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Abstract. The pressure drop required by available chromatography column packings constitutes an
operational drawback. Some attempts to solve this problem have been directed toward the use of
packings composed of a multiplicity of capillary tubes working in parallel, as a high factor of gain
on the pressure drop appears possible. Unfortunately, the small differences in dimensions among
individual capillaries have made this solution unpractical.

In this study we show that the superimposition of a radial diffusive term between adjacent
channels efficiently eliminates this limitation. The behavior becomes that of common particulate
packing, with the benefit of a pressure drop that is lower by approximately one order of magnitude for
identical characteristic dimensions. The effect is quantified for long retention times by a combination
of theoretical, transfer function analysis and simulation studies. The reduced partial height equivalent
to a theoretical plate (HETP) of the dispersion phenomena is given quantitatively by the following
formula valid for high k when the mass transfer resistance of the stationary phase is negligible:
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Résumé. La chute de pression requise par les garnissages de colonne de chromatographie actuels
constitue un inconvénient ayant des conséquences opérationnelles et financiéres. Certaines tenta-
tives pour résoudre ce probléme ont été orientées vers I'utilisation de garnissages d’'une multiplicité
de tubes capillaires travaillant en paralleéle. Malheureusement, les faibles différences de dimensions
entre les capillaires individuels rendent cette solution sans intérét pratique. Dans cette étude, nous
montrons que la superposition d'un terme de diffusion radiale entre canaux adjacents élimine effica-
cement cette limitation. Le comportement devient celui d'un garnissage particulaire commun, avec
I'avantage d’'une chute de pression qui est inférieure d’environ un ordre de grandeur pour des dimen-
sions caractéristiques identiques. Leffet est quantifié pour les longs temps de rétention par une com-
binaison d’études théoriques, d’analyse des fonctions de transfert et d’études de simulation. Le HEPT

partiel réduit des phénomenes de dispersion est donné quantitativement par la formule suivante va-
lable pour k élevé lorsque la resistance au transfert de matiére de la phase stationaire est négligeable :
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1. Introduction

The use and performance of chromatographic sepa-
ration in today’s laboratories and industry is greatly
impeded by the pressure drop required by available
particulates column packings. Chromatography to-
day imposes to force flows through beds of extremely
small particles from 50 down to 1.7 um diameter with
extremely high resistance to the percolation of a fluid.
This induces high pressure drops of several hundreds
of bars [2].

In the analytical field, ultrahigh-performance liq-
uid chromatography (UHPLC) technology is ulti-
mately limited by the extremely high pressure drop
of the ultrafine powders used as separating media.

The packing uniformity is of relevance to the
chromatographic efficiency. The non-uniformities of
the bed will cause irregular flow patterns leading
to losses in efficiency. Particulate beds are difficult
to stack uniformly [3] due to their size and ultra-
fine nature and the wall effects of the container, and
they suffer from a lack of long-term stability due to
their slow deformations when subjected to flow, pres-
sure and cycles. In industrial liquid chromatography
(LC), stabilizing and containing large column beds
involve levels of complexity and high costs that pro-
hibit the use of this powerful separation method in
most chemical processes.

Attempts to solve this problem have been directed
toward the use of monolithic packings, manufac-
tured both in polymers [4] and in silica gel [5]. Extrap-
olation to large sizes has proven a difficult problem
for both organic and inorganic monoliths.

The permeability of capillary tubes is much
higher. In the field of gas chromatography (GC) the
empty monocapillary Golay column [6], 50 to 500 pm
diameter, has gained large acceptance. Its low pres-
sure drop allows to make it exceptionally long, and
to develop high number of plates or efficiency. This
technique has not been used in LC because of the
small channels diameters that would be required, 1
to 10 um. This difference, consequence of the much
lower molecular diffusion coefficient in liquids,
makes the corresponding LC system unpractical.

Another route has been to use packings composed
of a multiplicity of capillary tubes working in paral-
lel [7-12]. The stationary phase is constituted by or
covers the wall material and exchanges mass by dif-
fusion with the fluid in the channel core. The fluid
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flow path becomes perfectly linear with no obstacles.
This geometry could combine the advantage of the
low pressure drop of a capillary, and the throughput
of existing columns. It could thus be compatible with
existing LC instruments.

Multicapillary packings are monolithic in nature
and are potentially much easier to extrapolate due to
their manufacturing processes.

Unfortunately, the small differences in dimen-
sions between the individual capillaries, the difficulty
of coating them evenly with the stationary phase and
the differences in their individual aging negatively
affect their short- and long-term efficiency and has
made this solution very limited in practice [13,14].

Colocated monolith microstructures with highly
interconnected capillary channels have been de-
scribed and developed for analytical purposes [12].

The field of multicapillary chromatography is nev-
ertheless currently attracting growing interest.

This interest stems from the fact that this ap-
proach offers an attractive solution to the pressure
drop problem.

Schisla et al. [13], Sidelnikov [14,15] and Jes-
pers [16] analysed the behaviour of a bunch of indi-
vidual capillaries.

It has been derived theoretically by Giddings [17]
that the band broadening due to mobile phase flow
can be affected by the coupling between diffusional
transverse flow between fluid elements and the dis-
persion caused by independent fluid element flowing
at different velocities (or so called eddy diffusion).

Their importance has been evaluated [18] for par-
ticulate packings. This effect has been studied by sev-
eral researchers [19-23].

The simulation of radial diffusional effects in
chromatographic columns has been undertaken. The
focus of previous studies has been mainly on con-
sidering axial diffusion, in one-dimensional column
models, because of its direct effect on peak broaden-
ing [24-28]. Some studies [29-31] examined the effect
of aradial transfer phenomenon, heat transfer, on the
efficiency of UHPLC columns. Studies did explore by
simulation or random walk consideration the effect
of radial diffusion through packed beds [19-21,32].
Giddings considers that the exchange of mass be-
tween different convective flow path can occur by
mixing (leading to a partial HETP &) and by diffu-
sional exchange (leading to a partial HETP hp), both
phenomena being coupled. The coupling of both ef-
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fects must lead to an efficiency better than the one of
each of the phenomenon taken separately.

The present multicapillary columns can be con-
sidered as limited to the mixing step only. It can
thus be expected that the addition of a diffusional
exchange between the independant fluid flow paths
constituted by the channels core will improve the be-
haviour of those systems. To the best of our knowl-
edge, the application of this coupling on the theory
of multicapillary chromatography and as a way of im-
provement of this technology has nevertheless never
been identified and quantified.

