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Abstract. In this article, we report the electro-induced C-H functionalization of aromatic compounds
by isocyanides and water, to produce arylcarboxamides. This controlled oxidation of electron-rich
aromatic compounds leads to an eco-efficient synthesis of secondary benzocarboxamides, along with
cyanide group formation. The optimization process was guided by a Bayesian optimization-based

model, and good yields were quickly obtained.
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1. Introduction

Multicomponent reactions (MCRs) have seen a surge
in interest due to their significant abilities of build-
ing complex scaffolds from easy-to-access start-
ing materials, all the while respecting the princi-
ples of green chemistry [1]. A subclass of this field
is the isocyanide-based multicomponent reactions
(IMCRs), the Passerini [2] and Ugi [3] reactions being
prime examples. They employ the unique properties
of isocyanide moieties: they classically first react as
nucleophiles, to generate nitrilium species, which

*Corresponding authors

ISSN (electronic): 1878-1543

can then be trapped by other nucleophiles, to effi-
ciently construct complex patterns in one step [4].

Electrosynthesis can also be a major contributor
to respecting green chemistry principles, by replac-
ing costly and stoichiometric oxidants (often toxic
and with poor atom-economy), or rare-earth-based
catalysts [5,6]. In this endeavour, our group [7-10]
and many others [11] merged the two concepts, elec-
trosynthesis and IMCR, to avoid the use of unsta-
ble substrates, additives, or catalysts, toward the syn-
thesis of Passerini and Ugi adducts among other
structures. However, synthetizing a benzamide group
from a non-substituted aromatic compound without
using a metal-based catalysis and functionalization
of the aromatic ring remained elusive. Inspired by
previous electro-induced C(spz)—H bond functional-
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izations [12-15] (Scheme 1), we proposed a method
merging electrosynthesis and IMCR toward the pro-
duction of arylcarboxamides.

Indeed, building on the mechanistic studies
of Goolen et al. [13], we surmised that a radi-
cal cation, produced at the anode from the di-
rect oxidation of an arene, could be trapped by
an isocyanide and a water molecule to build aryl-
carboxamides. = The released protons would in
turn be converted into dihydrogen at the cath-
ode, closing the electrical circuit (Scheme 2). This
original carboxamide synthesis would avoid the
use of catalyst and stoichiometric oxidants, us-
ing green energy (94% of low-carbon electricity in
France’s electricity mix in 2024, 96% in 2025) to
convert available substrates into high-value prod-
ucts [16].

2. Results and discussion

With this strategy in mind and using our in-house
expertise on electro-induced IMCRs, we selected
mesitylene la as a prototypical oxidizable arene
along with cyclohexyl isocyanide (Cy-CN) 2a as
partner in acetonitrile as solvent. A quick pre-
optimization led to choose N-tetrabutylammonium
tetrafluoroborate (n-BuysNBF,) as supporting elec-
trolyte, graphite as cathode and stainless steel as
anode. These conditions led to the isolation of de-
sired product 3a in 38% yield, which constituted the
starting point of the optimization process.
Subsequent tests fixed the temperature at 20 °C (a
41% yield at 60 °C was not significant enough to con-
tinue using high temperature) and showed that the
stirring had no impact on the outcome. These ob-
servations fixed half of the reaction parameters (see
Table S1 in Supplementary material), however, the
rest of the parameters (in italic in Scheme 3) could
hardly be optimized the usual way, one at a time, as
they could be interdependent. Thus, we resorted to
a machine learning model, as it was capable of opti-
mizing several parameters at the same time [17-20].
The model chosen was EDBO, created by the Doyle
group in 2021 [21] for its low resource cost and avail-
ability (https://edboplus.org/). While this work was
in progress, the Ackerman group also used machine
learning to optimize an electro-induced annulation
via palladium catalysis [22], while the Sigman group

reported using EDBO for the design of palladium cat-
alyst for the fluorination of arylboronic acids [23],
proving the usefulness of this strategy. In order to use
this model, several questions needed to be answered:
(1) Which outcome(s) is (are) of concern to us, and
whether its maximization or minimization were de-
sired? (2) How to measure the chosen outcome, and
how to interact with the model? (3) What is the re-
search space for the model to investigate? (4) What is
(are) the stop condition(s)?

In our case, maximizing the yield was the main
goal, which would be measured by 'H NMR against
an internal standard, the supporting electrolyte (it
was proven to be stable with external standards). The
research space was designed as neutral as possible,
to avoid introducing human bias into the model (see
Table 1). As an example, various amounts of the
isocyanide led to different products, 3a and 4a (see
Scheme 4, structure of 4a was elucidated by X-ray
analyses). Thus, the number of isocyanide equiv
had to be limited between 0.33" and 3 (0.33 experi-
mentally means 1 equiv of isocyanide and 3 equiv of
mesitylene).

