated systems (varying both
the chemical nature and the relative mass differences of the solute particles/molecules) and the short-
term motion, seen from two different perspectives. (A) Correlation between ST at a median temperature
of 330 K with the mean square displacement of the solute at 330 K after 170 fs (corresponding to a change
in sign in the second derivative of the MSD, indicative of a change of regime, that was observed to be
almost system-independent for the dilute aqueous solutions shown here). Data for “water” solutes in
water, with masses corresponding to 0.5, 1.5, 2.0, 4.0 and 8.0 times that of a regular water mass; for other
solutes (except glucose, where the only data point corresponds to its natural mass): mass of a water
molecule, regular mass, or 4 times the regular mass. (B) Soret coefficient at a median temperature of
T ∗ = 1.0 vs the typical time to move by 1σ at the same temperature. These values were obtained through
the MSD measurement of simulations as described in Section 2.4, tested over three values of ϵ for the
solute (0.5, 1.0 and 1.5) and eight values of solute mass (0.33, 0.5, 0.75, 1.00, 2.00, 4.00, 6.00 and 8.00).

we first demonstrate how out-of-equilibrium simula-
tions with an active heat exchange scheme can gen-
erate temperature gradients in molecular dynamics
systems, which, in turn, leads to the establishment
of concentration-gradients whose amplitude is com-
patible with experimental measurements.

We then run and analyse molecular dynamics tra-
jectories on the same systems but in equilibrium
conditions. By using different software and algo-
rithms, we show that we can obtain reliable and con-
verged estimates of the solute solvation free ener-
gies, and we examine their temperature dependence.
Both for the aqueous solutions as well as for the LJ
mixtures, we find that these cannot explain the Soret
coefficients and that the Eastman model is not valid
for the investigated molecular systems and predicts
values that are one order of magnitude different from
the steady-state measurements in non-equilibrium
simulations. We cannot rule out that it would be
correct for different systems, but we unambiguously
show that this is not the case here. The same conclu-
sions apply to Progogine’s model and its variant to in-
clude mass dependencies. We find that the Soret co-

efficient does not correlate with the imbalance in the
activation energy for diffusion between solute and
solvent molecules.

These conclusions could have perhaps been ex-
pected. Experiments as well as simulations have ev-
idenced the critical mass effects on the amplitude of
the concentration gradient [2]. However, free energy
considerations, as well as single-particle diffusion
properties, are in principle mass-independent. A
decomposition of the Soret coefficient into different
terms corresponding to the intrinsic so-called chem-
ical contribution, mass contribution, moment of
inertia component, or, as recently discussed, a mass
dipole contribution, is an interesting phenomeno-
logical perspective but lacks theoretical grounds;
hence, a model encompassing all these effects at
once is still lacking. We finish our discussion with
some interesting correlations we found between the
asymmetry of the short-term motion of solvent and
solute molecules and the amplitude of the Soret
coefficient in these solutions, which we believe
would deserve further investigations as they cover a
wide range of chemistry and masses in very different
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solutions. In particular, the effect of different molec-
ular chemistries on water dynamical properties and
H-bond exchange kinetics [60–63] could maybe be
related to the thermal transport properties of the
molecular solutes in aqueous solutions.
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