The aim of this study is to estimate the effect of a
diffusional flow, passing through bridges of pores be-
tween channels causing the eluting bands in the fast
or slow channels to discharge by molecular diffusion
in channels flowing with an average velocity.

To quantify and check this effect, we thus con-
ducted a short theoretical derivation based on Gid-
dings Random Walk theory. As the quantitative
predictions of this coupling were considered by
Giddings himself as estimates within an order of
magnitude, we verified the results by two indepen-
dent approaches, by transfer function analysis of the
coupled system, and by computer dynamic simula-
tions of a multicapillary array based on the method
of lines. The simulations of the residence time dis-
tribution (RTD) of a capillary array were performed,
recorded, and analyzed, in presence or absence of
an interchannel diffusive effect, or diffusional bridg-
ing. This first work will focus mainly on the zero-
retention case, as the case with solute retention ap-
pears to be still the object of discussions [17,19-21]
and as it describes the case where the resistance to
mass transfer of the stationary phase layer is negli-
gible because its thickness is low, its mass diffusivity
high, or the solute retention factor is high.

The presented work will be divided in the follow-
ing sections:

1. We will recall some basic findings regarding
the pressure drop gain that can be expected
using capillary packings as chromatographic
beds instead of particulate packings or other
existing technologies.

2. We will present our results derived from Gid-
dings theories applied to chromatography
in multicapillary arrays. The effect of dif-
fusional bridging will be estimated and its
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effect compared with the performance of
present state of the art multicapillary chro-
matography.

3. We will analyze the transfer function of a
coupled system constituted of two coupled
capillaries.

4. We will present our results obtained by the
numerical simulation of multicapillary ar-
rays by an ordinary differential equation
(ODE) integration and compare them with
the theoretical predictions.

5. We will conclude on the potential of this
new approach for analytical and preparative
chromatography.

2. Theoretical results

2.1. Fundamental equations

We adopted for this study the Golay equation [6] writ-
ten:

‘u
1)

where h is the reduced HETP, k is the retention factor,
Dy, the solute diffusivity in the mobile phase, D;
the solute diffusivity in the stationary phase layer.
u is the true reduced mobile phase velocity in the
open channel’s core, e, the thickness of the stationary
phase, r. the radius of the open core. This form is
valid for thin layers of porous stationary phase.

Let us recall the expression of the Knox Van
Deemter equation:

2 1+6~k+11(k)2] [1 k Dm(ﬁ)z

h=— R —
u+ 96- (1 +k)? 6 (1+Kk)? D;

e

B/
hp=A-w)®+—+C-up 2)
Up
With for C the expression proposed by [33,34], for
example:

(1+k-2)? Dy,
C= — 3)

30 Ppari-(1-2)-(1+k)2 D,
In this case the reduced velocity of the mobile phase
in the bed of particles u, is relative to the reten-
tion time of an unretained species. hy, is the reduced
height of a theoretical plate in the bed of particles.
Ppart is the tortuosity coefficient of the particle stack-
ing, z is the fraction of mobile phase outside of the
particle, D, is the intraparticle diffusivity, D, is the

diffusivity in the mobile phase.
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Figure 1. Detailed morphological structure of the multicapillary packing.

2.2. Geometry simulated

Figure 1 shows the geometry simulated: the packing
is composed of a porous mass containing the sta-
tionary phase or being constituted by it. This porous
mass can be coated with a stationary liquid or gel of
thickness e, or constituted by a mesoporous, high
specific surface solid like silica gel or a polymeric,
cross linked, gel.

Straight empty channels of diameter d. run
through this mass and conduct the convective flow
of mobile phase through the packing. The porous
mass allows diffusion of sample molecules from each
convective channel to its neighbors.

2.3. Pressure drop comparison between capillary
and particulate packings

The comparison of pressure drop in capillaries and
particulates beds can be established based on Darcy’s
law: e I

xUux L*v
ap=—t =2 (4)
where AP is the pressure difference between inlet
and outlet, K is a permeability coefficient, u the mo-
bile phase viscosity, L the column length, d a charac-
teristic diameter, and v the empty drum velocity.

For present chromatographic beds made by stack-
ing spherical beads, the permeability coefficient K is
comprised between 500 to 800 [2]. For empty capil-

laries, we derived from Poiseuille’s law:
32
K=—
Ec

(5)
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where ¢, is the volume fraction of the channels in
the multicapillary bed. In practice, it can vary from
0.4 to 0.8, which means K can vary from 80 to 40 for
multicapillary beds, respectively. As discussed above,
the much higher permeability of multicapillary beds
stems from their simpler, straight, minimally dissipa-
tive flow pattern.

We found that the ratio R, of the pressure drops
through particulate beds and multicapillary packings
at similar diffusional path length, particle diameter
and channel diameter is simply given by the ratio of
their permeability coefficients and can be expressed
as follows:

Rp=25x¢, (6)
We consider here, as a simplification, that the char-
acteristic diffusional distance governing the mass
transfer resistance is the particle diameter for partic-
ulate beds, and the channel diameter in the multi-
capillary case.

Within the validity of those assumptions, at equiv-
alent efficiency, the operating pressure of the multi-
capillary system is from 10 to 30 times lower than that
of the particulate packing system depending on the
thickness of the stationary phase.

At equivalent HETPs, identical stationary phase,
identical void fraction and identical velocities the
operating pressure of the multicapillary system AP,
is 15 times lower than that of the particulate pack-
ing system AP, more than one order of magnitude
(AP,/AP. = 14.6).

The multicapillary monoliths offers an additional
advantage over beds of fully porous particles: the
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void fraction of the monoliths can be changed by
an adjustment of the thickness of the porous layer
surrounding the channel. This may give them a ki-
netic behavior like that of core shell microspheres,
or oppositely allow them to carry higher loads of
molecules to purify.

The core shell packings have the advantage over
fully porous particles of a better kinetic behavior, due
to the shortened diffusional path in the outer particle
layer and better packing density [35]. With multicap-
illary packings, the kinetic behavior can be freely im-
proved by making the stationary phase layer coating
the tubes as thin as necessary, keeping the advantage
of a one order of magnitude gain in pressure drop at
equivalent efficiency or speed.

