Version française abrégée
Des rejets résultant de la métallurgie du plomb, comprenant scories, laitiers et mattes sulfurées, et provenant d'une usine métallurgique située à proximité de la ville de Přı́bram en République tchèque, ont fait l'objet de plusieurs études minéralogiques et géochimiques approfondies [7–9]. Les mattes proviennent de la première fusion des sources primaires et secondaires de Pb ; elles sont plus denses que les scories silicatées [10]. Les mattes de la métallurgie du plomb sont considérées comme des déchets dangereux par la législation de l'Union européenne [4]. La connaissance de la spéciation des métaux lourds au sein des phases des mattes est indispensable pour l'obtention des données de base pour l'estimation de données thermodynamiques nécessaires à la modélisation de la réactivité à long terme de ce type de déchets. Cette étude représente le premier pas dans cette démarche. Les résultats de l'étude minéralogique des mattes sulfurées, basée sur la microscopie optique, le MEB, la MSE et la diffraction des rayons X, sont présentés dans cette note. La composition des mattes est complexe. Outre les sulfures de Pb, Zn, Fe et Cu, les composés intermétalliques de Cu, Ni, Sn, As et Sb et les métaux Pb, Cu et Sb, ont été observés. Dans le cas de l'existence des équivalents naturels des composés rencontrés, le nom minéralogique correspondant est également utilisé.
Quant aux sulfures, la galène, PbS, est la plus fréquente. Elle forme des plages homogènes ou d'intercroissances myrmékitiques avec bornite, digénite et koutekite à plus basse température (Fig. 1a, b et d), indiquant une cristallisation eutectique. Les analyses à la MSE révèlent la présence de Sn et Cu en quantités mineures (Tableau 1) [6]. Notons que de fortes teneurs en Cu dans la galène paraissent typiques de certaines scories [8]. Le ZnS apparaı̂t sous la forme hexagonale (wurtzite, [12]) formant des cristaux en aiguilles (Fig. 1a). Il est enrichi en Fe, avec 21 % mol. de FeS en solution solide, suite à une miscibilité entre ZnS et FeS [5,15] survenant à une température proche de la transition sphalérite–wurtzite [3]. La pyrrhotite, Fe1−xS, est très fréquente, formant des plages ovoı̈des (Fig. 1b et c) ou des intercroissances myrmékitiques avec la wurtzite. Les analyses à la MSE donnent une composition Fe0,97S. Compte tenu d'un très faible déficit en Fe, il s'agit fort probablement d'une forme hexagonale de haute température, stable jusqu'à 1190 °C [5]. La bornite, Cu5FeS4, est une phase caractéristique des mattes riches en Cu. Elle forme des associations myrmékitiques avec PbS (Fig. 1a et b) ou se présente en cristaux aciculaires (Fig. 1d). Sa composition chimique est proche de la stœchiométrie (Tableau 1). Un faible enrichissement en Fe de la bornite des scories métallurgiques a été reporté par Kucha et al. [13], probablement dû à une solution solide de haute température avec une digénite riche en Fe [5]. La digénite, Cu9−xS5, est rarement observée dans les mattes riches en Cu, formant une texture myrmékitique avec galène (Fig. 1d). Les analyses à la MSE montrent un remplacement significatif de Cu par Fe (Tableau 1) confirmant ainsi les travaux de [5,14]. La cubanite, CuFe2S3, est associée à la pyrrhotite (Fig. 1b). Sa composition chimique est proche de la stœchiométrie, avec 3,4 % du site Fe occupé par Zn, laissant entrevoir une solubilité à haute température avec ZnS [2,5,11].
