

ACADEMIE
DES SCIENCES
INSTITUT DE FRANCE
1666

Comptes Rendus

Chimie

Virgile Rouffeteau, Clara Perrier, Maximilian Fleck, Geoffrey Gontard,
Maxime R. Vitale and Laurence Grimaud

Electro-induced carbamoylation of arenes optimized by a machine learning model

Volume 29 (2026), p. 19-25

Online since: 22 January 2026

<https://doi.org/10.5802/cr chim.431>

This article is licensed under the
CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE.
<http://creativecommons.org/licenses/by/4.0/>

The Comptes Rendus. Chimie are a member of the
Mersenne Center for open scientific publishing
www.centre-mersenne.org — e-ISSN : 1878-1543

Research article

Electro-induced carbamoylation of arenes optimized by a machine learning model

Virgile Rouffeteau ^{®,a}, Clara Perrier ^a, Maximilian Fleck ^b, Geoffrey Gontard ^{®,c},
Maxime R. Vitale ^{®,*,a} and Laurence Grimaud ^{®,*,a}

^a Chimie Physique et Chimie du Vivant (CPCV), Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France

^b Chimie ParisTech, Université PSL, CNRS, Institute of Chemistry for Life and Health Sciences, 75005 Paris, France

^c Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, Sorbonne Université, 75252 Paris Cedex 5, France

E-mails: virgile.rouffeteau@ens.psl.eu (V. Rouffeteau), maxime.vitale@ens.psl.eu (M. R. Vitale), laurence.grimaud@ens.psl.eu (L. Grimaud)

Abstract. In this article, we report the electro-induced C–H functionalization of aromatic compounds by isocyanides and water, to produce arylcarboxamides. This controlled oxidation of electron-rich aromatic compounds leads to an eco-efficient synthesis of secondary benzocarboxamides, along with cyanide group formation. The optimization process was guided by a Bayesian optimization-based model, and good yields were quickly obtained.

Keywords. Electrosynthesis, Multicomponent reaction, C(sp²)–H functionalization, Carbamoylation, Bayesian optimization.

Funding. ENS-PSL, CNRS, ANR (ANR-20-CE07-0020), Ecole Polytechnique (AMX).

Note. Article submitted by invitation.

Manuscript received 20 October 2025, revised 28 October 2025, accepted 19 November 2025, online since 22 January 2026.

1. Introduction

Multicomponent reactions (MCRs) have seen a surge in interest due to their significant abilities of building complex scaffolds from easy-to-access starting materials, all the while respecting the principles of green chemistry [1]. A subclass of this field is the isocyanide-based multicomponent reactions (IMCRs), the Passerini [2] and Ugi [3] reactions being prime examples. They employ the unique properties of isocyanide moieties: they classically first react as nucleophiles, to generate nitrilium species, which

can then be trapped by other nucleophiles, to efficiently construct complex patterns in one step [4].

Electrosynthesis can also be a major contributor to respecting green chemistry principles, by replacing costly and stoichiometric oxidants (often toxic and with poor atom-economy), or rare-earth-based catalysts [5,6]. In this endeavour, our group [7–10] and many others [11] merged the two concepts, electrosynthesis and IMCR, to avoid the use of unstable substrates, additives, or catalysts, toward the synthesis of Passerini and Ugi adducts among other structures. However, synthetizing a benzamide group from a non-substituted aromatic compound without using a metal-based catalysis and functionalization of the aromatic ring remained elusive. Inspired by previous electro-induced C(sp²)–H bond functional-

*Corresponding authors

izations [12–15] (Scheme 1), we proposed a method merging electrosynthesis and IMCR toward the production of arylcarboxamides.

Indeed, building on the mechanistic studies of Goosßen et al. [13], we surmised that a radical cation, produced at the anode from the direct oxidation of an arene, could be trapped by an isocyanide and a water molecule to build arylcarboxamides. The released protons would in turn be converted into dihydrogen at the cathode, closing the electrical circuit (Scheme 2). This original carboxamide synthesis would avoid the use of catalyst and stoichiometric oxidants, using green energy (94% of low-carbon electricity in France's electricity mix in 2024, 96% in 2025) to convert available substrates into high-value products [16].