New ordered packings like micropillar arrays [12,
16] have been found efficient but lack in several re-
spects the benefits of radial diffusional dampening,
and are subject to wall effects. Micropillar arrays
are today limited in resolution to micrometric struc-
tures [12] and need specific, microflow equipment.
Multicapillary arrays can be manufactured with sub-
micrometric channels with simple processes [36-39],
down to 0.2 um diameter channels or less. This allows
theoretically unsurpassed performances on achiev-
able number of plates and analysis velocity with ex-
isting equipment.

2.4. Case of independent channels

As stated previously, the theoretical performance of
multicapillary packing has been up to now limited by
the difference in individual behavior of the distinct
capillaries.

The state of art of multicapillary packings are con-
stituted of a bunch of independent capillaries.

Figure 2 presents a scheme of their behavior. Inde-
pendent channels behave as independent chromato-
graphic columns with unequal output signals due to
differences in channels diameters, stationary phase
loading, length, and aging. This unevenness can be
considered by an additional variance of the output
signal.

Among those sources of variances, the most sensi-
ble is the channel diameter, as the velocity of the mo-
bile phase vary with its square, and the flow rate vary
with its fourth power.

Shisla er al. [13] gave an analysis of the chromato-
graphic behavior of a multiplicity of independent
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channels. This study is based on the Golay equation
and considers a normalized distribution of several
parallel capillaries of radii distributed according to a
function g(R) and of equal lengths.
Writing the Golay equation in partial contribu-
tions with a polydispersity term gives:
(0'2> = (0'2>axial diffusion <0'2>Taylor Aris dispersion
+ <02>stationary phase T <(72>polydispersity )
The conclusion of the study by Shisla et al. is that the
polydispersity of the channels is a potentially devas-
tating effect, particularly near optimum velocity.
Shisla equation can be rewritten in terms of partial
height contribution £, as usual:

h = haial diffusion hTaylor Aris dispersion

+ hstationary phase hpolydispersity

Sidelnikov [14] studied the case of a capillary array
with a random distribution of diameters. The capil-
laries are supposed to have a diameter constant along
their length, and the diameters are distributed ac-
cording to a Normal Law of standard deviation o,.
Sidelnikov proposes the following law:
L-oy 2+@-a) kP )

dz 1+ k)2
where «a is a coefficient close to 1 in the present case.

Consequently, the number of equivalent theoreti-
cal plates (NETP) increases with length from L/ H, for
short lengths up to a limiting value NETPyjpjing that
cannot be exceeded.

H is the HETP of the array, H. is the HETP of the
single average capillary, the third term is a HETP Hy
attributable to the diameter dispersion of the chan-
nels

H=H,+

L (o4)\72 1+ k)?
NETPlimiting =7 =75 . [

H; \d, 2+(B-a) k2 @

2.5. Theory of diffusional bridging effect

If the capillaries are not independent but instead
communicate by diffusion, the behavior becomes
different.

Figure 3 gives a scheme of this disposition. Molec-
ular diffusion is allowed between channels through a
porous wall supporting the stationary phase.

2.5.1. Previous theoretical works: the Giddings ran-
dom walk considerations

The phenomenon considered in this theoreti-
cal work can be considered as a coupling between
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Fast Channel

Slow Channel

Figure 2. Hydrodynamic behavior of an array of independant parallel capillary columns. The different
residence times cause a dispersion of the mixed signal at the column outlet.

Fast Channel

Slow Channel

-

Figure 3. Effect of diffusive bridging on an array of parallel capillary columns. The coupling levels the

individual differences.

molecular diffusivity and the diffusion caused by mo-
bile phase velocity inequalities, or eddy diffusivity.
Giddings [17] presents in his book theoretical guide-
lines to consider this aspect of band spreading in par-
ticulate beds. Giddings considers that the exchange
of mass between different convective flow paths can
occur by mixing (leading to a partial HETP hy) and
by diffusional exchange (leading to a partial HETP
hp), both phenomena being coupled. Giddings for-
mulates his reasoning by analyzing the path of a dif-
fusion like a random walker in a column.

The reasoning of Giddings is based on three equa-
tions (see also Khirevitch, Tallarek et al. [21]):

1. Definition of plate height as the ratio of the
variance of the analyte zone to the distance
traveled by the center of the band:

He? (10)
L
2. Einstein’s mean square displacement for-
mula
o?=2. Dy, -t

which can be expressed as a characteristic
time fmp associated with a characteristic dif-
fusion length I:

lZ

=20, (1)

tmp
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3. The relation for the variance o of the dis-
placement of a random walker:

g?=1%n (12)

Here, L is the column length, [ is the average
length of the random walker step and 7 is the
number of steps.

Giddings quantifies the effect through the use of
three parameters, w, is the distance between ex-
treme flow velocities in the packing measured in
particles diameters d, units; wg is the ratio be-
tween one flow extreme and the average flow; w, is
the persistence-of-velocity distance between which
two independent flow paths persist before remixing,
measured in dj, units.

This derivation gives for the partial HETP term
due to this coupling:

1
hdisp = 1 1 (]-3)
7w TRy
where hyg;sp is the reduced overall HETP resulting of
the coupling of hp reduced height resulting of diffu-
sion and hy reduced height resulting of flow (eddy)

mixing.
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Diffusive exchange leads to the plate height ex-
pression:

(14)

with v, being the true mobile phase velocity in the
channel’s core, and flow exchange leads to:

wy * w%

hf:T*Z*dC (15)

Giddings distinguishes five scales corresponding to

five contributions h¢, hp to the overall variance:

1. The transchannel contribution. In the case of
Golay columns, this corresponds to the dis-
persion due to the laminar parabolic velocity
profile, or Taylor Aris term.

2. The transparticle effect. In the case of a mult-
icapillary packing, this corresponds to a tran-
schannel effect. The source of zone spread-
ing are the inhomogeneities between the in-
dividual channels, arising from differences
in diameters, in stationary phase loading, in
length, and in aging.

3. The short range interchannel effect. We will
suppose that the capillaries are regularly dis-
tributed with only purely random variations
in diameter and stationary phase thickness.
This effect disappears in this case.

4. The long range interchannel effect. Multi-
capillary structures are monolithic in nature.
They are not subject to packing procedures.
As such this effect will be supposed to have
no validity.

