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Abstract. This paper reviews some of our developments in algorithmic graph theory, with some
applications in physical chemistry and catalysis. Two levels of granularity in the topological graphs
have been developed: atomistic 2D-MolGraphs and coarse-grained polygraphs of H-bonded cycles.
These graphs have been implemented with the key algorithms of isomorphism and polymorphism,
in order to analyze molecular dynamics simulations of complex molecular systems. These topological
graphs are transferable without modification from “simple” gas molecules, to liquids, to more complex
inhomogeneous interfaces between solid and liquid for instance. We show hereby that the use of
algorithmic graph theory provides a direct and fast approach to identify the actual conformations
sampled over time in a trajectory. Graphs of transitions can also be extracted, showing at first glance
all the interconversions over time between these conformations. H-bond networks in condensed
matter molecular systems such as aqueous interfaces are shown to be easily captured through the
topological graphs. We also show how the 2D-MolGraphs can easily be included in automated high-
throughput in silico reactivity workflows, and how essential they are in some of the decisive steps to
be taken in these workflows. The coarse-grained polygraphs of H-bonded cycles are shown to be
essential topological graphs to analyze the dynamics of flexible molecules such as a hexapeptide in
gas phase.
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1. Introduction

The field of Theoretical and Computational Chem-
istry applies the laws of physics and chemistry
coupled with computer programs to calculate the
structures and chemical and physical properties of
molecules in different states of matter, such as ther-
modynamic properties, spectroscopic signals, chem-
ical reaction pathways, phase diagrams, etc. The ar-
senal of theoretical tools in computational chemistry
has evolved in recent years, nowadays also includ-
ing theoretical methods from Operation Research
(OR), which uses algorithms to build solutions on
well-formulated problems, or Artificial Intelligence
(AI), which uses various Machine Learning methods,
based in particular on neural networks, not only to
predict new physical and chemical states, events and
properties, but also to develop, for example, force
fields or DFT functionals for simulations. This new
era has triggered a revival in the field of theoretical
and computational chemistry for research teams to
develop new theoretical methods that include OR
and/or AI to go beyond the simple use of “classical
numerical methods”.

Over the past decade, our group has approached
this new era through the prism of algorithmic graph
theory, in the context of OR and AI, based on the
representation of matter in topological graphs [1–5].

A graph encodes topological properties of mat-
ter (in the same way for molecules, assemblies of
molecules, liquids, solid materials, also interfaced
with liquids) by means of vertices and edges that
reflect the specific interactions (in pairs) between
vertices. At the molecular level of representation,
the vertices are usually associated to atoms while
the edges report on interactions between atoms,
e.g., chemical bonds and intermolecular interac-
tions. Most graphs are defined in two dimensions
(2D-graphs), any information related to, e.g., dis-
tances, angles, is usually not encoded into topolog-
ical 2D-graphs unless vertices/nodes are specifically
labeled with such information. Graphs can however
be also three-dimensional, with an indication of co-
ordinates in space that would thus encode intra- and
inter-molecular interactions between atoms. Eas-
ier to obtain or to predict than 3D-graphs, 2D-
graphs already carry information on the structure,
the functional properties, and even the 3D shape
of the materials they model. Examples include the

classification of similar molecules according to their
topology [6,7], the prediction of patterns in biologi-
cal molecules [8], the prediction of the 3D structure
of small molecules [9], etc. Molecular graphs are
also commonly used in supervised machine learn-
ing algorithms, the framework of graph-based mod-
els for molecules is indeed naturally suited to carry
out predictions in message-passing neural network
schemes.

In bio-/chemo-/materials informatics, the chal-
lenge is to identify or design algorithms capable of
obtaining molecular properties from input graphs
and to follow these properties in time. We have devel-
oped a series of 2D-graphs, at various levels of gran-
ularity of representation, and associated algorithms
in order to analyze physical and chemical structures
and properties from atomistic molecular dynamics
(MD) simulations (DFT-based MD and classical force
field FF-MD). In these developments, our aim was to
ensure that 2D-graphs and algorithms could be ap-
plied without any modification to “simple” isolated
molecules, as well as to assemblies of molecules and
to more complex liquid and solid states of matter, in-
cluding inhomogeneous solid/liquid interfaces [1–5,
10,11].

This paper reviews some of our developments and
achievements, which are also included in the GaTe-
wAY software [2,3,12]. Other research groups, also ex-
perts in MD simulations, have worked on 2D-graphs.
In the last decade, there have been developments
of algorithmic graph theory devoted to the analysis
of various types of molecular dynamics simulations,
from, e.g., the conformational analysis of gas phase
molecules and clusters, to their chemical reactivity,
to the dynamics of H-bonds in liquids, to the dynam-
ics of the solvation shells of ions in liquids, to the
structural and dynamical analysis of complex aque-
ous interfaces in condensed matter [1,10,13–22].

Section 2 of this paper reviews the definitions used
in the atomistic 2D-MolGraphs developed by our
group [1,10], and the associated algorithms, includ-
ing the key isomorphism algorithm ensuring that a
whole trajectory can be analyzed in terms of the rela-
tionships between the conformations explored over
time. The topological analyses hence provide a sta-
tistical view over the whole timescale of the trajectory
and over the whole set of conformations explored.
Statistics is crucial for the detailed knowledge of the
dynamics of isolated molecules as well as for the



Sana Bougueroua et al. 3

dynamics of molecules in the liquid state, as appli-
cations in Section 3 will show.

We also review our recent developments of
2D-graphs consisting of H-bonded cycles and
the key polymorphism algorithm [4], which have
been built to go beyond the atomistic representa-
tion in 2D-MolGraphs and to be able to represent
(bio-)molecules whose 3D structures and dynamics
are solely based on hydrogen bonds. The algorithms
we have developed enable us to track the com-
plex conformational dynamics of flexible H-bonded
molecules in real time. Section 3 will show that,
while the interpretation of the complex conforma-
tional dynamics of a highly flexible hexapeptide in
the gas phase would remain elusive at the atomistic
level of representation (2D-MolGraphs), it is well
understood by means of coarse-grained graphs of
H-bonded cycles (polygraphs) and by means of poly-
morphic “metastructures”. Only the coarse-grained
representation in the graphs allows such compre-
hension.

Section 3 will further show how atomistic 2D-
MolGraphs can easily be included in automated
high-throughput in silico reactivity workflows and
how essential they are in some of the decisive steps
to be taken in these workflows. We implemented the
2D-MolGraphs in the computational catalytic reac-
tion space exploration method ReNeGate [5] and the
high-throughput reactivity screening HiREX work-
flow [11], specifically designed to explore realistic
catalytic systems and identify thermodynamically
feasible chemical transformations, corresponding to
secondary catalyst deactivation and inhibition paths.