Selected microprobe analyses of suphides, arsenides, intermetallic compounds and metals. Chemical composition in weight % (wt.%), atomic % (at.%) and corresponding structural formulae
Analyses à la microsonde électronique des sulfures, arséniures, composés intermétalliques et métaux. La composition chimique est donnée en % de poids (wt.%), % atomique (at.%). Les formules structurales correspondantes sont indiquées
Sulphides | Arsenides | Intermetallic compounds | Metals | |||||||||||||||
Phase | galena | wurtzite | pyrrhotite | digenite | bornite | cubanite | löllingite | koutekite | breithhauptite | Ni3Sn2 | nickeline | cuprostibite | Fe2As | SnAs | Lead | Antimony | Copper | |
Comp. | PbS | ZnS | Fe1−xS | Cu9+xS5 | Cu5FeS4 | CuFe2S3 | FeAs2 | Cu5−xAs2 | NiSb∗ | NiSb | Ni3Sn2 | NiAs | Cu2Sb | Fe2As | PbSnAs2 | Pb | Sb | Cu |
(wt.%) | ||||||||||||||||||
Zn | 0.00 | 53.40 | 0.04 | 0.02 | 0.00 | 1.60 | 0.28 | 0.00 | 0.04 | 0.05 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.08 |
Sn | 0.88 | 0.00 | 0.07 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 1.58 | 4.83 | 51.45 | 1.90 | 1.16 | 0.14 | 23.33 | 0.32 | 3.30 | 0.04 |
Fe | 0.01 | 12.16 | 61.14 | 0.94 | 11.13 | 38.07 | 24.46 | 0.00 | 0.01 | 6.71 | 0.57 | 6.84 | 0.05 | 50.58 | 0.00 | 0.00 | 0.00 | 0.31 |
S | 13.38 | 33.74 | 36.15 | 20.91 | 25.10 | 33.50 | 0.15 | 0.03 | 0.02 | 0.00 | 0.00 | 0.10 | 0.02 | 0.25 | 0.04 | 0.03 | 0.00 | 0.05 |
As | 0.05 | 0.00 | 0.10 | 0.20 | 0.11 | 0.00 | 71.01 | 29.52 | 3.26 | 3.62 | 3.95 | 50.39 | 2.31 | 37.91 | 23.77 | 0.03 | 3.79 | 0.00 |
Ni | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.09 | 0.16 | 31.31 | 23.55 | 38.69 | 31.59 | 0.01 | 1.70 | 0.60 | 0.00 | 0.01 | 0.00 |
Ag | 0.00 | 0.00 | 0.08 | 0.22 | 0.07 | 0.00 | 0.03 | 0.03 | 0.01 | 0.00 | 0.00 | 0.05 | 0.02 | 0.00 | 0.00 | 0.00 | 0.07 | 0.14 |
Cu | 0.81 | 0.10 | 0.27 | 77.46 | 61.31 | 22.69 | 0.00 | 67.50 | 0.49 | 1.92 | 2.91 | 0.71 | 49.42 | 4.66 | 0.17 | 0.00 | 0.00 | 96.59 |
Pb | 84.51 | 0.06 | 0.11 | 0.31 | 0.55 | 0.00 | 0.00 | 0.00 | 0.72 | 0.24 | 0.37 | 0.26 | 0.23 | 0.00 | 43.04 | 97.00 | 2.94 | 0.00 |
Si | 0.08 | 0.00 | 0.05 | 0.03 | 0.60 | 3.80 | 0.08 | 0.55 | 0.11 | 0.03 | 0.39 | 0.33 | 0.04 | 0.04 | 0.16 | 0.05 | 0.00 | 0.87 |
Sb | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2.83 | 1.28 | 62.85 | 59.82 | 1.80 | 5.52 | 46.72 | 4.29 | 8.17 | 2.06 | 91.23 | 0.00 |
Total | 99.73 | 99.46 | 98.01 | 100.08 | 98.86 | 99.66 | 99.95 | 99.07 | 100.39 | 100.77 | 100.12 | 97.69 | 99.97 | 99.57 | 99.26 | 99.49 | 101.34 | 98.07 |
(at.%) | ||||||||||||||||||
Zn | 0.00 | 39.10 | 0.03 | 0.02 | 0.00 | 1.16 | 0.30 | 0.00 | 0.05 | 0.07 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.08 |
Sn | 0.88 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 1.19 | 3.59 | 35.59 | 1.31 | 0.81 | 0.08 | 24.48 | 0.55 | 3.30 | 0.02 |
Fe | 0.02 | 10.42 | 49.08 | 0.89 | 10.21 | 32.34 | 30.48 | 0.00 | 0.02 | 10.60 | 0.83 | 10.06 | 0.07 | 58.12 | 0.00 | 0.00 | 0.00 | 0.36 |
S | 49.32 | 50.38 | 50.56 | 34.43 | 40.11 | 49.57 | 0.33 | 0.06 | 0.06 | 0.00 | 0.00 | 0.26 | 0.05 | 0.50 | 0.16 | 0.19 | 0.00 | 0.10 |