5. The transcolumn effect. Multicapillary struc-
tures present no defect near column walls,
as they have their own fluidic characteris-
tics with their own stationary phase layer. As
such this effect will be supposed to have no
validity.

Other variables can be possibly affected of a ran-
dom variation:

o the channels’ averaged ratios of eluent to sta-
tionary phase,

o the length of the channels

« the differences in curvatures between chan-
nels,

o the channels’ internal surface imperfection
or asperities

» other mechanical inhomogeneities or imper-
fections of the stationary phase.

C. R. Chimie, 2020, 23, n° 6-7, 415-431

Those different factors can themselves vary locally
along the channel length. We have restricted this first
study to the transchannel effect linked to random
variations of channels’ diameter at constant reten-
tion factor.

wg is the distance between flow extremes between
which molecular diffusion occurs, leading to the dis-
persion phenomena, measured in this case in d,
units. In our case we will assume it equal to 1, dis-
tance separating two adjacent channels.

wg is the ratio in velocity between the extreme and
average flow measured in v, units. The velocity in a
channel is proportional to the square of its diameter.
Neglecting second order terms, we will take wg equal
to two times the diameter relative standard deviation
2%0 rel-

w) is the persistence-of-velocity distance between
which two independent flow paths persist before
remixing, measured in d. units. In our case the
persistence distance is simply the reduced column
length [, so w) is equal to I/d,.

Those values must be taken as simple starting hy-
pothesis, as the underlying phenomenon is in fact
constituted of a much more complex arrangement
of randomly disposed channels. A complete estab-
lishment of their probabilistic relevance has not been
done. The problem of a grid of channels having ran-
dom diameters exchanging mass by diffusion with six
neighbors is of a much higher mathematical com-
plexity and a control of the result is not obvious. We
have found more complementary to conduct first vir-
tual experiments by computer simulation. In addi-
tion, the transfer function of a twin channel has been
derived analytically and used to validate the general
physical findings and the simulation results.

With those omega values hp and hy are written:

2 g2
_adisp-z-a ds-ve

hD — Drel (16)
m
hf:4*afel*l a7

@gisp is a geometrical factor considering the cylin-
drical nature of the channel and the numbers of ex-
changing neighbors. In a hypothetical planar and
parallel configuration of the channels, agisp = 1.
Reintegrating those values in (13), one obtains:

1
hdisp = Do 1 (18)

4x02 *1
rel

2 12
Qdisp 20 -di-V

This last value agrees with (8).
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2.5.2. Assessment of packing performance with a sta-
tionary phase layer

The influence of the mass transfer in the station-
ary phase and its coupling with the Giddings eddy-
mass transfer theory has been examined by various
authors [17-21].

According to Giddings [17], the eddy dispersion is
only slightly influenced by retention factors.

Writing in reduced terms:

2 o.fel
ha = T, A (19)
D-u = 21
When, according to Giddings, the resistance to trans-
fer can be neglected in the stationary phase, the dis-

persion term D is written (24):

D = aqisp (20)

And according to Sidelnikov [12,15] (9) we can write:
L 4-(1+k)?

(21)

Td. 2+ G- kP
2.5.3. Final equation

We suggest writing the modified Golay equation
with a term A:

B
h=—+Cp-u+Cs-u+A (22)
u

For the present numerical computations, in agree-
ment with Giddings’ work, we took aqjsp = 1.

3. Transfer function analysis
3.1. Determination of the transfer function

Since the pioneering work of Martin and Synge [40],
the transfer function of chromatographic systems
has been examined by various authors, Lapidus
and Amundson [41], VanDeemter, Zuiderweg and
Klinkenberg [42], and others.

The basic method consists in writing the mass bal-
ances characteristic of the system in the time domain
and transfer them in the Laplace domain to find the
expression of the transfer function.

This last expression is inversed in the time domain
whenever possible, or its moments are directly com-
puted from the Van Der Laan relationship:

pr = (=DF-

(sIC_G‘ (23)
&sk o

Ui being the moment of order k and G the transfer
function.
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Analytical solutions of the transfer function is in
practice possible only for systems limited to two or
three differential equations.

We will consider and limit the problem to two ad-
jacent channel exchanging mass by diffusion with an
exchange coefficient k;, through a fraction f of their
circumference a;,. This geometry is represented on
Figure 4. The axial diffusion D, is not considered in
the analysis. This limits the ODE order to two and has
no impact on the final results as the different contri-
butions are additive in the limit of a high number of
plates.

The differential equations to resolve are written:

8112 15,2 C ks C-C)  (29)
1 1757 = k2 an(G -G
0C. o0C:
So-ly—2 +Sy—=2 = kip-a1a(C; —Cy)  (25)
0z ot

The index 1 relates to a first channel, the index 2 to a
second channel. S; is the channel i section, u; is the
velocity of the fluid in the channel i, C; is the molar
concentration in channel i.

In the Laplace domain, Equations (24) and (25)
become:

5C1 — _
51'1416—;+51'S'C1 =kiz-a12(Co—C1) (26)

5C, — .
32'M26—Z2 +82-5-Co=kiz2-a12(C1 —Co)  (27)

Introducing:
1
Y= (28)
ki2- a2

After transformation in function of C; and C;:

_ 5Cy — =
szy.sl.ulg+y~sl-s‘cl+cl (29)

— 6C, _
C =7-Sz-u26—zz +7:8-5C+Cs (30)
From (27) and (29):

up-u &+(u s+ -2 4y s+ 4 ) @

172522 2 Y-S ! v-S2) 6z
— 1, 1 1

+Cp-|s"+s- + =0 (31)
Y-S1 S

which is an ODE of the second order with two distinct
roots.
The determinant A of (30) is:
uy U ))2+ 4-u1-u2
Y-S2 v-S1 ¥?-81-S>
(32)

A:((ul—ug)-s+(

A is always positive.
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of circumference
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Figure 4. Mass Exchange scheme of the transfer function: twin tubes exchanging mass through an

arbitrary fraction f of their circumference.

The roots are written:

2
_ Lo+ 2 Lo+ M) 4 _ . LI Augup
(uz Styg st y,sz),\/((ul uz) s+(y.s2 76 )) +72_sl.52

2-uy-up

ri=
(33)

When u; or up approach zero, the only definite root
is the one with a plus sign before the square root,
noted r;.