Prospects and new developments in progress are
discussed in Section 4, which, with this review of
methods and applications, we hope will spark further
requests for additional algorithms and new applica-
tions in our physical chemistry and chemistry com-
munities.

2. Methods

2.1. 2D-MolGraph for modeling a conformation

Our developments have been aimed at defining topo-
logical 2D molecular graphs (labeled 2D-MolGraph)
and associated algorithms in order to automatically
analyze MD trajectories from the knowledge of the
time evolution of the conformations and hence au-
tomatically detect conformational changes through

topological changes. Our 2D-MolGraphs share a sim-
ilar degree of granularity in representing the topology
of molecular systems to the one used by previous im-
plementations in the literature in chemistry [13,14,
17], i.e., a vertex in the 2D-MolGraph represents an
atom or a molecule and an edge between two vertices
represents the interactions/bonds (covalent bond,
hydrogen bond . . . ) between two atoms/molecules.
Most of the literature on graphs in the chemical com-
munity does not consider the chemical nature of the
atoms in the vertices, which is not efficient for rec-
ognizing identical structures where chemically iden-
tical atoms have been swapped. Moreover, they lack
specific chemical information (e.g., covalent bonds,
hydrogen bonds, exchange of atoms in homoge-
neous clusters, etc.) that might be relevant for a more
detailed characterization of the structures.

One crucial step in our method has been to define
a model that represents any molecular conformation
with the right level of granularity and be transferable
without any modification from gas phase molecules
and clusters to the condensed phase (solids, liquids,
interfaces between solids and liquids). To that end,
we have chosen to define any molecular conforma-
tion by a colored mixed graph G = (V ,EC, AH,EI,EO),
with both (directed) arcs and (undirected) edges.
Such a graph is denoted 2D-MolGraph, in which each
vertex represents an atom while the edges represent
covalent bonds (EC), hydrogen bonds (AH), ionic
(or electrostatic) interactions (EI) typically between a
cation/anion atom and other atoms, organometallic
interactions (EO) between metallic atoms and their
surrounding. Only the hydrogen bonds are associ-
ated to directed edges (from the donor to the accep-
tor atom). The hydrogen atoms in a molecular sys-
tem are not included in vertices of the 2D-MolGraph.
Instead, their presence is solely known by directed
edges. Hence, any hydrogen that is not involved
in a hydrogen bond is not represented in the 2D-
MolGraph.

The definition of bonds and interactions is mainly
based on Euclidian distances. The Euclidian dis-
tance between a pair of atoms [a,b] with respective
Cartesian coordinates (xa , ya , za) and (xb , yb , zb) is:√

(xa −xb)2 + (ya − yb)2 + (za − zb)2. There is a cova-
lent bond or an interaction between two atoms if the
Euclidean distance is less than a cutoff distance Dr .
For covalent bonds, the algorithm defines the Dr dis-
tance by the sum of covalent radii of atoms a and b
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Figure 1. Illustration of the passage from a 3D conformation (a) to a 2D-MolGraph (b). (a) One snapshot
in the 3D representation of the gas phase Z-Ala6–COOH peptide (C26H39N7O8) extracted from a MD
trajectory. Carbon atoms are colored turquoise, nitrogen atoms blue, oxygen atoms red, and hydrogen
atoms light gray. (b) Associated topological 2D-MolGraph. Vertices are colored dark gray, blue, and red,
corresponding to carbon, nitrogen and oxygen atoms, respectively. Hydrogen atoms are not included in
vertices, their knowledge is included only through directed edges that represent hydrogen bonds. Edges
are black lines for a covalent bond and red dashed lines (arcs) for hydrogen bonds, the latter directed
from the donor to the acceptor of the H-bond.

with an additional 2% margin (that typically includes
the effect on distances from vibrational motions). For
hydrogen bonds, the algorithm sets up the default
Dr value between the hydrogen atom (donor) and
the acceptor atom (heavy atom) to 2.3 Å, which can
be changed by the user. For the organometallic and
ionic interactions, the user is free to set case-specific
Dr distances. For example, the distance between
manganese and oxygen atoms used in one of the ap-
plications in Section 3 was set to 2.44 Å. This choice
was made because the developers assume that the
covalent bonds are stronger than the other types of
interactions between atoms. More details are found
in [1,5,12].

One can easily define and implement new rele-
vant interactions that are needed to describe a given
molecular system, and hence augment the number
of definitions for the edges in the 2D-MolGraphs.

In order to take into account the chemical type of
the atoms in a 2D-MolGraph, we apply a special case
of graph coloring, such that the vertices of a given 2D-
MolGraph display the same color if and only if the
corresponding atoms have the same chemical type
(see Figure 1). Figure 2 illustrates an adjacency ma-
trix built prior to the construction of a 2D-MolGraph.
The matrix shown here is associated to a selected
part of the Z-Ala6–COOH peptide from Figure 1a (3D
structure) and Figure 1b (2D-MolGraph). As the pep-
tide contains 80 atoms, only a selected part of the
peptide has been extracted here for this illustration.
The figure shows that covalent bonds and hydrogen
bonds of interest in the conformation of this peptide
are encoded in the adjacency matrix (with crosses
and circles, respectively) and that the matrix has the
colored information of the actual chemical nature of
the atoms. The graph on the right side of the figure is
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Figure 2. Illustration of an adjacency matrix for a selected portion of the Z-Ala6–COOH peptide shown
in Figure 1a (3D-structure) and Figure 1b (2D-MolGraph).

the subgraph of the 2D-MolGraph associated to the
selected part of the molecule encoded in the matrix.

With 2D-MolGraphs in our hands, the exploration
with time of molecular conformations along MD sim-
ulations can easily be seen as the exploration of graph
topologies, that can be tracked using graph theory-
based methods, such as isomorphism. Graph iso-
morphism as defined in [23] allows representation of
each conformer with a fingerprint graph and com-
parisons between graphs. In our applications, iso-
morphism consists in comparing the distribution of
edges between two 2D-MolGraphs: if the graphs
compared have the same set of bonds/interactions
connected to the same set of atoms (in terms of
chemical types/colors for the graphs), these graphs
are then isomorphic, i.e., the two graphs are iden-
tical. More formally, an isomorphism is a bijec-
tion between the vertex sets of the two graphs if
and only if it induces a corresponding bijection be-
tween their edge sets (if such an isomorphism exists,
the two graphs are said to be isomorphic). A (non-
polynomial) algorithm to check if such an isomor-
phism exists is proposed in [23–26].