As | 0.08 | 0.00 | 0.06 | 0.14 | 0.07 | 0.00 | 65.96 | 26.79 | 3.89 | 4.26 | 4.33 | 55.22 | 2.56 | 32.47 | 39.52 | 0.08 | 6.00 | 0.00 |
Ni | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.29 | 0.19 | 47.67 | 35.39 | 54.13 | 44.20 | 0.01 | 1.86 | 1.27 | 0.00 | 0.02 | 0.00 |
Ag | 0.00 | 0.00 | 0.03 | 0.11 | 0.03 | 0.00 | 0.02 | 0.02 | 0.01 | 0.00 | 0.00 | 0.03 | 0.02 | 0.00 | 0.00 | 0.00 | 0.08 | 0.08 |
Cu | 1.51 | 0.08 | 0.19 | 64.34 | 49.43 | 16.94 | 0.00 | 72.22 | 0.69 | 2.66 | 3.76 | 0.91 | 64.54 | 4.71 | 0.33 | 0.00 | 0.00 | 99.35 |
Pb | 48.20 | 0.01 | 0.02 | 0.08 | 0.14 | 0.00 | 0.00 | 0.00 | 0.31 | 0.10 | 0.15 | 0.10 | 0.09 | 0.00 | 25.88 | 95.72 | 1.68 | 0.00 |
Sb | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.62 | 0.71 | 46.12 | 43.33 | 1.21 | 3.72 | 31.85 | 2.26 | 8.36 | 3.46 | 88.92 | 0.00 |
(apfu) | ||||||||||||||||||
Zn | 0.00 | 0.78 | 0.00 | 0.00 | 0.00 | 0.07 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |||
Sn | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.07 | 1.73 | 0.02 | 0.02 | 0.00 | 0.51 | |||
Fe | 0.00 | 0.21 | 0.97 | 0.03 | 1.02 | 1.96 | 0.90 | 0.00 | 0.00 | 0.21 | 0.04 | 0.17 | 0.00 | 1.67 | 0.00 | |||
S | 1.00 | 1.00 | 1.00 | 1.00 | 4.00 | 3.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | |||
As | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 1.95 | 1.95 | 0.08 | 0.08 | 0.21 | 0.92 | 0.07 | 0.93 | 0.83 | |||
Ni | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.01 | 0.93 | 0.69 | 2.63 | 0.73 | 0.00 | 0.05 | 0.03 | |||
Ag | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |||
Cu | 0.03 | 0.00 | 0.00 | 1.87 | 4.93 | 1.03 | 0.00 | 5.25 | 0.01 | 0.05 | 0.18 | 0.02 | 1.88 | 0.14 | 0.01 | |||
Pb | 0.98 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.54 | |||
Sb | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | 0.05 | 0.90 | 0.85 | 0.06 | 0.06 | 0.93 | 0.07 | 0.17 | |||
Nb. | 8 | 4 | 15 | 15 | 11 | 3 | 14 | 8 | 9 | 9 | 10 | 3 | 25 | 3 | 6 | 5 | 5 | 4 |
∗ Composé NiSb d'une matte riche en Cu.
Deux arséniures de fer ont été mis en évidence. (1) FeAs2 (löllingite), qui apparaı̂t exclusivement au sein des gouttelettes métalliques incluses dans une matrice silicatée [8]. Sa formule empirique s'écrit (Fe0,90Ni0,04)0,94(As1,95Sb0,05)2,00 (Tableau 1). Les concentrations en Ni et Sb s'expliquent par le fait que FeAs2 est isostructural avec NiSb2 [11,16]. (2) Le composé Fe2As rarement observé, présente une composition (Fe1,67Cu0,14Ni0,05)1,86(As0,93Sb0,07)1,00 (Tableau 1). Les substitutions (Cu,Ni) → Fe et Sb → As reflètent une compatibilité des structures Cu2Sb-γ et Ni2Sb avec celle de Fe2As [11]. L'arséniure de cuivre Cu5−xAs2 (koutekite) forme des associations myrmékitiques avec la galène (Fig. 1a). Son analyse à la MSE montre un excès en Cu par rapport à la formule théorique (Tableau 1). Une faible substitution de Cu par Ni et de As par Sb est observée. Le composé Cu2Sb se présente en cristaux hipidiomorphes, associés à NiSb (Fig. 1c). Sa composition chimique correspond à la formule (Cu1,88Sn0,02)1,90(Sb0,93As0,07)1,00 (Tableau 1).