We obtain for the transfer function of a column
with a length L:

G=e"t 34)
The first moment p; and the second centered mo-
ment y;, will be evaluated with the Van Der Laan re-
lationship, in the particular case of two channels sys-
tem. S; and u; are set distinct from an average value
by a negative and positive standard deviation o, as-
suming two channels with an equal length and pres-
sure drop:
uy=v-(l1-o)

$1=8-1-0)

(35)
u=v-(1+0)
Sz=S-(1+O‘)

We pose that the standard deviation on the circular
channel’s section is twice the one of the channel’s
diameter:

og=2-04 (36)
After straightforward tractation of (23), (33), (34),

(35), (38) and (39), we obtain from Van der Laan the-
orem:

L 2
l~11=;'(1—0) (37)
The retention time is identical for each channel.
(L a 2))2+ L-S- o2 -
= _— —_ O' —_—
He v v- k12 a2

For the second moment, and for the corresponding
central moment:
L-S-o?

!
=— (39)
Ha= o k12 - a1z
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The kj» term can be expressed with the help of the
Sherwood Number definition, d being here the aver-

age channel diameter:

kio-2-d
Sh=—2°"7 (40)
Dp
And taking a,, as a fraction f of the channel’s circum-

ference

ap=f-2-n-d (41)
We obtain from (36) and (37), taking into account that
mass transfer occurs between two tubes flowing in

laminar regime in series:
S d?

= 42
kia-cis  2-Sh-f-Dm “2)
Dividing ), by u? we get:
1 2-u-0?
Ho 1 _ d (43)

@2 N I-f-Sh
And for the reduced partial height of theoretical plate
of the dispersion phenomena:

I 2-u-o?

d
=—=—4@ 44
N f-Sh (“44)
From comparison of (18) and (44) we get:
1
Qdisp = Fosh (45)

3.2. Determination of the transfer function

ki2 in (42) depends on the sum of the mass transfer
resistance of the mobile phase in tubes 1 and 2, and
of the mass transfer resistance of an eventual station-
ary phase in between. k;, will approximate the resis-
tance of the mobile phase when the mass transfer re-
sistance of a stationary phase can be neglected. This
means that in most practical cases of retention fac-
tors, with significant surface diffusion on the station-
ary phase, liquid-liquid partition chromatography, or
small e./d; the formula (42) must give a good ap-
proximation of the losses due to channel dispersion.
This agrees with Gidding’s guesses.
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Quantitatively, this can be shortly estimated by the
comparison of the transfer coefficient k;, in the flow-
ing mobile phase of diameter d, and the transfer co-
efficient k; in the stationary phase layer of thickness
e, considering the partition coefficient K.

Sh -D
ko = Tube m (46)
de
Shwan - D
ks = Ksk 47)
ec

With K; being related to the average stationary phase
layer concentration, and Dj; to the effective diffusiv-
ity in the stationary phase layer. The effect of the in-
terstitial material (see Figure 1) is neglected.

It follows:

k L ! (48)
Km T &s
If kg/ky, > 10, the right part of (48) reduces to k;, /2.
k2 = 3 km (49)

If we consider that D; = 0.1D;,, e, = 0.1d;, and
as a simplifying assumption Shyype = Shwai, Equa-
tion (49) is valid for K; > 10. For e, = 0.1d,, this
means that the retention factor k must be superior
to 2, condition which is in general realized.

It must be underlined that this constitutes an over-
estimate, as the transfer phenomena to the station-
ary phase occurs partly in an unsteady state manner.
This will be the object of further investigations.

4. Modeling
4.1. Simulation methods and starting hypothesis

The system to model is an infinite array of parallel
chromatographic capillary columns with randomly
variable diameters.

An abundant literature describes the computation
and simulation of chromatographic performance of
beds of particles based on either purely mathemat-
ical or computational calculations [24-28,43]. Com-
putational models are based on different classical
schemes, generally propagation through a grid, or an
integrated set of differential equations. In this last
category of computational models are general rate
models, lumped pore diffusion models, and equilib-
rium dispersive and transport dispersive models. The
present modeling approach differs from previous at-
tempts in that it adopts as its starting point a dis-
cretized model based on the method of lines [44].
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The method of lines consists in writing locally on
a grid the partial differential equations to be in-
tegrated, separating the space terms and the time
dependent terms. The space terms are calculated
with the differential terms approximated by algebraic
equation linearly interpolated from the grid values,
and the integration in time is conducted by an ODE
solver.

This allows to rely on a purely physical integration
of first principles of chemical engineering, describ-
ing basic physical laws, diffusion, fluid dynamics and
thermodynamics at a very small scale where they can
be assumed linear, in an explicit way easier to under-
stand, correct, and debug. This needs minimal hy-
potheses. It relies on the discretization to build the
integrated result taking account naturally the vari-
ous effects like Taylor Aris dispersion, dominant mass
transfer phenomena, and purely diffusional effects.
The result can allow quantitative and precise results
with the lowest possible risk due to erroneous prelim-
inaries.

Our aim will be to check the diffusional bridging
phenomena limited to the resistance contribution of
the channel’s cores. Two resistances can be expected
to limit the mass transfer between adjacent chan-
nels, the mobile phase flowing in the core channel
and the stationary phase separating them. Previous
Sections 2.5.2 and 3 did discuss this limitation. We
will focus on the analysis of the effect of the mobile
phase resistance, that must be the predominant one
for practical cases of retention factors, diffusivities,
and stationary phase thicknesses. To study the basis
of the effect of radial diffusion on column efficiency,
the simplest geometry is in this case sufficient, and
we will restrict the analysis to the peak at zero reten-
tion (residence time distribution) of a bundle of cap-
illaries without stationary phase accumulation and
with channels directly exchanging mass.

4.2, Mass balances and initial and boundary
conditions

Channels are considered circular with a hexagonal
arrangement. Mass is exchanged through one sixth
of their circumference with each of the six adjacent
channels. The channel diameter is assumed to be
uniform along each capillary, and the individual val-
ues vary according to a normal law with a standard
deviation o4 around a mean value d.. The array of
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channels is discretized along its length in N equidis-
tant slices defining the cells (Figure 5).

The model is a cascade of continuously stirred
tank reactors (CSTRs) (one CSTR of molar accumu-
lation X per cell) (Figure 5 (a)).