Isomorphism checks, together with keeping the
chemical nature of the atoms, are the key compo-
nents of the conformational search over MD trajec-
tories. The changes in conformations are hence fol-
lowed over time by scanning trajectories for changes
in bonding patterns of choice (among hydrogen

bonds, proton transfers, coordination numbers,
covalent bonds, and organometallic interactions).
Once the different conformations of the molecular
system have been found by graph analysis, a graph
of transitions can be generated, similar to the ones
considered in different analysis or generation of tem-
poral graph sequences [27–29]. This graph has its
vertices composed of the conformations that have
been identified and its edges are composed by the
transitions found between conformations. Both ver-
tices and edges in the graph of transitions contain
information on the percentage of existence of a con-
formation over the duration of the trajectory (for the
vertices) and the percentage of times a transition
between two vertices/conformations has been seen
(for the edges). In one glance, one can hence see
the relationships between the conformations and
associated statistics.

Figure 3 shows an example of a graph of transi-
tions. This graph is composed of four vertices, each
vertex represents one molecular conformation that
has been identified by isomorphism along the trajec-
tory. Each vertex has a number and a label that rep-
resents the conformation. For instance, one vertex in
this picture is labeled with “1” and “N1-O1”, mean-
ing this is the first conformation identified over the
trajectory, and the associated conformation has one
hydrogen bond between atoms “N1” and “O1”. The
“68.97%” number in the vertex is the percentage of
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Figure 3. Graph of transitions. See text for nomenclature and colors.

time this conformation has been seen over the whole
trajectory. Hence, in this graph of transition, confor-
mation 1 is the most frequent conformation that has
been observed over the trajectory, with a total per-
centage of appearance of ∼69% over the trajectory.
The edges between the vertices are labeled with two
kinds of information: (1) the total frequency rate for
going from one conformation to the other one, (2) the
bond(s)/interactions(s) that have changed when go-
ing from one conformation to the other. For instance,
one can observe a large conformational dynamics
between conformations 1 and 2 in the graph of tran-
sitions in Figure 3; such an event occurs around 130
times, back and forth. Also of note, the hydrogen
bond N1· · ·O1 disappears when going from confor-
mation 1 to conformation 2 (and appears on the re-
verse way). Conformation 2 in the graph of transi-
tions is labeled with “2” and “.”, the latter meaning
that this conformation contains no hydrogen bond.
Conformation 2 has been seen ∼30% over the whole
trajectory.

The colors of the vertices in the graph of transi-
tions directly give the most relevant conformations
in terms of appearance periods. We hence colored

red the conformations that appear at least Pmin% (an
input parameter that the user can change the de-
fault value of 4% has been used here) and the ones
in green occur below this threshold. All the confor-
mations explored along the MD simulations can be
kept in the graph of transitions. Such information
might indeed be useful for some analyses, typically
when rare events (rare conformations) are investi-
gated. The user can modify this at will.

2.2. From a topological 2D-MolGraph to a
coarse-grained graph of H-bonded cycles

In [2,3] we have shown that the rationalization of
the conformational dynamics becomes complex
and almost impossible to achieve for flexible H-
bonded molecules that isomerize frequently over
time through the dynamics of breaking and form-
ing of their H-bonds. As shown in these references,
a simple short peptide such as Z-Ala6–COOH (il-
lustrated by one 2D-MolGraph in Figure 1) already
shows a high flexibility of its network of N–H· · ·O
H-bonds at relatively low temperatures (gas phase
MD trajectories). Numerous breaking/forming of
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H-bonds were observed over the trajectories, which
signaled the appearance and disappearance of sev-
eral conformers of the gas phase peptide numer-
ous times along the trajectory. This high dynamical
flexibility of the H-bond network, however well rep-
resented by the 2D-MolGraphs and their graph of
transitions [2,3], prevents a clear rationalization of
the actual conformational dynamics of the peptide.
In particular, some of the H-bonds in the network,
though formed between different atoms, seem to
play a similar role into the final 3D structure of the
peptide molecule, i.e., into the final folded/semi-
folded/unfolded skeleton. This is not captured by
the 2D-MolGraphs at the atomic level of represen-
tation, but this similarity of H-bonded cycles can
be captured by graphs defined at a higher/coarser
granularity of representation. We therefore defined
graphs in which the vertices are directly associated to
the H-bonded cycles formed, whose polymorphism
is furthermore taken into account. These concepts
are now explained.

Cycles in molecular graphs have been shown to
be good representations of the structure of molec-
ular systems [30–32]. We hence proposed a repre-
sentation of each conformation identified by a 2D-
MolGraph over a trajectory based on a well chosen
set of cycles. The cycles of interest to us are the ones
formed by at least one H-bond. With these, we will
be able to quantify and follow in time the changes in
the H-bonded network of molecular structures. Our
current developments have been done for gas phase
molecules only [4]. Note that the number of cycles
in a graph can be exponential with respect to the
number of vertices. Therefore in our approach, we
only consider a subset of cycles in the 2D-MolGraph,
called “minimum cycle basis”, restricted to the H-
bonded cycles for each 2D-MolGraph of the trajec-
tory. Given a graph, finding a minimum cycle ba-
sis, which is not necessarily unique, can be done in
polynomial time with an evolution of the algorithm
of Horton [33]. More details can be found in [4].

Given a 2D-MolGraph, we compute its minimum
basis set of H-bonded cycles. The associated graph
of cycles is defined as a graph in which the set of ver-
tices is the cycle basis, and there is an edge between
two vertices (cycles) if and only if these two cycles
interact, i.e., they share at least one covalent bond
or one hydrogen bond in the 2D-MolGraph. Hence
each 3D-conformer in the trajectory of a molecule is

represented by a graph of cycles. The evolution in
time of the conformations in a MD trajectory can be
represented by the sequence of their graphs of cycles.

Figure 4 illustrates the transformation from a
topological graph (Figure 4a) to a graph of cycles (Fig-
ure 4c). Considering the 2D-MolGraph in Figure 4a
and the minimum cycle basis in Figure 4b, there
are four H-bonded cycles, each of them of various
size, composed of one or several hydrogen bonds.
Hence, the pink vertex in Figure 4c is built on one H-
bonded cycle composed of six vertices/atoms in the
2D-MolGraph (this is a six-membered H-bonded cy-
cle), while the larger orange vertex/cycle is built upon
two hydrogen bonds (see the two directed dashed red
edges in Figure 4a). Figure 4c shows the graph of cy-
cles obtained from the minimum cycle basis shown
in Figure 4b. In this graph, the vertices are the H-
bonded cycles, labeled by the heavy atoms involved
in the hydrogen bond(s) producing them. Taking
once again the examples of the pink and orange cy-
cles/vertices depicted in Figures 4b–4c, the pink ver-
tex is labeled N3O3 as it is built on the N3–H· · ·O3 hy-
drogen bond, while the orange vertex is labeled with
its two constitutive H-bonds N1–H· · ·O8 and N5–
H· · ·O4. The orange, pink and blue vertices/cycles in-
teract with each other as seen through the edges con-
necting these three vertices (i.e., sharing at least one
covalent bond or one hydrogen bond). On the other
hand, the green vertex (related to the H-bonded cycle
N7O7) interacts only with the orange one.