Plusieurs phases intermétalliques de Ni ont été identifiées dans les mattes étudiées. (1) La phase NiSb (breithauptite) est la plus fréquente, formant, soit des cristaux subautomorphes associés à Cu2Sb et inclus dans le plomb métal (Fig. 1c), soit des plages arrondies dans les mattes riches en Cu (Fig. 1d). Le chimisme de NiSb au sein de ces deux associations est différent : (Ni0,93Cu0,01Pb0,01)0,95(Sb0,90As0,08Sn0,02)1,00 dans les mattes riches en Cu et (Ni0,69Fe0,21Cu0,05)0,95(Sb0,85As0,08Sn0,07)1,00 dans le Pb métal (Tableau 1). Les teneurs en As et Fe peuvent s'expliquer par une miscibilité avec NiAs et FeSb, phases isostructurales avec NiSb [11,16]. (2) Le composé NiAs (nickéline) se présente en cristaux étoilés, interstitiels par rapport aux couches de Pb métal et à la matte sulfurée (Fig. 1a). Sa composition chimique correspond à la formule (Ni0,73Fe0,17Cu0,02)0,92(As0,92Sb0,06Sn0,02)1,00 (Tableau 1). Le composé NiAs est isostructural avec NiSb ; par ailleurs, la phase ε du système FeSb possède une structure de type NiAs [11]. Ces relations cristallochimiques permettent d'expliquer des teneurs en Fe et Sb dans la nickéline étudiée. (3) La phase Ni3Sn2 forme des cristaux dendritiques (Fig. 1b) de composition (Ni2,63Cu0,18Fe0,04)2,85(Sn1,73As0,21Sb0,06)2,00 (Tableau 1). Les remplacements observés indiquent une miscibilité avec les phases isostructurales, Fe3Sn2, NiSb, NiAs, FeSb et Cu6Sn5 [1,11].
Des plages en forme de gouttelettes de la phase PbSnAs2 ont été observées, en une association étroite avec la galène et la koutekite. La composition de cette phase correspond à la formule empirique Pb1,08(Sn1,02Ni0,05Cu0,01)1,08(As1,65Sb0,35)2,00 (Tableau 1).
Le plomb forme des couches massives dans les mattes sulfurées, étant associé à l'antimoine (Fig. 1a et c). Les analyses à la MSE révèlent un enrichissement en Sb (de 3 à 4 % at. environ ; Tableau 1). Rappelons que la solubilité de Sb dans Pb est de 5,8 % at. à la température de l'eutectique (247 °C) [11]. L'antimoine (Fig. 1a, c) contient jusqu'à 6 % at. As et 3 % at. Sn (Tableau 1). La teneur élevée en Sn est due à une solubilité importante de Sn dans Sb (jusqu'à 10 % at. Sn [11]). Une concentration significative de Pb (autour de 2 % at.) résulte d'une miscibilité avec Sb, qui est de l'ordre de 3 à 5,5 % at. [11]. Le cuivre est une phase rare formant de plages exiguës (Fig. 1b). Ses analyses chimiques sont indiquées dans le Tableau 1.
La présente étude a montré l'existence d'une composition complexe des mattes sulfurées issues de la métallurgie du plomb. Elle a permis de déterminer les phases contenant les éléments particulièrement nocifs pour l'environnement, tels que Pb, Cu, Ni, As et Sb. Cette recherche est le premier pas dans l'évaluation des risques environnementaux relatifs au stockage des déchets de la métallurgie du plomb.
