

<u>Fig. S1</u>: Ion concentrations in solution in blank experiments (without PO₄) as a function of pH ([adsorbent] = $80 \text{ g} \cdot \text{L}^{-1}$; time contact: 24 h).

Fig S2: Effect of contact time and sandstone dose on phosphate removal efficiency (a) and phosphate uptake (b) ($[PO_4]_{initial} = 25 \text{ mg} \cdot L^{-1}$; contact time: 24 h; granular fraction < 400 µm).

Fig S3: Effect of contact time and laterite dose on phosphate removal efficiency (a) and phosphate uptake (b) (Sorbent dose = 80 g·L⁻¹; $[PO_4]_{initial} = 25 \text{ mg} \cdot L^{-1}$; $pH \sim 7$; contact time: 24 h; granular fraction < 400 µm)).

Fig. S4: Kinetics modelling of phosphate sorption onto shale (80 g/L) and sandstone and laterite (8 g/L) using a pseudo-second order model ($[PO_4]_{initial} = 25 \text{ mg} \cdot \text{L}^{-1}$; pH ~ 7; time contact: 24 h).

Fig. S5: Kinetics modelling of phosphate sorption onto sandstone (80 and 30 g/L) and laterite (15 g/L) using pseudo-second order model ([PO₄] = 25 mg·L⁻¹; pH ~ 7; time contact: 24 h).

Fig. S6: Langmuir plot for phosphate sorption onto shale (b); (pH ~ 7; time contact: 24 h).

Table S1 - Physical parameters of naturally occurring sandstone, laterite and shale samples from Ivory Coast. The porosity was determined in triplicate by a volumetric method which consisted to determine the volume of water (V_w) required to saturate a known volume of shale (V_s). The porosity (ε) was obtained according the following formula $\varepsilon = V_w/V_s \times 100$. The particle-size distribution, on a weight basis was analyzed in triplicate by conventional dry-sieving techniques. The grain-size distribution plots were used to estimate d_{10} and d_{60} (10% and 60% of the material by weight is smaller than d_{10} and d_{60} , respectively). The uniformity of the particle-size distribution (the uniformity coefficient (CU)) was calculated as the ratio of d_{60} to d_{10} .

	Physical characteristics								
Materials	d_{10}	d_{60}	Average	CU	Porosity	Bulk	Apparent	<i>K</i> *	
(1–2 mm)	(mm)	(mm)	particle size		(%)	density	density	$(m \cdot s^{-1})$	
			(mm)				$(g \cdot cm^{-3})$		
Sandstone	1.87	0.97	1.21	0.52	52	2.60	1.26	3.5.10 ⁻²	
Laterite	1.84	1.03	1.17	0.56	51	2.35	1.15	3.4.10 ⁻²	
Shale	1.80	0.95	1.14	0.53	50	2.40	1.14	3.2.10 ⁻²	

*Saturated hydraulic conductivity

	SiO ₂	Al_2O_3	Fe ₂ O ₃	MnO	MgO	CaO	Na ₂ O	K ₂ O	TiO ₂	P_2O_5	LoI*
Shale	56.8	17.5	10.2	0.6	2.1	0.4	0.9	2.4	1	0.1	8.7
Sandstone	29.3	6.3	54.4	<l.d.< td=""><td><l.d.< td=""><td>0.1</td><td><l.d.< td=""><td>0.1</td><td>0.3</td><td>1.0</td><td>8.7</td></l.d.<></td></l.d.<></td></l.d.<>	<l.d.< td=""><td>0.1</td><td><l.d.< td=""><td>0.1</td><td>0.3</td><td>1.0</td><td>8.7</td></l.d.<></td></l.d.<>	0.1	<l.d.< td=""><td>0.1</td><td>0.3</td><td>1.0</td><td>8.7</td></l.d.<>	0.1	0.3	1.0	8.7
Laterite	50.3	14.0	24.5	0.1	0.08	0.08	0.02	0.3	0.7	0.1	9.9

Table S2 - Chemical composition (wt %) of naturally occurring shale, sandstone and laterite samples from Ivory Coast.