Given a MD trajectory, each 2D-MolGraph is now
associated to a minimum cycle basis and to the cor-
responding graph of cycles. In other words, there is
one graph of cycles per 2D-MolGraph (i.e., per iden-
tified molecular conformation).

The set of conformational isomers explored over
the MD trajectory can furthermore be summarized
by one single graph of cycles uniting those of all
the identified conformers. This union takes into
account all the possible H-bonded cycles as well
as all the possible interactions between these cy-
cles which were observed in all the identified con-
formers. Some of these H-bonded cycles can be
identical in different conformers. Some of these
H-bonded cycles can be similar to each others
in the sense that they are built upon different
donor/acceptor atoms but they are playing the
same role in the final structure of the molecule. One
therefore has to recognize the similarity between
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Figure 4. Example for the coarse-grained representation of a 2D-MolGraph for one conformation of the
gas phase peptide Z-Ala6–COOH. See text for details.

the H-bonded cycles of the different miminum cycle
bases (i.e., similarity between the H-bonded cycles
in the different identified conformations).

To that end, the next stage was to develop an algo-
rithm that can group together the cycles of different
minimum cycle bases which are similar, i.e., the ones
playing the same role in the structure of different
conformers. The similarity constraint that we intro-
duced is the basis to cluster the union of cycles in all
the minimum cycle bases of all the conformers of the
trajectory that we finally want to obtain. Each part
in such a clustering is called a polymorphic cycle, in
which all cycles are considered as different forms of a
same cycle in the structures of the conformers it ap-
pears in. The hypothesis that we made is that a cycle
can evolve over time, that is to say that its set of links
can evolve while retaining its same role in the molec-
ular structure. The trajectory can therefore be seen
as the interaction of the H-bonded cycles evolving
over time in their atomic structure (polymorphism)
and still interacting in the same way, but with some
of these cycles appearing or disappearing over time.
The final graph thus obtained is called a polygraph, a
contraction of “polymorphic cycle graph”; note that
this definition is different from the one of a polygraph

as a generalization of the directed graph [34], or that
used in chemoinformatics related to polymers [35].
The whole algorithms have been detailed in [4].

We now show an application of this methodology
for the gas phase chondroitin disulfate CS2S4S mole-
cule, for which a 3D snapshot is reported in Figure 5.
Figure 6 reports the polygraph obtained for a 600 K
trajectory of this gas phase molecule. Each vertex of
the polygraph is labeled by “P-XX” where P stands for
polycycle and XX is the set of oxygen and/or nitro-
gen atoms (with their associated label number in the
list of the molecule’s atoms) involved in the H-bond
of the polycycle (i.e., one of the two partners which
close the H-bonded cycle). Each polycycle has been
assigned a given color. Note that a polycycle can be
built over one or over several H-bonds (two to three
for this molecule). In that case, the atoms involved
in the series of H-bonds are written on a line with a
“,” between them. See some examples in the vertex
colored in violet for several instances of multiple H-
bonds forming a polycycle.

Figure 6 shows that this polygraph is a complete
graph made of five vertices. It is complete because
there is an edge between each pair of vertices. As a
reminder, there is an edge between two polycycles
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Figure 5. A 3D representation of chondroitin
disulfate CS2S4S (C14H20NO18S2). Colors for
the atoms: carbon in turquoise, nitrogen in
blue, oxygen in red, hydrogen in light gray, and
sulfur in yellow.

Figure 6. The polygraph obtained for a MD tra-
jectory of the gas phase chondroitin disulfate
CS2S4S molecule.

whenever these two cycles have atoms that share at
least one covalent bond or one H-bond in the initial
2D-MolGraph (i.e., these polycycles are interacting
with each other within the molecular structure). Be-
cause the polygraph is complete, the number of poly-

cycles cannot be reduced. All vertices involve differ-
ent polymorphic identities. Four of the five vertices
have six or seven different actual identities for the H-
bonded cycle that forms the polycycle (dark green,
pink, green, and orange), while there is an even larger
diversity of 14 different identities for polycycle P-O17
(purple). For instance, vertex P-O7 is associated to
a polycycle that can have six different identities of
the H-bond that closes the cycle/polygon with the O7
atom. As can be seen, this O7 can either H-bond to
the H atom carried by the O13, or to O9, O16, O7,
O15 and O14. In the vertex in the violet color, some of
the lines report other identities than the P-O17 iden-
tity. For instance, one line reports O1-O2 and O2-
O17, which means that the P-O17 polycycle is built
over two simultaneous hydrogen bonds, i.e. the O2-
O17 H-bond but also the O1-O2.

3. Review of selected applications

3.1. H-bond dynamics of a flexible gas phase
peptide and the relevance of the coarse-
grained graphs of H-bonded cycles

The conformational dynamics of the gas phase
hexapeptide Z-Ala6–COOH (C26H39N7O8, 80 atoms,
3D illustration in Figure 7) is analyzed hereby both
in terms of the 2D-MolGraphs (atomistic level of
topology representation) and in terms of the coarse-
grained polymorphic cycles (coarse-grained level
of topology representation) in order to present the
strengths and limitations of each level. An ab initio
MD (AIMD) trajectory of ∼6.0 ps (12,294 snapshots,
δt of 0.5 fs) at ∼450 K serves as the basis for the con-
formational dynamics to analyze. This temperature
has been chosen as a good example for the analysis
of trajectories where several medium and large con-
formational changes are expected to occur, which
are always rather hard to characterize without the
help of topological graphs.

3.1.1. A high conformational dynamics of Z-Ala6–
COOH provided by the 2D-MolGraphs

The analysis of the trajectory in terms of topo-
logical molecular 2D-MolGraphs [1,3] indicates that
93 different conformations are sampled over ∼6 ps
(which hence shows a rather highly dynamical pep-
tide), built over nine different H-bonds. The struc-
ture of each identified conformer is composed of one
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Figure 7. A 3D representation of the hexapep-
tide Z-Ala6–COOH. Colors for the atoms: dark
gray for carbon, dark blue for nitrogen, red for
oxygen, white for hydrogen.

to six H-bonds that are formed simultaneously. The
peptide is found in either opened structures where a
low number of simultaneous H-bonds are present or
in H-bonded folded structures.

As illustrations, Figure 8 presents two 2D-
MolGraphs corresponding to two identified con-
formers of Z-Ala6–COOH, respectively produced by
five (Figure 8c) and three H-bonds (Figure 8d). Two
of these H-bonds (N7· · ·O7 and N6· · ·O5) are present
in both conformations.