1 Introduction
Waste materials from the smelting of base metals (Pb, Zn, Cu), such as metallurgical slags, have recently been extensively studied in order to determine the possible environmental impacts of their dumping or possible re-use [7,9,13]. Besides metallurgical slags, sulphide ‘matte’ represents another important waste material resulting from primary and secondary smelting activity. Mattes are defined as high-temperature solid solutions of metallic sulphides, which are much denser than slags [10]. In the fusion process in blast furnaces, mattes are used either for the collection of valuable elements (Cu or Ni smelting) or for that of sulphur and impurities in a sulphide phase (Pb smelting) [10]. In the Pb smelting technology, only Cu-rich mattes can be re-used for recovery of copper in secondary Cu smelters (Z. Kunický, personal communication). Otherwise, the mattes are considered as waste materials and must be dumped. From the environmental point of view, the mattes from lead smelting are defined as ‘hazardous waste’ No. 10 04 00 according to the European Waste Catalogue (Commission Decision No. 94/3/EC) [4]. The mattes occur either as (i) metallic droplets of various sizes (1–300 μm) entrapped within the silicate slag [7] or (ii) massive materials, to which this study is devoted.
The understanding of the distribution and mobility of metals during alteration of mattes is essential for determining the best conditions for their dumping. This paper represents the first step in such a study and describes the crystal chemistry of principal matte phases. Furthermore, the knowledge of metals speciation within the matte phases represents the basis for estimating the thermodynamic stability of such a waste material and for a subsequent modelling of their long-term reactivity within waste disposal sites.
2 Material and methods
Samples of massive mattes were taken at the dumps in the vicinity of the lead smelter located at Lhota near Přı́bram, Czech Republic. The information on the operation of the smelter and detailed location of dumps is given elsewhere [7,8]. Macroscopically, the mattes appear as massive and dense materials with a metallic lustre. They form the bottom of cone-shaped slag ladles produced by moulding. Polished sections of 25 samples were studied in reflected light. Furthermore, a Jeol JSM 6400 scanning electron microscope with Kevex Delta energy-dispersion spectrometer (SEM/EDS, École supérieure de l'énergie et des matériaux, Université d'Orléans) was used. Electron probe microanalyses (EPMA) were carried out using a Cameca SX-50 microprobe (BRGM–CNRS Orléans) with the following analytical conditions: accelerating voltage 20 kV, sample current 20 nA, counting time 10 s on peak and background for all analysed elements; set of standards: sphalerite (Zn), cassiterite (Sn), pyrite (Fe, S), AsGa (As), galena (Pb), stibnite (Sb), albite (Si), pure metals (Ni, Ag, Cu). In some cases, phase compositions were determined using an X-ray powder diffractometer with Cu Kα radiation operating at 25 mA and 35 kV (XRD, Siemens D-500, École supérieure de l'énergie et des matériaux, Université d'Orléans). The XRD measurements were done in step-scan mode over the range 5–80° 2θ in steps of 0.01° and with a counting time of 10 s.
3 Results and discussion
3.1 Mineralogy and crystal chemistry
The mineralogical composition of mattes is rather complex, comprising a large number of phases. Considering the matte extremely rich in sulphur, the principal phases are various sulphides. In addition, pure metals, arsenides and complex intermetallic compounds were observed. In the case of the existence of natural equivalents, mineral names are indicated.
3.1.1 Sulphides
Galena (PbS) is the most common sulphide in the mattes studied. It has already been observed within the metallurgical slags where it occurs as small droplets embedded in glass [7]. In mattes, galena typically forms oval aggregates or symplectitic intergrowths with bornite, digenite (Fig. 1a, b and d) and koutekite (Fig. 1a), indicating an eutectic crystallisation. Subhedral crystals are also common (Fig. 1c). The chemical composition of galena corresponds to the empirical formula (Pb0.98Sn0.02Cu0.03)1.03S1.00 (Table 1). Small amounts of other elements can enter into the galena crystal structure [6]. Even higher Cu concentrations were found in galena from medieval slags (up to 1.67 wt.% Cu, i.e. 0.06 atoms per formula unit, [8]).
Wurtzite (ZnS) was identified by X-ray diffraction analysis, with a collimator device. The analysis was performed over the range 26–31° 2θ, corresponding to the field of principal lines of sphalerite and wurtzite. The principal lines of wurtzite were determined at ds 3.316, 3.121 (interference with native Sb) and 2.930 Å. According to the JCPDS data (file 36–1450), the principal lines in the powder pattern of synthetic high-temperature wurtzite-2H are: 3.3099, 3.1292 and 2.9259 Å [12]. In the studied mattes, wurtzite occurs as irregular needles up to several hundreds micrometres in size (Fig. 1a, b and c) or as myrmekitic intergrowths with pyrrhotite (Fig. 1e and f). The EPMA reveals a significant Fe enrichment of wurtzite, whose empirical formula is (Zn0.78Fe0.21)0.99S1.00 (Table 1). In fact, the binary system ZnS is very similar to the FeS system [5]. According to Chaudhuri and Newesely [3], high amounts of Fe in ZnS from metallurgical slags result from isomorphic substitution of FeS in the structure of ZnS at a temperature close to the sphalerite–wurtzite transformation (1020 °C). Experimental data on the sphalerite–pyrrhotite system showed more than 13 mol.% FeS at 750 °C [15] and up to 40 mol.% FeS at 900 °C.