The capillary array is arranged in a regular geom-
etry with a hexagonal pattern (Figure 5 (b)). The side
effect of a limited size system on corners (two neigh-
bors) and sides (three neighbors) are taken into con-
sideration. The overall simulated system is approxi-
mately a square of N x N channels.

N * (ComponentNumber — 1) mass balances (one
for each cell) are written in differential form:

Ordinary differential equation set

Xmnij
i -_ .. n — PR n
= Fi1ij* Croy = Frij* Crp g
dt
Saxiali j
0]
+Daxial* (Cf—l,i,j_cl’?i,j) * I
Saxiali j
n n 0]
+ Daial * (Cpyy ; ;= Cp ) * 7

6
n n
+ Y Kradial, i, jm * (Clinejm ~ Cli,j) * Sradial,Lim, jm
m=1

(50)

X is the molar accumulation in one cell, F is the

convective flow, C is the molar concentration, D is

the diffusion coefficient, S is the exchange surface, [

is the effective diffusional distance, k;,4i, is the radial

exchange coeflicient. Index [ is the rank of the cell

in the axial direction, index i and j are the algebraic

coordinate position of the cell in each slice, n is the
component index.

The initial and boundary conditions are:
t =10, +oo0[,

1=1-00,0[, X} =Xp;

0 _
Xo,i,j_o’

Fli,j = Fo,ij

0
XO,i,j

n>0 _
Xo,i,j - b”

n>0 _
Xo,i,j =0

= ai,j,
=0, o 0 -
— .. n> —

Xis0,i,j = % X504, =0 6D

n>0 _
XO,i,j =0

0
t =10, +o0|, Xo,i,j =aj,j,
(Daxial) x=0 = 0
(Daxial) x=1 =0
The pressure drop is imposed and identical for every
channel, the convective flow in each channel varies

accordingly.
kradial is defined by the following equation:
Deft
Kradial = %dlal (52)
radial
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eff . . . . .
where ef . is the effective diffusion length. It is

fitted by considering a Sherwood number equal to
3.66 for a laminar cylindrical flow as usually done in
chemical engineering.

Deft %366 5
—a 5
d. (63)

Each individual channel diameter is calculated ac-
cording to data calculated by a pseudorandom algo-
rithm generating a normal distribution.

The molar volume of the mixture of solvent and
analytes is assumed to be equal to the molar volume
of the pure mobile phase, which means that only the
case of small molecules (Molar Weight < 500 g) are
considered in this first study.

kradial =

4.3. Numerical parameters adjustments

Three main sources of error must be considered.

o The discretization grid
e The time step
e The arrays dimension (number of channels

N x N).

The dynamic simulation has been conducted on
a meshed model of an array of 41 x 41 capillary
columns. This dimension has been chosen after a
sensibility study of this parameter. The simulation re-
sults are fully stabilized for 41 x 41 grids, with a differ-
ence from the asymptotic infinitely wide array of less
than 2%.

The elementary cell volume axial thickness is
taken to be equal to a fraction of the final HETP (10 to
20%) in order to limit numerical dispersion effects to
less than 2% on the final measured asymptotic value.
The mobile phase is considered as a molar accumu-
lation in each cell.

The differential equations are integrated with an
explicit Runge-Kutta algorithm with a sufficiently
small time step to avoid numerical instabilities and
inaccuracy, according to the method of lines. In pre-
liminary testing we found the algorithm to be stable
if the ratio of the convective flow in one cell over one-
time step over cell accumulation is greater than 20,
which is like a Courant number. In practice, we used
typically time steps of 1 x 10~* s for simulating 10 um
channels. In this case, the simulation result is over-
estimated by less than 2% with regard to the limiting
case of an infinitely small time step.
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Figure 5. Axial (a) and radial (b) discretization scheme of the multicapillary array.

4.4. Software testing

Several tests have been done on the final code.

o The unsteady state radial diffusivity from the
central channel of the grid has been suc-
cessfully matched with Fourier heat equation
with a difference on the standard deviation of
the signal better than 5%.

e The first and second moments of the the-
oretical transfer function of a single input—
single output (SISO) two channels system
have been matched with results from a two
channels simulation with a difference lower
than 4.0%.

4.5. Hardware

The computation was conducted on an Intel Core i7 -
6700K with 8 cores and 4 GHz frequency. The average
duration of a run was 30 min.

The coding has been realized in object-oriented
programming under C++ on Microsoft Visual 2010
platform.

5. Numerical results
5.1. Case of independent channels

The following table (Table 1) gives the evaluation of
the number of theoretical plates achievable in the
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Table 1. Numerical values of NETPj;y;ting cal-
culated according to (9)

RSD=0,/10% k=0 k=5
0.5 10000 4981
1 2500 1245
2 625 311
5 100 50
10 25 125

case of independent, unbridged, channels, for ran-
dom distribution of their individual diameters and
for increasing relative standard deviation.

The quantitative results of (8) and (9) are well cor-
related with the simulation finding reported on Fig-
ure 6 as seen from their fit with the theoretical as-
ymptotic values of Table 1.

A relative standard deviation of 2% can be con-
sidered as achievable. It is the standard value of
commercial threads of artificial textiles. This maxi-
mizes the efficiency at only 625 to 300 plates which
is very modest for analytical and preparative pur-
poses, where values from 5000 to 50000 plates are
commonly achieved with present particulate pack-
ings. A relative standard deviation of 0.5% is required
to reach 5000 theoretical plates, which is the best per-
formance obtained in the monofilament stretching
for the optical fiber industry. For a 5 pm channel,
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NETP NETP function of Length for non Dispersive Packings
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Figure 6. Simulation of the limitation of NETP due to dispersive phenomena in non diffusive multicap-
illary array; channel diameter d,, 10 um; mobile phase velocity v, 940 um/s.

Table 2. Theoretical partial height of a multicapillary array with diffudional bridging from Gidding’s RW
Theory function of the relative standard deviation of channel diameter

Ol (%) Hp (um) Hp(um) Hgjsp (tm)  H (um) % Dispersive
0 0 0 0 3.11 0
1 0.0188 40.02 0.0188 3.1288 0.601%
2 0.0752 160.09 0.0752 3.1852 2.36%
5 0.47 1000.55 0.47 3.58 13.1%
10 1.88 4002.20 1.88 4.99 37.7%
20 7.52 16008.81 7.52 10.63 70.8%

Average channel diameter d, 10 pm; average velocity v 940 um/s; column length L
100 mm; diffusion coefficient in mobile phase Dy, 1 x 1079 m?/s; agisp = 1.

this represent 25 nm of average tolerance, in the size
range of one nanoparticle. For the smaller channels
required to take advantage of the superior character-
istics of the multicapillary packings in terms of pres-
sure drop in analytical HPLC, the tolerance would be-
come close to molecular dimensions.