Figure 9 is the graph of transitions that summa-
rizes the whole 6 ps of conformational dynamics of
Z-Ala6–COOH at 450 K. As can be immediately seen,
this graph of transitions is composed of an extremely
high number of vertices and edges connecting these
vertices, which is the signature of the high dynamic-
ity and high flexibility of the peptide. There are 93
vertices in the graph for the 93 different conform-
ers of Z-Ala6–COOH found. In the graph of transi-
tions reported in Figure 9, most of the identified con-
formers (in the green vertices) appear over very short
periods of time (less than 0.24 ps) while two con-
formers (red vertices) appear over larger durations
of time.

While the high number of vertices and edges in
the graph of transitions in Figure 9 illustrates the
high flexibility of the peptide at 450 K that is nicely

captured by our 2D-MolGraph topological graphs, it
also illustrates the limit of the atomic level of gran-
ularity used in the 2D-MolGraphs for highly flexible
molecular systems where presumably too much in-
formation is provided in the graph of transitions and
is hard to process. Furthermore, some of the peri-
ods of times that the 2D-MolGraphs analyze as break-
ing/forming covalent bonds and/or H-bonds corre-
spond in practice to the dynamics of these bonds
around the threshold values employed in the method
for conformational recognition. Some of the transi-
tions observed between conformers are thus in prac-
tice the actual signature of the existence of one single
“meta-conformation” around which dynamicity and
flexibility occur.

This information can however not be extracted
from the atomistic topological 2D-MolGraphs. To
get that information, one has to analyze the trajec-
tory with a coarse-grained topology representation,
whose results are described in the following section.

3.1.2. Polygraphs are the good coarse-grained repre-
sentation to analyze the conformational dy-
namics of Z-Ala6–COOH

To go beyond the limitations of the atomistic rep-
resentation in the topology highlighted above in the
case of the highly flexible Z-Ala6–COOH, we now ap-
ply the coarse-grained topology representation de-
scribed in Section 2.2 to analyze the conformational
dynamics of this peptide: it now consists in repre-
senting a molecule through the ensemble of its H-
bonded cycles and to apply an algorithm of poly-
morphism in order to recognize the cycles that are
isomorphic to each others. Figures 10 and 11 illus-
trate the two immediate outputs of this analysis, re-
spectively showing the global polygraph generated
over the whole 450 K trajectory in Figure 10 and the
chronogram (time evolution) of the nine identified
polymorphic cycles in Figure 11.

There is a total of 23 H-bonded cycles over the
93 2D-MolGraphs extracted from the ∼6 ps trajec-
tory of Z-Ala6–COOH at 450 K. Once polymorphism
has been applied over these 23 H-bonded cycles,
some of the cycles could be merged, thus result-
ing into nine polymorphic cycles. Each polycycle
contains between one and nine possible identities.
The obtained global polygraph that represents the
whole 6 ps trajectory is shown in Figure 10, built over
the nine vertices that represent the nine identified
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Figure 8. Two 2D-MolGraphs (c and d) of the gas phase peptide Z-Ala6–COOH and their associated 3D
structures (a and b) extracted from the MD trajectory analysis. Colors of the vertices: dark gray for C
atoms, dark blue for N, red for O. No vertices for hydrogens, their knowledge is in the directed edges (arcs).
Solid black edges in the graphs are for covalent bonds, the red arcs are the hydrogen bonds directed from
the donor to the acceptor (heavy) atoms.

polymorphic H-bonded cycles. One can therefore see
that five of the vertices/polycyles have only one pos-
sible identity in terms of the H-bonded cycle (note
that the H-bonded cycle for the polycyle P-N1,O8,N2
is built upon two hydrogen bonds, i.e., N1· · ·O8 and
N2· · ·O8), two other vertices have a limited number
of isomorphic identities (two identities for the dark
blue vertex P-O4,N5, three identities for the magenta
vertex P-N3). Two vertices are much more polymor-

phic as they adopt four (cyan vertex P-O4,N5) and up
to nine (orange vertex P-O8) different polymorphic
identities. Furthermore, one can remark that sev-
eral of these polycycles are built upon two or three
H-bonds. For instance, in the orange P-O8 polycycle,
the first identity “N1-O8,O4-N4” is built upon two H-
bonds (N1· · ·O8 and O4· · ·N4), the first identity of the
cyan polycycle P-O4,N5 is built upon three H-bonds
(O2· · ·N3, N1· · ·O8, and O4· · ·N5).
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Figure 9. Graph of transitions for the 450 K dynamics of the gas phase Z-Ala6–COOH peptide. The
vertices indicate the explored conformers. Vertices in red are for conformers with a total percentage
of appearance Pmin% greater than 4% of the dynamics time (parameter Pmin% can be modulated at
will), vertices in green are for conformers with Pmin% < 4%. Directed edges between vertices indicate
transitions between two conformers as observed over time. The labels on each edge provide the total
percentage of occurrence of the transition and the associated chemical change(s) that occur. A zoom
over a small portion of the graph of transitions is provided on the left-hand side.

The low/high number of identities within each
polymorphic H-bonded cycle informs on the sec-
tions of the peptide with a low/high structure

flexibility. The higher polymorphic nature of two
of the polycycles in Z-Ala6–COOH corresponds to
high structure flexibility in these two zones, while
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Figure 10. The global polygraph obtained over the 6 ps AIMD trajectory of the Z-Ala6–COOH peptide at
450 K. The color coding of the vertices is identical to the color coding of the lines in the chronogram in
Figure 11. Each vertex of the polygraph is labeled by “P-XX” where P stands for polycycle and XX is the set
of the oxygen atom and/or the nitrogen atom (with their associated label number in the list of the atoms
of the molecule) involved in the H-bond of the polycycle. Each vertex contains the list of the polymorphic
cycles, each one being labeled by the atoms’ names and labels in the H-bond(s) building the H-bonded
cycle.

maintaining the same general role of the H-bonded
cycle into the final 3D structure. This high flexibility
was already observed in the previous section with the
atomistic topological analysis of the 2D-MolGraphs.
The analysis with the polymorphic H-bonded cy-
cles immediately identifies the underlying “meta-
structures” that are of interest for the comprehen-
sion of the conformational dynamics of the peptide.

In the polygraph, there is an edge between two
vertices whenever two polycycles interact together,
i.e., the conformations belonging to each vertex share
at least one covalent bond or one H-bond. The poly-
graph in Figure 10 is not complete, i.e., not all the
polycycles are directly connected in pairs by an edge.
This incompleteness can be explained by the fol-
lowing two reasons that are related to the rules ap-
plied for building a polygraph: (i) either there is a

conformation for which the identities of the two
polycycles appear simultaneously, without interac-
tion (the criterion for interaction/edge is the shar-
ing of at least one covalent bond or one H-bond); or
(ii) there is no conformation for which the two iden-
tities appear simultaneously, however their merging
does not respect the polycycle rules. For example,
we found that the blue P-O4,N5 polycycle/vertex and
the orange P-O8 polycycle/vertex do not interact be-
cause there is at least one identity from P-O4,N5 and
one identity from P-O8 that appear simultaneously
in one conformation of Z-Ala6–COOH. As these two
polycycles do not share one covalent bond/H-bond,
there is thus no interaction/edge in the polygraph.