2. Results and discussion

With this strategy in mind and using our in-house expertise on electro-induced IMCRs, we selected mesitylene **1a** as a prototypical oxidizable arene along with cyclohexyl isocyanide (Cy-CN) **2a** as partner in acetonitrile as solvent. A quick pre-optimization led to choose *N*-tetrabutylammonium tetrafluoroborate (*n*-Bu₄NBF₄) as supporting electrolyte, graphite as cathode and stainless steel as anode. These conditions led to the isolation of desired product **3a** in 38% yield, which constituted the starting point of the optimization process.

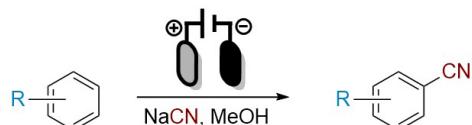
Subsequent tests fixed the temperature at 20 °C (a 41% yield at 60 °C was not significant enough to continue using high temperature) and showed that the stirring had no impact on the outcome. These observations fixed half of the reaction parameters (see Table S1 in Supplementary material), however, the rest of the parameters (in italic in Scheme 3) could hardly be optimized the usual way, one at a time, as they could be interdependent. Thus, we resorted to a machine learning model, as it was capable of optimizing several parameters at the same time [17–20]. The model chosen was EDBO, created by the Doyle group in 2021 [21] for its low resource cost and availability (<https://edboplus.org/>). While this work was in progress, the Ackerman group also used machine learning to optimize an electro-induced annulation via palladium catalysis [22], while the Sigman group

reported using EDBO for the design of palladium catalyst for the fluorination of arylboronic acids [23], proving the usefulness of this strategy. In order to use this model, several questions needed to be answered: (1) Which outcome(s) is (are) of concern to us, and whether its maximization or minimization were desired? (2) How to measure the chosen outcome, and how to interact with the model? (3) What is the research space for the model to investigate? (4) What is (are) the stop condition(s)?

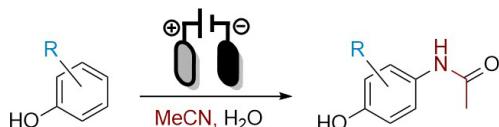
In our case, maximizing the yield was the main goal, which would be measured by ¹H NMR against an internal standard, the supporting electrolyte (it was proven to be stable with external standards). The research space was designed as neutral as possible, to avoid introducing human bias into the model (see Table 1). As an example, various amounts of the isocyanide led to different products, **3a** and **4a** (see Scheme 4, structure of **4a** was elucidated by X-ray analyses). Thus, the number of isocyanide equiv had to be limited between 0.33" and 3 (0.33 experimentally means 1 equiv of isocyanide and 3 equiv of mesitylene).

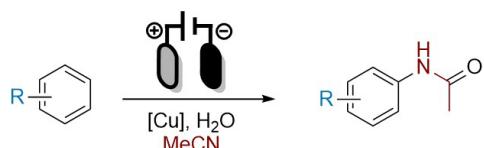
Similarly, using more than 50 equiv of water was meaningless, so its limits were set at 1 and 50 equiv. Standard values often found in the literature for the supporting electrolyte were between 0.5 and 2 equiv; for the concentration of the reagents, they were above 0.05 M and below 0.5 M, and the current density was bounded between 5 and 25 mA·cm⁻². Finally, based on our proposed mechanism (see Scheme 2), this reaction would need at least 2 electrons per molecule of mesitylene. Using the same limits as for the isocyanide, the upper limit for the charge was set at 6 F·mol⁻¹. These studies led to the following research space (Table 1).

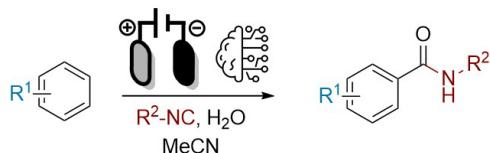
The resulting number of possible combinations was 10 500, and, as an example, a human would conduct 29 (0.3% of the research space) experiments with this table: one experiment for each value of each parameter, with all other parameters fixed, following the classical OFAT (one factor at a time) method [24]. For the purpose of this study, we decided to fix the total number of experiments to 15, which represents half the effort required with the OFAT method (below 0.15% of the research space). The results of this EDBO-led optimization are displayed in Figure 1.