Similarly, using more than 50 equiv of water was
meaningless, so its limits were set at 1 and 50 equiv.
Standard values often found in the literature for the
supporting electrolyte were between 0.5 and 2 equiv;
for the concentration of the reagents, they were
above 0.05 M and below 0.5 M, and the current
density was bounded between 5 and 25 mA-cm~2.
Finally, based on our proposed mechanism (see
Scheme 2), this reaction would need at least 2 elec-
trons per molecule of mesitylene. Using the same
limits as for the isocyanide, the upper limit for the
charge was set at 6 F-mol™~!. These studies led to the
following research space (Table 1).

The resulting number of possible combinations
was 10 500, and, as an example, a human would
conduct 29 (0.3% of the research space) experiments
with this table: one experiment for each value of each
parameter, with all other parameters fixed, following
the classical OFAT (one factor at a time) method [24].
For the purpose of this study, we decided to fix the
total number of experiments to 15, which repre-
sents half the effort required with the OFAT method
(below 0.15% of the research space). The results
of this EDBO-led optimization are displayed in
Figure 1.

It became clear that EDBO was able to quickly
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Scheme 1. Previous and current strategies for direct oxidative C(spz)—H functionalization.

increase the yield from the starting 38%, reaching
50% after 5 experiments, 70% at the 9th, and stopping
at its 15th experiment, in which the starting yield of
38% was doubled to reach a high yield of 74%. The
differences between the starting point (Scheme 3)
and the best conditions found by EDBO (Scheme 5)
were counter-intuitive compared to commonly used

values (isocyanide in default, high current density
and concentration), highlighting the importance of
an unbiased design of the research space.

With these optimized conditions, the scope
of the reaction’s applicability was then tested
(Scheme 6).

Primary and secondary isocyanides were found
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Scheme 4. Products formed according to isocyanide equivalents.

to work under these conditions (74% for cyclohexyl
isocyanide, 52% for 1-pentyl isocyanide, and 31%

for benzyl isocyanide), while the aromatic isocyanide
gave a low amount of the desired product (5%). In-
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Table 1. Research space
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Parameters Values
Cy-NC equiv 033 05 075 1 15 2 3
Water equiv 1 5 10 25 50
n-BuyNBF, equiv 0.5 1 2
Current density (mA-cm™2) 5 10 15 20 25
Limiting reagent concentration (M) 0.05 0.1 0.15 0.2
Charge (F-mol™!) 2 3 4 5 6
Cor @6| |i@ ss
Me n-Bu,NBF, Me O O
. CyNG (0.5 equiv) NH
Me Me Acetonitrile 0.2 M o Me
1a 2a H0 (50 equiv) 3a (74%)
(0.33 equiv) 25 mA-cm™
2 Fmol™

Scheme 5. Final conditions found by EDBO.
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Figure 1. Evolution of yield with EDBO.

terestingly, tertiary isocyanides were found to frag-
ment to give the cyano compound in good yield
(up to 91% NMR yield, 52% isolated yield)l. Its for-

1 This benzonitrile is prone to sublimation, which explains the
difference between the two yields.

mation is supposed to take place when the iminyl
radical is produced: this structure may fragment to
release a stabilized tertiary carbon-centered radical
and the benzonitrile compound, favoring this elimi-
nation.

Alternative aromatic compounds were also tested,
and m-xylene was functionalized with an accept-
able 36% vyield. Anisole was found to polymerize
(black tar formation), resulting in low yield (17%),
while fert-butylbenzene also gave the para-product
in low yield (7%, also prone to polymerization). Sev-
eral other aromatic compounds were tested, and
none produced the desired amide in detectable
amounts.

3. Conclusion

In this article, we report a previously unknown
electro-induced isocyanide-based multicomponent
reaction toward the synthesis of arylcarboxamides,
with an Al-guided optimization. In respect with
green chemistry objectives, this work avoids the use
of chemical oxidants, coupling agents, or catalysts
by relying on electrosynthesis. The optimization was
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Scheme 6. Scope of the studied reaction.

conducted with a minimal number of experiments,
thanks to guidance by a Bayesian optimization-
based model (EDBO). Overall, this work opens a path
toward more challenging electro-induced methods
and the use of Al in the laboratory. Subsequent work
on other electro-induced IMCRs is currently under
investigation in our team.
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