The chronogram of the Z-Ala6–COOH polycycles,
presented in Figure 11, shows the evolution in time
of the nine polycycles at the temperature of 450 K.
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Figure 11. Chronogram obtained over the 450 K AIMD trajectory of the Z-Ala6–COOH peptide. Five time
periods have been identified (see text for details). The color coding of the lines is identical to the color
coding of the vertices in the polygraph in Figure 10.

The reader has to keep in mind that each polycycle
can have several identities in terms of the atoms that
form the H-bonded cycle (see discussion above). Five
distinct periods of time can be extracted, labeled as
period 1 to period 5 in the figure. Each time period
is associated to a different structural organisation of
the nine polycycles in Z-Ala6–COOH. During period
1, six polycyles coexist. Period 2 starts as the polycy-
cle P-N3 disappears and polycycle P-O2,N3 appears.
There is then the simultaneous disappearance of this
polycycle at time ∼2.2 ps and appearance of polycy-
cle P-N1,O8,N2 at the slightly earlier time ∼1.9 ps,
which marks a clear change in the 3D structure of
the peptide, and thus the end of period 2 and start
of period 3. Interestingly, polycycles P-O7,N7 (green
line), P-O4,N5 (dark blue) and P-O4,N5 (cyan) are
formed over the whole 6 ps trajectory (or almost al-
ways, with smallish periods of time of interruption).
These H-bonded polycycles thus form strong pillars
for the global 3D structure. See more details in [4].
One has to remark that one of these three polycycles
(P-O4,N5, darker blue) can adopt up to four different
identities. This is an important pillar of the 3D struc-
ture with high flexibility.

Beyond the time evolution, one further crucial in-
formation extracted from the chronogram is which
polycycles can be formed simultaneously and which
ones cannot be present simultaneously in the 3D

conformation of the peptide. For example, it is pos-
sible to form the polycycle P-O4,N4 (light blue) at
the start of period 5 only if none of the P-O4,N5
(cyan) and P-O5,N6 (purple) polycycles are present.
P-O4,N4 seems to coexist only with P-O2,N3 (light
pink) and P-N1,O8,N2 (dark orange). Polycycles P-
O4,N4, P-O2,N3, P-N1,O8,N2, P-O5,N6, and P-N3
need hence certain structural conditions for them to
be exist. This can be explained by the location of
H-bonded polycyle P-O4,N4 in regard to polycycles
P-O4,N5 (both of them) and P-O5,N6 within the 3D
structure of Z-Ala6–COOH.

The polygraph made of nine vertices and their
pairwise connected edges in Figure 10 gives the
global/statistical view of the whole 6 ps trajectory
in terms of a “global metastructure” of the peptide.
However, the actual details of the dynamics are lack-
ing in this global polygraph. This could be inferred
from the chronogram in Figure 11 where we already
saw that not all the polycycles/vertices of the global
polygraph could coexist simultaneously over time.

Figure 12 now presents one illustration of the
evolution with time of the sub-polygraphs from the
global polygraph over a short time period, i.e., be-
tween times 2.19 ps and 2.51 ps (period 2 and pe-
riod 3 in Figure 11). The sequence of sub-polygraphs
is reported with the following conventions of col-
ors: the polycycles that are present among the nine
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Figure 12. Sequence in time of the sub-polygraphs of the H-bonded polycycles of Z-Ala6–COOH. See text
for all details and comments of this chart.

possible polycycles are colored in green while the
ones that are absent are colored in dark gray. The
arrows between the sub-polygraphs can be col-
ored in black, in blue, or in red. The two arrows
in red mark the sequence of starting time of the
period under scrutiny (2.19 ps) and ending time
(2.51 ps), respectively. The arrow in black marks
“simple transitions” between sub-polygraphs/3D-
structures/conformations of Z-Ala6–COOH. These
arrows can be found forward (→) and backward (←),
as there are multiple forward/backward isomerisa-
tions over time. Marking each one of these transi-
tions over the “real time” would be too messy and
would make the plot too cumbersome. The blue
arrow marks a distinct transition in the sequence
of sub-polygraphs, i.e., in the time sequence of the
3D conformations adopted by the peptide over this
period of time. There is indeed no transition ob-
served back to structures adopted previously (in
time). Therefore, we marked the whole chart by two
distinct rectangles, one outlined with red dots (top

of the figure) and one with gray dots (bottom). In
the gray rectangle, one can now see the sequence
between the sub-polygraphs by following the dark
arrows, some of them going in one direction only,
others with back/forth directions. Some of the key
moments in time are indicated in blue over certain
dark arrows.

The conformation dynamics seen in this figure
over a very short period of time nicely illustrates the
complex dynamics in the H-bonds of Z-Ala6–COOH
at 450 K, and the high flexibility of the peptide that
we have already discussed several times above. Fig-
ure 12 also nicely shows the fast exchange between
polycycles.

3.2. Topological 2D-MolGraphs easily capture
complex condensed phase H-bonded net-
works

Condensed phase, where liquid water is present,
is another area where the 2D-topological graphs



16 Sana Bougueroua et al.

Figure 13. Illustration of one 2D-MolGraph per hydrophobic aqueous interface: air/liquid water (left),
graphene/liquid water (middle), BN/liquid water (right). Only the water molecules located in the
BIL [36,37] are taken into account for the 2D-MolGraph analysis. Vertices of the graph represent the
oxygen atoms of the water molecules (red); the dashed red arcs represent the H-bonds between two water
molecules oriented from donor to acceptor.

can be of great help in understanding H-bond net-
works. Here we present the use of the atomistic 2D-
MolGraphs in order to unravel the structure of wa-
ter in inhomogeneous molecular systems made of an
interface between liquid water and another medium.
We specifically focus on three hydrophobic aqueous
interfaces, i.e., air/liquid water, graphene/liquid wa-
ter, and boron nitride BN/liquid water, for which we
want to characterize the organization of liquid water
at the interface with air or the solid. To that end, our
methodology of atomistic topological 2D-MolGraphs
is applied on AIMD trajectories of these three aque-
ous interfaces (∼50 ps time-length MD). These three
interfaces have been shown to be hydrophobic by
independent molecular analyses in [37] based on a
molecular descriptor of hydrophobicity developed in
this latter paper and in the follow-up paper [38].