It became clear that EDBO was able to quickly

Previous work:

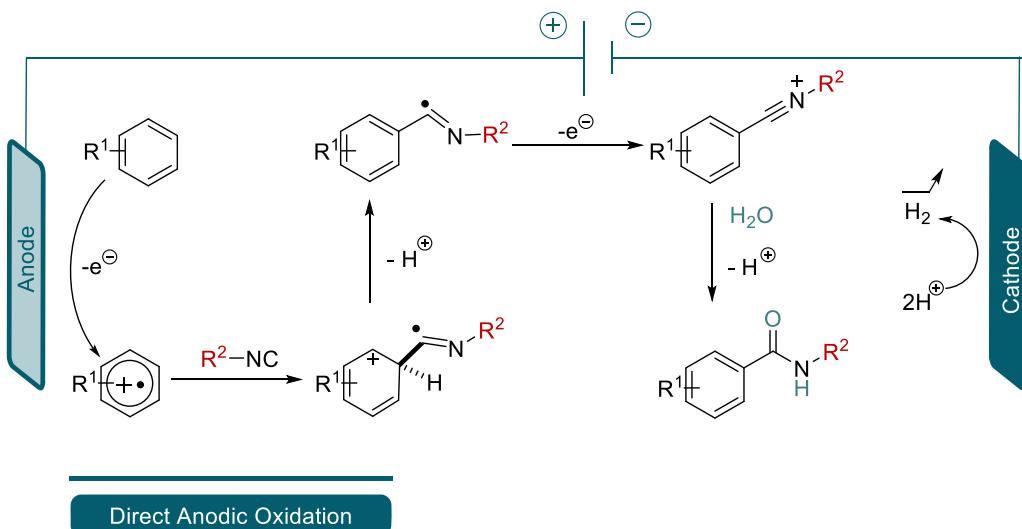

Yoshida (2013)


Gooßen (2018)

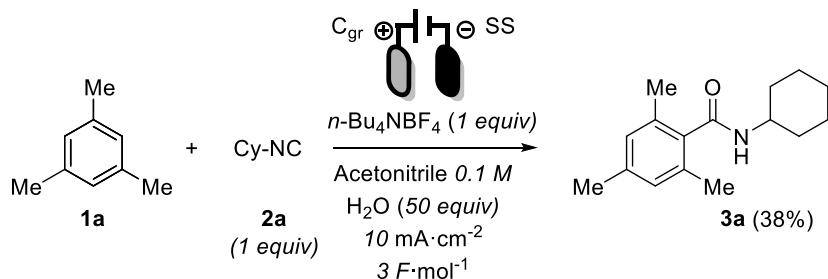

Banerjee (2022)

Budnikova (2021)

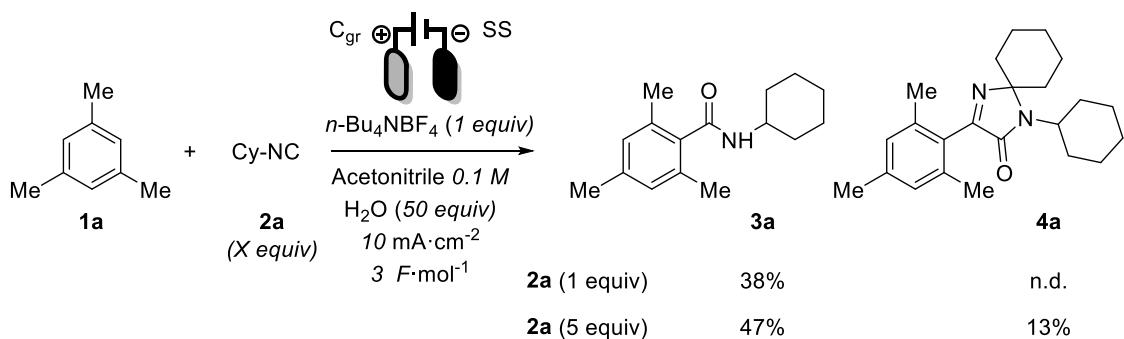
This work


Scheme 1. Previous and current strategies for direct oxidative C(sp²)-H functionalization.

increase the yield from the starting 38%, reaching 50% after 5 experiments, 70% at the 9th, and stopping at its 15th experiment, in which the starting yield of 38% was doubled to reach a high yield of 74%. The differences between the starting point (Scheme 3) and the best conditions found by EDBO (Scheme 5) were counter-intuitive compared to commonly used