*Loss on ignition

Table S3 - Mössbauer hyperfine parameters of the spectra of sandstone and laterite presented in Fig. 2. CS: center shift with respect to α -Fe at room temperature; Δ : quadrupole splitting or ε : quadrupole shift; H: hyperfine magnetic field, and RA: Relative Area.

Name	Component	CS	Δ or \mathcal{E}	Н	RA
		$(mm \cdot s^{-1})$	$(mm \cdot s^{-1})$	(kOe)	(%)
Sandstone	D1 (a-FeOOH)	0.32	1.07	_	19
	S1 (α-FeOOH)	0.41	-0.17	290	41
	S1 (Fe ₂ O ₃)	0.37	-0.04	491	40
Laterite	D1 (α-FeOOH)	0.34	0.55	_	55
	S1 (α-FeOOH)	0.35	-0.26	340	6
	S1 (Fe ₂ O ₃)	0.66	-0.1	500	20
	S1 (Fe ₂ O ₃)	0.36	-0.09	476	19

Name	Т	Component	CS	Δ or \mathcal{E}	Н	RA
	(K)		$(mm \cdot s^{-1})$	$(mm \cdot s^{-1})$	(kOe)	(%)
Shale	12	D1 (F e^{3+})	0.470	0.836	_	55
		D2 (F e^{2+})	1.272	2.71	_	14
		S1 (a-FeOOH)	0.6	-0.2	480	23
		S2 (a-FeOOH)	0.56	-0.08	500	8
Sandstone	9	S1 (a -FeOOH)	0,48	-0.12	497	51
		S2 (Fe ₂ O ₃)	0,48	-0.08	532	49
Laterite	9	S1 (a-FeOOH)	0.46	-0.12	502	28
		S2 (a-FeOOH)	0.46	-0.12	487	32
		S3 (Fe ₂ O ₃)	0.46	-0.09	532	40
		D1 (Fe(III)))				3

Table S4 - Mössbauer hyperfine parameters of the spectra of shale, sandstone and grey presented in Fig. 3. CS: center shift with respect to α -Fe at room temperature; Δ : quadrupole splitting or \mathcal{E} : quadrupole shift; H: hyperfine magnetic field, and RA: relative Area.

Table S5 - Kinetic models parameters for phosphate adsorption on laterite, sandstone and shale afterreaction with an initial phosphate concentration of 25 mg \cdot L⁻¹.

			Pseudo-first-order kinetic model (Eq. (3))			Pseudo-second-order kinetic model (Eq. (4))		
Material	Dose	$q_{ m exp}$	$q_{\rm calc}$	k_1	R^2	$q_{\rm calc}$	k_2	R^2
	$(g \cdot L^{-1})$	$(mg \cdot g^{-1})$	$(mg \cdot g^{-1})$	(min ⁻¹)		$(mg \cdot g^{-1})$	$(g \cdot mg^{-1} \cdot min^{-1})$	
Laterite	15	1.70	0.41	0.01	0.703	1.78	0.041	0.999
	8	3.2	1.31	0.01	0.926	3.2	0.006	0.998
Sandstone	80	0.99	0.29	0.01	0.927	0.99	0.51	1.000
	30	0.87	0.48	0.02	0.963	0.89	0.10	1.000
	8	2.8	1.80	0.01	0.800	2.84	0.01	0.990
Shale	80	0.21	0.07	0.01	0.955	0.23	0.04	0.999

Table S6 - Langmuir and Freundlich isotherm parameters for phosphate adsorption on shale ($pH \sim 7$; [shale] = 80 g/L; contact time: 24 h).

Model	Equation	Parameters	
Langmuir	$C_{\rm e} \ C_{\rm e} \ 1$	R^2	0.995
	$\overline{q_{\rm e}} = \overline{q_{\rm m}} + \overline{K_{\rm L} q_{\rm m}}$	$q_{ m m}({ m mg/g})$	0.514
		$K_{\rm L}$ (L/g)	0.061
Freundlich	$1_{\mathcal{L}}(x) = 1_{\mathcal{L}}(K) + \frac{1}{2} 1_{\mathcal{L}}(C)$	R^2	0.955
	$\ln(q_e) = \ln(K_f) + \frac{1}{nf} \ln(C_e)$	$n_{ m f}$	2.02
	0	$K_{\rm f}({\rm L/g})$	0.046