We have previously shown in [10,37,39] that liq-
uid water in contact with hydrophobic surfaces forms
a two-dimensional (2D) highly collective H-bonded
network made by the water molecules in the layer
in direct contact with the hydrophobic surface (i.e.,
water located in the BIL–Binding Interfacial Layer–
as defined in [36,37]), in which the water–water
H-bonds are formed parallel to the surface. This
water-collective 2D-Hbonded-Network is the molec-
ular signature of surface hydrophobicity [37,38].

Here, we illustrate the recognition of this 2D-
HBonded-Network using topological 2D-MolGraphs,

and how these graphs can provide details on the
organization of water molecules in this collective
H-bond network. Three DFT-MD trajectories have
been analyzed using our graph theory algorithm:
air/liquid water as the prototype of hydrophobic sur-
faces, graphene/liquid water, and BN/liquid water.
For each trajectory, 400 snapshots were extracted and
analyzed (from a total of 50 ps trajectory per sys-
tem). This corresponds to roughly one snapshot
every 0.1 ps of dynamics, which represents a good
statistical sampling regarding the dynamics of H-
bonds. The graph analyses are carried out on the BIL-
interfacial region only, in which there is roughly an
average of 48 water molecules (all simulation boxes
are roughly equivalent in sizes).

The 2D-MolGraphs in Figure 13 show the very
specific structural property of the water molecules
in the BIL of the hydrophobic interfaces: a collec-
tive arrangement of the water molecules in terms of
H-bonded polygons (or rings) adjacent to each oth-
ers. This collective arrangement is called the 2D-
HBonded-Network [10,37,39].

To obtain the statistical view on the number of wa-
ter molecules that are interconnected within the 2D-
HBonded-Network, the (identified non-isomorphic)
2D-MolGraphs can be analyzed in terms of the size
of the connected components, i.e., the set of sub-
graphs in which all vertices are connected to each
others without interruption. Figure 14 illustrates the



Sana Bougueroua et al. 17

Figure 14. Distribution of the connected components of the 2D-MolGraphs (see text for details) for the
air/liquid water interface (left), the graphene/liquid water (middle), and the BN/liquid water (right),
obtained over ∼50 ps AIMD trajectories.

Figure 15. Distribution of the size of H-bonded rings/cycles formed by the water molecules in the 2D-
MolGraphs. (left): air/water interface; (middle): graphene/water interface; (right): BN/water interface.

distribution of the connected components for the
400 2D-MolGraphs extracted for each trajectory of
the three interfaces.

One can immediately see that the 2D-HBonded-
Network is extended over ∼90–95% of the water
molecules located in the BIL for the three interfaces,
hence with a high degree of interconnectivity (very
collective network between the water molecules).
One can thus conclude that the water molecules
in the BIL are statistically organized with the same
collective HB-Network in all these hydrophobic
interfaces.

The 2D-MolGraphs provide further details on the
organization of water molecules in this collective
H-bonded network. One can see from the 2D-
MolGraphs shown in Figure 13 that water molecules
are organized in polygons/rings formed by H-bonds.
Using the Horton algorithm [40], we analyzed the
2D-MolGraphs in terms of the size of H-bonded

polygons/rings formed by the water molecules in the
BIL for the three hydrophobic interfaces. The results
are presented in Figure 15.

Very interestingly, though the water molecules in
the three investigated BILs are assembled with the
same collective 2D-Hbonded-Network, the distribu-
tion of sizes of the H-bonded polygons that build
these networks are non-identical between the three
hydrophobic interfaces. On the one hand, the sizes
of the H-bonded polygons are centered on four to
six for the air/water and BN/water interfaces. There
is a clear dominant component related to H-bonded
pentagons made by the water molecules at the in-
terface with the BN surface while the formation of
H-bonded tetragons and pentagons is found equiv-
alent at the interface with air. On the other hand, the
2D-Hbonded-Network made by the water molecules
at the surface of graphene is more homogeneous
in terms of sizes of the polygons, where tetragons,
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hexagons, and heptagons have roughly the same
probability of appearance, and H-bonded pentagons
dominate slightly more. We hence see that water
molecules predominantly form five-membered H-
bonded rings/polygons at the interface with the BN
surface, which can be associated to the hexagonal-
templated structure of BN. The length of the C–C co-
valent bonds in BN is shorter than the O· · ·H hydro-
gen bonds: the best arrangement for water molecules
is thus into five-membered H-bonded rings rather
than six-membered rings.

Moreover, we find that the percentage of water
molecules giving rise to the polygons within the 2D-
HBonded-Network is around 30–40% for the three
interfaces, with the following interesting ranking:
one finds a larger percentage of water in the 2D
polygons for the air/water interface (∼43%) than
for the graphene/water interface (∼36%) interface,
and the BN/water interface (∼34%). Such percent-
ages might explain the strength of the 2D-HBonded-
Network found at each interface. The work in [37] in-
deed showed that the strength of the 2D-HBonded-
Network can be ranked as air > graphene > BN.
In other words, the more water molecules forming
rings within the 2D-Hbonded-Network (i.e., the more
rings being formed), the stronger the 2D-HBonded-
Network, and the more hydrophobic the interface.

3.3. Integration of 2D-MolGraphs in workflows
in high-throughput in silico chemical reac-
tivity

We further explored the utility of our 2D-MolGraph
approach as the core for automated reaction net-
work analysis workflows suitable for implementa-
tion in high-throughput in silico reactivity screening
of complex multicomponent homogeneous catalytic
systems [41]. We implemented the 2D-MolGraph ap-
proach in the computational catalytic reaction space
exploration method ReNeGate [5] (see the workflow
in Figure 16) and in the high-throughput reactiv-
ity screening HiREX workflow [11] specifically de-
signed to explore realistic catalytic systems and iden-
tify thermodynamically feasible chemical transfor-
mations, corresponding to secondary catalyst deac-
tivation and inhibition paths.

The method was validated by case studies on rep-
resentative multicomponent (de)hydrogenation
catalytic systems based on Mn(I) coordination

complexes with a special focus on probing uncon-
ventional and less expected reaction channels, which
could be responsible for loss of catalytically potent
species during the initial pre-catalyst activation. An
illustrative example is our computational analysis of
the activation of manganese pentacarbonyl bromide
(Mn(CO)5Br) with inorganic alkoxide base KOiPr that
is a common protocol for the experimental screening
and in situ generation of Mn-based homogeneous
catalysts [42]. The reactivity exploration was car-
ried out with parallel metadynamics simulations
on a minimal model constituted by the two main
reagents only (Figure 17a) using the CREST function-
ality (metaD/CREST) at the GFN2-xTB level [43]. The
reactive trajectories were populated using the root-
mean-square-deviation (RMSD) in Cartesian space
as a metric for the collective variables [43], while
the pushing and pulling strengths (k and α) were
systematically varied over the parallel simulations.