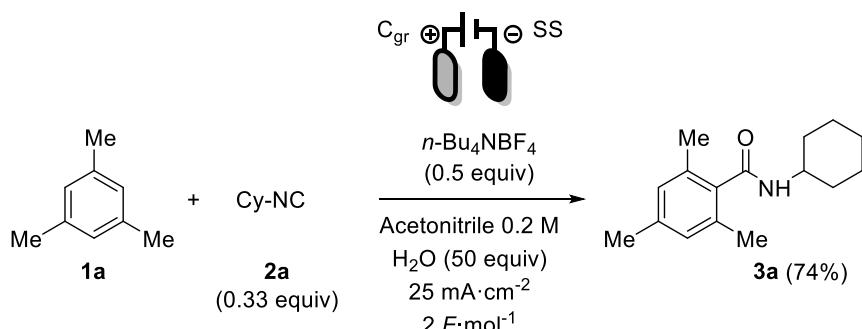
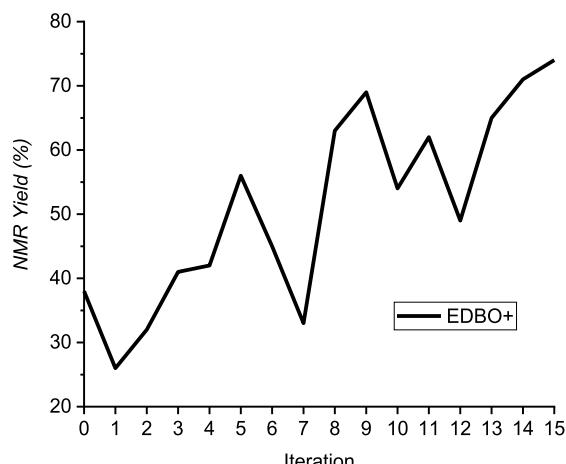

values (isocyanide in default, high current density and concentration), highlighting the importance of an unbiased design of the research space.

With these optimized conditions, the scope of the reaction's applicability was then tested (Scheme 6).


Primary and secondary isocyanides were found

Scheme 2. Proposed mechanism.

Scheme 3. Starting point.



Scheme 4. Products formed according to isocyanide equivalents.

to work under these conditions (74% for cyclohexyl isocyanide, 52% for 1-pentyl isocyanide, and 31%

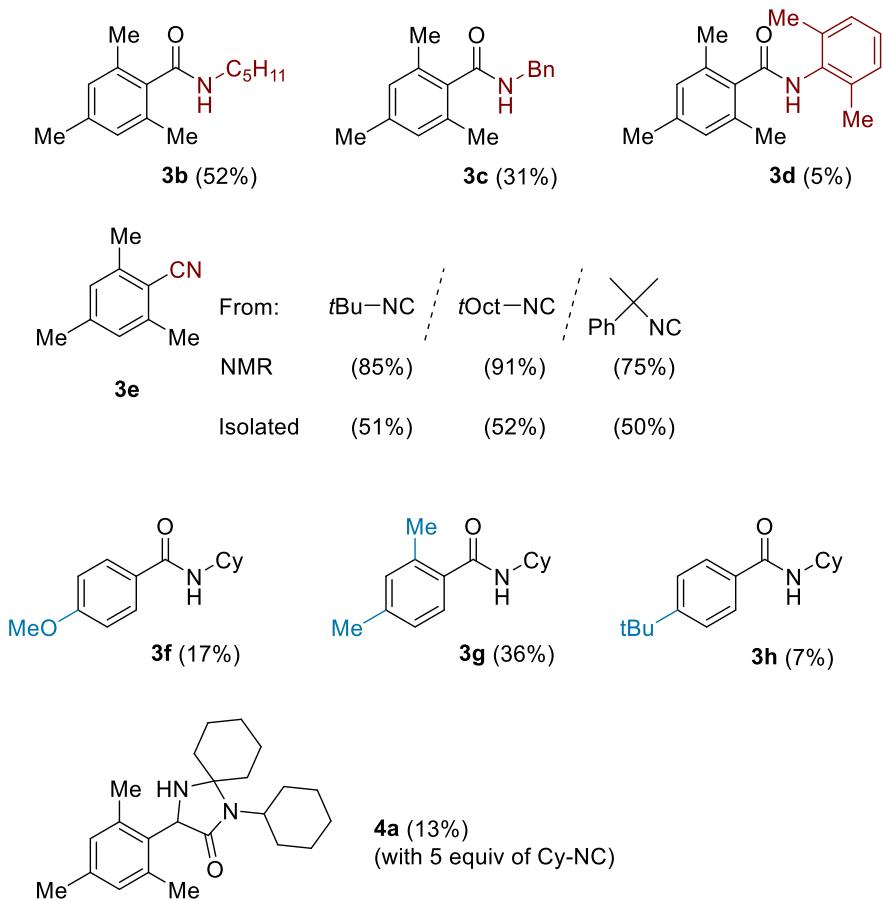
for benzyl isocyanide), while the aromatic isocyanide gave a low amount of the desired product (5%). In-