Pyrrhotite (Fe1−xS) is a commonly observed phase. It occurs as oval grains up to 20 μm in size (Fig. 1b and c) or as myrmekitic intergrowths with wurtzite (Fig. 1e and f). In the FeS system, hexagonal pyrrhotite represents a high temperature modification stable in temperature range from 308 to 1190 °C [5]. The EPMA corresponds to the composition Fe0.97S1.00 (Table 1). Small amounts of Cu can enter into the structure of pyrrhotite [13]. Pyrrhotites from lead-smelting mattes contain up to 0.25 at.% Cu [8]. There is little or no solid solution of ZnS in pyrrhotite [6].
Bornite (Cu5FeS4) is the most important Cu-bearing phase of Cu-rich mattes. It forms symplectitic intergrowths with galena (Fig. 1a and b) or irregular needle-like crystals (Fig. 1d). Its chemical composition is close to the stoichiometry: Cu4.93Fe1.02S4.00 (Table 1). Kucha et al. [13] reported an Fe enrichment in bornites from metallurgical slags, related to the existence of solid solution between digenite (Cu,Fe)9S5 and bornite at high temperatures [5].
Digenite (Cu9+xS5) is observed only in extremely Cu-rich mattes, where it forms symplectitic intergrowths with galena (Fig. 1d). The EPMA corresponds to (Cu9.35Fe0.15)9.50S5.00 (Table 1). Morimoto and Kullerud [14] showed that Fe easily substitutes Cu in the digenite structure. In addition, Fe concentrations in digenite associated with bornite reach up to 15 at.% at temperatures >335 °C [5].
Cubanite (CuFe2S3) is observed intimately associated with pyrrhotite (Fig. 1b), and corresponds probably to a high-temperature intermediate solution quenchable only near the CuFe2S3 composition [5]. Its chemical composition corresponds to Cu1.03(Fe1.96Zn0.07)1.03S3.00 (Table 1). The high-temperature cubanite is isostructural with sphalerite [2,5]. This probably accounts for low Zn concentrations in the studied cubanite [11].
3.1.2 Arsenides and other intermetallic compounds
Löllingite (FeAs2) occurs exclusively in large metallic droplets (up to 300 μm in size) entrapped in the silicate slag [8]. The EPMA (Table 1) corresponds to (Fe0.90Ni0.04)0.94(As1.95Sb0.05)2.00. Significant concentrations of Ni and Sb are due to the fact that FeAs2 is isostructural with NiSb2 [11,16].
Koutekite (Cu5−xAs2) is a bluish phase associated with galena in droplet-like symplectitic intergrowths (Fig. 1a). Its composition corresponds to (Cu5.25Ni0.01)5.26(As1.95Sb0.05)2.00 and shows a Cu enrichment with respect to the stoichiometric formula (Table 1).
The rare phase Fe2As is chemically much more complex than the ideal composition. The EPMA (Table 1) indicates (Fe1.67Cu0.14Ni0.05)1.86(As0.93 Sb0.07)1.00, involving substitutions (Cu,Ni) ⇔ Fe and Sb ⇔ As. Fe2As is isostructural with Cu2Sb and Ni2Sb, which can explain Cu, Ni and Sb concentrations [11].
PbSnAs2 is associated with galena–koutekite droplet-like intergrowths (Fig. 1a). As shown by EPMA, its composition corresponds to Pb1.08(Sn1.02Ni0.05 Cu0.01)1.08(As1.65Sb0.35)2.00 (Table 1).