The analysis of the reactive trajectories with the
2D-MolGraphs yielded a reaction network contain-
ing 12 conformers, which after trimming the edges
exceeding an arbitrary threshold of 25 kcal/mol, pro-
duced the reaction network shown in Figure 17b.
State (1) corresponds to the starting configuration
with unreacted Mn(CO)5Br and KOiPr, which can
transform to one of the new species identified by
the 2D-MolGraphs from the reactive trajectories (Fig-
ure 17c).

Our automated procedure revealed that all reac-
tion paths involve the reaction of the alkoxide nucle-
ophile with the Mn(I)-bound carbonyl ligand to form
a Mn–acyl complex (2). Due to its approximate na-
ture, the GFN2-xTB method incorrectly predicts fur-
ther migratory insertion of CO with the –C(O)OiPr
species yielding species (4) and (8) to be also ther-
modynamically favorable. Subsequent energy refine-
ment at the DFT level restores the agreement with the
experimental observations. Similar reaction paths
were identified for more complex catalytic model
containing the molecularly defined Mn(I)-catalyst
stabilized by a bidentate diamino ligand, the alkox-
ide base, two isopropanol solvent molecules and ace-
tophenone as a model substrate. Simulations sug-
gested that the nucleophilic attack of the alkoxide an-
ion by the Mn-bound carbonyl ligand may initiate re-
action paths resulting in a (partial) decoordination of
the organic ligand, which can be considered the on-
set of catalyst deactivation [5].
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Figure 16. Schematic representation of the ReNeGate workflow from [5] involving the sequential reactive
space exploration, the structure analysis using the 2D-MolGraphs in the fingerprinting and network
construction parts, with the reaction network generation and refinement steps (trimming).

These computational insights have inspired the
experimental finding on the stabilizing role of Lewis
acid additives mediating the nucleophilicity of the
alkoxide base allowing to considerably extend the
lifetime of the homogeneous Mn(I) catalysts [44] and
the discovery of new Mn-mediated C–C coupling
chemistry [45].

The application of our reaction network analy-
sis approach was further extended towards high-
throughput computational reactivity exploration and
automation identification of the classes of reac-

tivity patterns within specific catalyst groups (Fig-
ure 18a) [11]. We have applied this workflow to a
virtual library containing 576 Mn-pincer complexes
corresponding to four distinct pincer families with
varied functionalization of the ligand backbone (R1
and R2 functionalities) and Mn coordination (X) (Fig-
ure 18b). The 2D-MolGraphs were used to ana-
lyze the reactive trajectories, as well as to featur-
ize and label the discovered new configurations and
intermediates following the changes in the interac-
tion patterns observed during the transformations.
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Figure 17. (a) Metadynamics simulations of the reaction between Mn(CO)5Br and KOiPr yield reactive
trajectories, from which (b) a reaction network has been constructed with the respective three represen-
tative 2D-MolGraphs presented in (c). Colors for the 2D-MolGraph vertices: dark gray for carbons, red for
oxygens, dark blue for postassium, pink for the manganese, and green for the bromide. Solid black edges
in the graphs represent covalent bonds, the red dashed edges represent the organometallic interactions.

K-mode clustering analysis on the resulting labeled
database (Figure 18b) has provided new insights into
the reactivity of Mn(I) pincers and how it is af-
fected by the structural modification of the ligand
backbone.

Specifically, the calculations indeed revealed
multiple paths involving the nucleophilic attack
on the carbonyl ligand and decoordination of the
pincer ligand. Depending on the ligand’s nature
and structure, the thermodynamic favorability of
such secondary conversion paths varies greatly pro-
viding thus an opportunity to tune the stability
and reactivity of the transition metal catalyst, and
guide the exploration of new chemical conversion
paths.

4. Prospects and new developments in
progress

With this review, we believe that the topological 2D-
MolGraphs and associated graph algorithms have
been shown to be powerful tools for analyzing atom-
istic molecular dynamics trajectories and extract-
ing the actual conformations sampled over time.
Demonstrations were carried out on gas phase flex-
ible molecules and inhomogeneous aqueous inter-
faces in the condensed phase. We have also shown
the relevance of different levels of granularity to be
used in the topological graphs. In particular, the
coarse-grained approach of graphs of polymorphic
H-bonded cycles was shown decisive in order to
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Figure 18. (a) A perspective workflow for the chemical space exploration and automated reactivity
analysis of virtual catalyst libraries involving 2D-MolGraphs as the core component of the dynamic
trajectory analysis and structure featurization. The method was used for (b) the reactivity screening of a
virtual library of 576 Mn(I) pincer complexes followed by K-mode clustering analysis of the resulting data.
The figure presents top 10 clusters showing the most frequent types of interaction changes as a function
of different functionalization at R1 site for each pincer class. The color coding is given at the bottom of
the figure.

rationalize the dynamics of a flexible hexapeptide.
The “metastructures” over which the dynamics of this
peptide is built could be found only at this level of
topology representation.

We have also shown that the 2D-MolGraph ap-
proach can be easily coupled to global workflows
that include several theoretical methods to sample
conformational and reactive chemical spaces. The
topological graphs were inserted in high-throughput
in silico chemical reactive workflows in homoge-
neous catalysis. The conformational fingerprinting
provided by the 2D-MolGraphs was decisive in sev-
eral steps of these workflows. The outcome of these
reactive workflows would not have been as easy and
successful without the topological graphs. These
works continue.

Ongoing works and developments also include
for instance the use of the 2D-MolGraphs to ex-
tract the knowledge of structural motifs at aque-
ous interfaces. For instance, it is of utmost im-
portance to reveal the motifs formed between the
sites at the surface of a solid (for instance silica ox-
ide as in [46,47]) and the water molecules located
at the interface with the solid in the Binding In-
terfacial Layer (BIL). These motifs are not only re-
sponsible for the spectroscopic signatures recorded
at aqueous interfaces, typically by SFG (Sum Fre-
quency Generation) spectroscopies, they are also in-
volved in the chemical reactivity of these aqueous
interfaces. Motifs and their vibrational fingerprints
have already been discussed in [47] for aqueous sil-
ica interfaces. We are developing algorithms that



22 Sana Bougueroua et al.

can automatically recognize and classify these mo-
tifs from the 2D-MolGraphs, for instance in terms
of the sizes of the H-bonded cycles formed between
surface sites and water molecules and in terms of
their statistical distribution in space within the BIL.
The same algorithms will also be applied to the water
molecules in the BIL of biomolecules. This is also on-
going work, using the atomistic 2D-MolGraphs and
the coarse-grained polygraphs of H-bonded cycles.

Naturally, databases of 2D-MolGraphs and coarse-
grained polygraphs can be built up and connected
to AI (Artifical Intelligence) and machine learning
techniques. This is where our next step will take us.
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