Table 1. Research space

Parameters	Values						
Cy-NC equiv	0.33	0.5	0.75	1	1.5	2	3
Water equiv	1	5	10	25	50		
<i>n</i> -Bu ₄ NBF ₄ equiv	0.5	1	2				
Current density (mA·cm ⁻²)	5	10	15	20	25		
Limiting reagent concentration (M)	0.05	0.1	0.15	0.2			
Charge (F·mol ⁻¹)	2	3	4	5	6		

Scheme 5. Final conditions found by EDBO.**Figure 1.** Evolution of yield with EDBO.

terestingly, tertiary isocyanides were found to fragment to give the cyano compound in good yield (up to 91% NMR yield, 52% isolated yield)¹. Its for-


mation is supposed to take place when the iminyl radical is produced: this structure may fragment to release a stabilized tertiary carbon-centered radical and the benzonitrile compound, favoring this elimination.

Alternative aromatic compounds were also tested, and *m*-xylene was functionalized with an acceptable 36% yield. Anisole was found to polymerize (black tar formation), resulting in low yield (17%), while *tert*-butylbenzene also gave the *para*-product in low yield (7%, also prone to polymerization). Several other aromatic compounds were tested, and none produced the desired amide in detectable amounts.

3. Conclusion

In this article, we report a previously unknown electro-induced isocyanide-based multicomponent reaction toward the synthesis of arylcarboxamides, with an AI-guided optimization. In respect with green chemistry objectives, this work avoids the use of chemical oxidants, coupling agents, or catalysts by relying on electrosynthesis. The optimization was

¹This benzonitrile is prone to sublimation, which explains the difference between the two yields.

Scheme 6. Scope of the studied reaction.

conducted with a minimal number of experiments, thanks to guidance by a Bayesian optimization-based model (EDBO). Overall, this work opens a path toward more challenging electro-induced methods and the use of AI in the laboratory. Subsequent work on other electro-induced IMCRs is currently under investigation in our team.

CRediT authorship contribution statement

Virgile Rouffeteau: Data curation, Writing—original draft.

Clara Perrier: Data curation, Writing—review & editing.

Maximilian Fleck: Software, Writing—review & editing.

Geoffrey Gontard: Formal analysis, Writing—review & editing.

Maxime R. Vitale: Funding acquisition, Conceptualization, Supervision, Writing—review & editing.

Laurence Grimaud: Funding acquisition, Conceptualization, Supervision, Writing—review & editing.

Acknowledgments

Drs. A. Simon and S. Bachollet are thanked for early investigations.

Declaration of interests

The authors do not work for, advise, own shares in, or receive funds from any organization that could benefit from this article, and have declared no affiliations other than their research organizations.

Funding

ENS-PSL, CNRS, and the Agence Nationale de la Recherche (ANR-20-CE07-0020) are thanked for financial support. VR thanks Ecole Polytechnique for a PhD grant (AMX). CP thanks CNRS for a placement grant. MF acknowledges support under the Major Research Program of PSL Research University “ChemAI” launched by PSL Research University and implemented by ANR with the references ANR-10-IDEX-0001.

Supplementary materials

Supporting information for this article is available on the journal's website under <https://doi.org/10.5802/cr chim.431> or from the author.

Deposition Number CCDC 2492104 contain the supplementary crystallographic data for compound **4a**. These data can be accessed free of charge via the Cambridge Crystallographic Data Centre (CCDC).