Breithauptite (NiSb) is the most common Ni-bearing phase within the studied mattes. It forms either subhedral and elongated crystals associated with Cu2Sb in massive layers of a ‘pure lead’ (Fig. 1c) or rounded grains associated with Cu-rich mattes (Fig. 1d). The EPMA of NiSb from Cu-rich mattes (Fig. 1d) corresponds to (Ni0.93Cu0.01Pb0.01)0.95(Sb0.90 As0.08Sn0.02)1.00 (Table 1), while NiSb embedded in the ‘pure lead’ (Fig. 1c) is significantly enriched in Fe: (Ni0.69Fe0.21Cu0.05)0.95(Sb0.85As0.08Sn0.07)1.00 (Table 1). Significant concentrations of Fe and Ni may be explained by the fact that NiSb is isostructural with FeSb and NiAs [11,16]. The presence of Cu and Pb may be due to contamination.
Nickeline (NiAs) forms star-shaped crystals or boundaries between sulphide matte and ‘pure lead’ zones (Fig. 1a). Its chemical composition is (Ni0.73 Fe0.17Cu0.02)0.92(As0.92Sb0.06Sn0.02)1.00 (Table 1). Solid solution with the ε phase in the FeSb system (NiAs type structure) is likely responsible for Fe concentrations in NiAs [11]. Significant Cu and Sn concentrations might be due to solid solution with Cu6Sn5, having NiAs-type superstructure [1].
Ni3Sn2 forms dendritic crystals (Fig. 1b). The EPMA gave (Ni2.63Cu0.18Fe0.04)2.85(Sn1.73As0.21 Sb0.06)2.00 (Table 1), revealing the substitutions (Sb,As) ⇔ Sn and (Fe,Cu) ⇔ Ni, which reflect the miscibility with isostructural compounds Fe3Sn2, NiSb, NiAs, FeSb and Cu6Sn5 [1,11].
Cu2Sb forms subhedral crystals closely associated with NiSb (Fig. 1c). Its composition corresponds to (Cu1.88Sn0.02)1.90(Sb0.93As0.07)1.00 (Table 1). The substitutions As ⇔ Sb and Sn ⇔ Cu are obvious (As concentrations are higher than 2 at.%, Sn concentrations rise up to 1 at.%) (Table 1).
3.1.3 Metals
Lead (Pb) is very common in sulphide mattes, forming massive layers. It is associated with antimony (Fig. 1a and c). EPMA shows an important enrichment in Sb (approximately 3–4 at.%) (Table 1). After Hansen and Anderko [11], the solubility of Sb in Pb attains 5.8 at.% at the eutectic temperature (247 °C).
Antimony (Sb) is closely associated with metallic lead (Fig. 1a, c). EPMA revealed concentrations of As (up to 6 at.%), Sn (up to 3 at.%) and Pb (∼2 at.%) (Table 1). The solubilities of Sn and Pb in Sb can reach up to 10 and 5.5 at.%, respectively [11].
Copper (Cu) is a rare phase, forming small inclusions often located in the micro-cavities (Fig. 1b). The EMPA showed a Si concentration, which can be ascribed to contamination (Table 1).
4 Conclusions
Mattes from lead smelting are complex waste materials extremely enriched in heavy metals and metalloids (Pb, Zn, Cu, Ni, As, Sb, Sn), which can be released from matte during the alteration process. The knowledge of mineralogy and crystal chemistry of sulphide mattes from lead smelting represents the first step of investigation of environmental risk connected with their dumping. The principal phases constituting these mattes are metals (Pb, Sb, Cu), sulphides (galena, wurtzite, pyrrhotite, bornite, digenite), arsenides (löllingite, koutekite, nickeline) and various other intermetallic compounds (breithauptite, Ni3Sn2, Cu2Sb). The microchemical study revealed a large number of substitutions in crystal structures of all the involved phases, which probably originate from an extremely complex composition of the melt and from a relatively rapid cooling regime.
Acknowledgements
This study was financed by the BRGM Orléans (France), the ‘Université d'Orléans’ (France), two research projects from Charles University (GAUK 208/2000/B GEO, J13/98:113100005), and project GP205/01/D132 of the Grant Agency of the Czech Republic. The authors thank Zdeněk Kunický, Technical Director of the Přı́bram smelter (Kovohutě Přı́bram) for facilitating sampling on the dumps and for fruitful discussions. Annick Genty (SEM/EDS) and Christian Gilles (EMPA) assisted during the analytical work.