5.2. Effect of diffusional bridging

5.2.1. Theoretical computations from Giddings RW
analysis

The Table 2 below reports the values of theoretical
plates heights computed by (16) and (17) in the sim-
plest case of virtual channels with separating walls
having negligible mass transfer resistance and no re-
tention characteristics.

The main observation is that the loss in efficiency
induced by the channels’ diameters dispersion is
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limited to moderate fractions of the total height for
relative square deviation (RSD) lower than 5%.

5.2.2. Comparison of simulated and random walk
(RW) results

Table 3 reports the results of our simulation tools
and the corresponding partial height of dispersion
computed according to (16) and (17) with agisp = 1
in different conditions, namely by varying:

e The channel’s diameter RSD at 1, 2, 5, 10%

o The Diffusion coefficient D,,, at 0.5 x 1072,
1.0x107%,2.0x 1079,

The mobile phase velocity v at 470, 940,
1880 um/s

e The channel diameter d, at 5, 10, 20 um.

For the same column length of 1 mm.
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Table 3. Correlation of theoretical dispersion height hp ((16) and (17)) of multicapillary packings with
diffusional bridging, given by RW Theory with simulated values

d. (m) RSD v (m/s) Dy, (m?/s) Theor. by (um)  Sim. hy (um)
1x107° 0.01 9.40x10™* 1x107° 0.0188 0.0168
1x107° 0.02 9.40x10™* 1x107° 0.0752 0.0714
1x107° 0.05 9.40x10™* 1x107° 0.47 0.4636
1x107° 0.1 9.40x107* 1x107° 1.88 1.9431
1x107° 0.05 4.70x107* 1x107° 0.235 0.1967
1x107° 0.05 1.88x1073 1x107° 0.94 0.8997
5x107% 0.1 9.40x107* 1x107° 0.47 0.4780
2x107° 0.025 9.40x107* 1x107° 0.47 0.4946
1x10™° 0.05 9.40x10™* 5x10710 0.94 0.8997
1x107° 0.05 9.40x10™* 2x107° 0.235 0.1967

Table 4. Correlation of theoretical dispersion height hp (Equation (44)) from the transfer function of a
twin channel geometry with simulated values; Sh=3.66; f =1/6

d.(m) RSD wv(m/s) D, (m?/s) Theor. hp (um) Sim.hp (Lm)
0.00001 0.01 0.00094 1x107° 0.031 0.031
0.00001 0.02 0.00094 1x107° 0.123 0.122
0.00001 0.05 0.00094 1x107° 0.770 0.747
0.00001 0.05 0.00094 2x107° 0.385 0.325
0.00001 0.05 0.00047 1x107° 0.385 0.365
0.00001 0.05 0.00188 1x107° 1.541 1.59

The relation between theoretical and simulated
data is linear with a correlation coefficient R?> of
0.9976. The slope shows less than 3% deviation from
perfect equality.

5.2.3. Comparison of simulated and transfer function
results

Table 4 report the results of the simulation of
the twin channel configuration studied in Section 3
and the corresponding partial height of dispersion
computed according to (44) in different conditions,
namely by varying:

e The channel’s diameter RSD at 1, 2, 5, 10%

* The mobile phase velocity v at 470, 940,
1880 um/s

« The diffusion coefficient D,, at 1 x 10~ and
2x1079,

For the same column length of 1 mm.
The relation between theoretical and simulated
data is linear with a correlation coefficient R? of
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0.998. The slope shows less than 1% deviation from
perfect equality. The simulated twin tube hgjsp is in
61% excess over the 41 x 41 channel’s array value,
equal to f - Sh.

Figure 7 summarizes the fundamental behavior
difference between systems with and without dif-
fusional bridging. Diffusional bridging restores the
chromatographic functionality of the multicapillary
array.

NETP values obtained for channel lengths up to
25 mm with o = 5% of the average diameter did show
linearity up to at least 5000 plates. No deviation from
linearity has been noted.

The agreement of the theoretical results, of the
transfer function results, and simulation results is
surprisingly good in view of the simplicity of the
starting hypothesis of the theoretical interpretation.
The agreement between the three models support
very efficiently each other. Their very similar numeri-
cal predictions lead to a good confidence in the quan-
titative results of this study.
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Figure 7. NETP vs length of multicapillary
packings with diffusive or non diffusive walls

=10 um; v =940 pm/s; Dy, = 1 x 1079 m?/s;
RSD 5%; e, =0; k=0.

5.3. Discussion

Several conclusions can be drawn from the analysis
of (20) and of this numerical example:

« First, the previous limitation attached to the
Shisla-Sidelnikov formula disappears. Due
to the coupling between eddy diffusion and
transverse molecular diffusivity, the height of
a theoretical plate decreases with short col-
umn lengths and tends to a constant value
for infinite column lengths. The NETP in-
creases linearly with the length and the sepa-
rative power of chromatography is restored.

« A constant loss of efficiency with respect to
the single average column occurs, the poly-
dispersity term on overall variance forecast
by Shisla analysis. This correction is strongly
dependent on the channel’s diameter disper-
sity and increases as the square of the RSD.

o The question arises as to what relative dis-
persity can be reasonably expected. For ordi-
nary textile threads, the usual variance is of
2%. The loss of efficiency attributable to the
channel diameter random distribution will in
this case be lower than 10%. The counterpart
is a slightly higher pressure drop, without
changing the order of magnitude of this ad-
vantage.

o For very irregular distributions of channels
diameters, the loss in NETP can be compen-
sated for by an increase in column length or
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decrease in channel’s diameter. Due to the
large potential gain on pressure drop, the so-
lution remains attractive.

This suggests that provided there is suitable dif-
fusional bridging between capillaries, multicapillary
packings allow the throughput capacity and effi-
ciency of conventional particulate packings. Given
that multicapillary arrays have a pressure drop that
is lower by one order of magnitude, they should be a
superior candidate for separation applications.