References

- [1] P. T. Anastas and J. C. Warner, *Green Chemistry: Theory and Practice*, Oxford University Press: Oxford, 2000.
- [2] M. Passerini and L. Simone, “Sopra gli isonitrili (I). Composto del p-isonitril-azobenzolo con acetone ed acido acetico”, *Gazz. Chim. Ital.* **51** (1921), pp. 126–129.
- [3] I. Ugi, R. Meyr, U. Fetzer and C. Steinbrückner, “Versuche mit Isonitrilen”, *Angew. Chem.* **71** (1959), p. 386.
- [4] R. L. Mohlala and E. M. Coyanis, “The vital use of isocyanide-based multicomponent reactions (MCR) in chemical synthesis”, *Phys. Sci. Rev.* **9** (2024), pp. 995–1032.
- [5] Q. Sun, X. Xu and X. Xu, “Recent advances in rare-earth metal-catalyzed C–H functionalization reactions”, *Chem-CatChem* **14** (2022), article no. e202201083.
- [6] K. Seth, “Recent progress in rare-earth metal-catalyzed sp^2 and sp^3 C–H functionalization to construct C–C and C–heteroelement bonds”, *Org. Chem. Front.* **9** (2022), pp. 3102–3141.
- [7] N. Pan, J. Ling, R. Zapata, J. P. Pulicani, L. Grimaud and M. R. Vitale, “Electrochemical TEMPO-catalyzed multicomponent C(sp^3)-H α -carbamoylation of free cyclic secondary amines”, *Green Chem.* **21** (2019), pp. 6194–6199.
- [8] N. Pan, M. X. Lee, L. Bunel, L. Grimaud and M. Vitale, “Electrochemical TEMPO-catalyzed oxidative Ugi-type reaction”, *ACS Org. Inorg. Au* **1** (2021), pp. 18–22.
- [9] S. Tang, R. Guillot, L. Grimaud, M. R. Vitale and G. Vincent, “Electrochemical benzylic CH functionalization with isocyanides”, *Org. Lett.* **24** (2022), pp. 2125–2130.
- [10] A. Simon, S. P. J. T. Bachollet, N. Pan, L. Grimaud and M. R. V. Vitale, “Electromediated alcohol-based Passerini-type reaction”, *Synlett.* **36** (2025), pp. 2055–2059.
- [11] Q. Gu, Z. Cheng, X. Qiu and X. Zeng, “Recent advances in the electrochemical functionalization of isocyanides”, *Chem. Rec.* **23** (2022), article no. e202200177.
- [12] T. Morofuji, A. Shimizu and J. I. Yoshida, “Electrochemical C–H amination: synthesis of aromatic primary amines via N-arylpyridinium ions”, *J. Am. Chem. Soc.* **135** (2013), pp. 5000–5003.
- [13] D. Hayrapetyan, R. K. Rit, M. Kratz, K. Tschulik and L. Gooßen, “Electrochemical C–H cyanation of electron-rich (hetero)arenes”, *Chem. Eur. J.* **24** (2018), pp. 11288–11291.
- [14] S. Strekalova, A. Kononov, I. Rizvanov and Y. Budnikova, “Acetonitrile and benzonitrile as versatile amino sources in copper-catalyzed mild electrochemical C–H amidation reactions”, *RSC Adv.* **11** (2021), pp. 37540–37543.
- [15] I. M. Taily, D. Saha and P. Banerjee, “Direct synthesis of paracetamol via site-selective electrochemical Ritter-type C–H amination of phenol”, *Org. Lett.* **24** (2022), pp. 2310–2314.
- [16] N. A. McGrath, M. Brichaeck and J. T. Njardarson, “A graphical journey of innovative organic architectures that have improved our lives”, *J. Chem. Educ.* **87** (2010), pp. 1348–1349.
- [17] G. Rebala, A. Ravi and S. Churiwala, *An Introduction to Machine Learning*, Springer International Publishing: Cham, 2019.
- [18] M. Kubat, *An Introduction to Machine Learning*, Springer International Publishing: Cham, 2020.
- [19] Z. H. Zhou and S. Liu, *Machine Learning*, Springer Singapore Publishing: Singapore, 2021.
- [20] E. Alpaydin, *Machine Learning*, The MIT Press: Cambridge, MA, 2021.
- [21] B. J. Shields, J. Stevens, J. Li, et al., “Bayesian reaction optimization as a tool for chemical synthesis”, *Nature* **590** (2021), pp. 89–96.
- [22] X. Hou, S. Li, X. Hong and L. Ackermann, “Machine learning-guided yield optimization for palladaelectrocatalyzed annulation reaction”, *Chem* **10** (2024), pp. 2283–2294.
- [23] S. Deolka, D. Dalmau, A. G. Roca, S. Vasylevskyi, M. H. Samha and M. S. Sigman, “Development of a heteroleptic palladium catalyst for the fluorination of arylboronic acids using data science tools”, *J. Am. Chem. Soc.* **147** (2025), pp. 35705–35717.
- [24] C. J. Taylor, A. Pomberger, K. C. Felton, et al., “A brief introduction to chemical reaction optimization”, *Chem. Rev.* **123** (2023), pp. 3089–3126.