6. Conclusion

Starting from a short theoretical basis, we have used
computer simulation to study quantitatively the be-
havior of multicapillary arrays with statistical varia-
tion in their diameters. In the absence of interchan-
nel radial diffusion, only a slight statistical dispersion
between channel dimensions induces a purely hy-
drodynamic limitation of the efficiency of the pack-
ing in terms of NETP. This effect and its magni-
tude are verified by computer simulation. A 2% stan-
dard deviation limits the NETP to a value of 625.
This limit cannot be exceeded even with increased
packing length. This effect has to date precluded
the use of these potentially powerful and very low-
pressure-drop systems in analytical and preparative
chromatography.

Our theoretical and simulated results show that
superimposing a radial diffusive term between adja-
cent channels, or diffusional bridging, removes this
limitation. In this case, the multicapillary array be-
haves like particulate packing, with an NETP increas-
ing linearly with packing length. In the case where
the multicapillary array has comparable effective dif-
fusivity to classical LC porous stationary phases (i.e.
silica gel, PS-DVB gels), this effect is strong enough
that the efficiency loss due to inhomogeneity in the
capillary diameters, which is catastrophic for a non-
diffusive array, becomes negligible for typical stan-
dard deviations in the capillary diameter. The excel-
lent numerical agreement between the purely math-
ematical transfer function of a twin tube system
and its simulation results without the need of any
adjustment parameter constitute a sound proof of
the existence and order of magnitude of this diffu-
sional bridging effect.

The 5 to 10% loss in resolving power can be com-
pensated by an increased length of the packing. Due
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to the large gain on the pressure drop over conven-
tional packings, even very imperfect arrays, easier to
manufacture, will still show advantage in operation.

This result could have numerous practical con-
sequences for chromatography and chemical engi-
neering, stemming from the fact that at an identi-
cal characteristic dimension (particle diameter ver-
sus channel diameter), the pressure drop in multi-
capillary packing is one order of magnitude lower.

In LC-UHPLC, analytical chromatography has
reached its technological limit by decreasing particle
sizes to 1.7 um and working at extremely high pres-
sures, such as 1500 bar. Diffusive multicapillary pack-
ing could be an important advance in this field. With
multicapillary packing and for a given available pres-
sure drop, the available HETP in LC can increase by
one order of magnitude, approaching with standard
instruments the 100000 plates of golay columns.
The analysis time can decrease by one order of mag-
nitude making control ultrafast. The high flow rate
of the multicapillary structure allows the use of the
existing range of detectors, injectors, and pumps.

In industrial separation, this approach will al-
low chromatography to be conducted with high ef-
ficiency and with low-pressure pumps, injectors,
lines, and other fluidic appliances. The investment
and cost operation will be reduced by an important
factor.

The difficulty in stabilizing large particulate beds
in columns disappear naturally due to the monolithic
and rigid nature of multicapillary packings [29]. Mul-
ticapillary packing may be able to be used as mod-
ules in parallel or in series for achieving large scale
separations.
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Note added at the proof stage
The influence of the mass transfer in the stationary
phase and its coupling with the Giddings eddy-mass

transfer theory has been examined by various au-
thors [17-21].
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This information has been discussed in Sec-
tion 2.5.2.

We will add to our examination the following con-
siderations.

According to Giddings, the eddy dispersion is
based on the difference of path lengths in the mobile
phase between distinct fluid streamlines due to their
dimensions.

The time spent in the stationary phase has no di-
rect effect on this difference, its effect being only in-
direct, through the time spent in the stationary phase
by the molecule.

Each molecule progresses toward the column out-
let by leaps of durations fy,p characterized by (11).
The time spent by the molecule in the mobile phase is
equal to fy, residence time of the unretained species,
as its progression is being insured only by the con-
vective flow. The number of those leaps is thus well
defined through consideration of the ratio of fy/ fmp.

When the molecule is present in the stationary
phase, it does not progress toward the elution port,
and its contribution to the band spreading relies on
the term Cs.

Thermodynamically, the total residence time of
the molecule in the column is shared between the
stationary phase and the mobile phase through the
ratio k. The time spent by the molecule in the sta-
tionary phase is equal to k time the time spent by the
molecule in the mobile phase. This time cannot be
inferior for thermodynamicals reasons. This defines
an average time step spent in the stationary phase
between each leap in the mobile phase by:

k- d?
2Dy,
On the other hand, and from a simplified point of
view, the diffusion coeflicient of the molecule in the
stationary phase and the effect of the concentration
gradient will allow to define a characteristic time du-
ration similar to the one used by Giddings (11) for
the diffusional transfer of a molecule from one chan-
nel to a neighboring one through a stationary phase
thickness of 2e;:

Isp,thermo = k- Imp = (54)

; 2-e2
sp,kinetic = D—
sp,eff

Dgp et s the effective diffusivity in the stationary
phase. In the linear regime Dy, off approaches a non
nul constant value for high k when surface diffusion
is effective or for liquid-liquid chromatography [2]. If
fsp kinetic 1S lower than fgp thermo the diffusional kinetic

(55)
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is not limitating, and the Giddings coupling phenom-
enon is governed by thermodynamic considerations.
In this case, the stationary phase has no influence
on the final eddy dispersion, and the previous re-
sults established for the zero retention case with no
stationary phase remain valid. In other word, trans-
fer is fast enough to consider the mass transfer resis-
tance of the stationary phase negligible in front of the
mass transfer resistance in the mobile phase, within
a threshold value given by thermodynamics. This re-
joins Giddings’ initial guess, the coupling phenome-
non relies mainly on D, with a second order only in-
fluence of the retention.

If fop kinetic is lower than fp thermo the diffusional
kinetic is limitating.

The ratio Ry = fsp kinetic OVET Isp,thermo Can be de-
veloped with the help of (54) and (55) to examine the
practical validity range of those limits.

_ 4Dy, ( es )2
tsp,thermo k- Dsp,eff . tmp k- Dsp,eff dc
(56)
This ratio R; will decrease for small es/d, and high k,
the first variable intervening squared.

Dygp, o being itself dependant on k, the validity of
(56) is thus particularly sensible to surface diffusion
like previously noted in the text, the higher this diffu-
sion, the lower being R;.

Isp kinetic 4- ez
Rt — p _ s
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