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Abstract

The coefficients that characterize the simultaneous transports of mass, heat, solute and current through compact clays are ex-
perimentally and theoretically determined. The role of a characteristic length scale that can be derived from conductivity and
permeability is illustrated for the electrokinetic coefficients. The macroscopic Soret coefficient in clays was found five times larger
than in the free fluid, presumably because of extra couplings with electrical phenomena. To cite this article: M. Paszkuta et al.,
C. R. Geoscience 338 (2006).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Coefficients de transport pour des argiles compactes saturées. Les coefficients qui caractérisent le transport simultané de
masse, de chaleur, de soluté et de courant au travers d’argiles compactes sont déterminés expérimentalement et théoriquement. Le
rôle d’une longueur caractéristique qui peut être déduite de la conductivité et de la perméabilité est illustré pour ce qui concerne
les coefficients électrocinétiques. Le coefficient de Soret macroscopique dans les argiles est cinq fois plus grand que dans le fluide
libre, probablement à cause de couplages supplémentaires avec les phénomènes électriques. Pour citer cet article : M. Paszkuta et
al., C. R. Geoscience 338 (2006).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Keywords: Compact clays; Electro-osmotic coefficient; Soret coefficient

Mots-clés : Argiles compactes ; Coefficient électro-osmotique ; Coefficient de Soret
1. Introduction

The ability of clay soils to act as semipermeable
membranes that inhibit the passage of electrolytes may
be of great value. Clays exhibit membrane properties
when charged ionic species are excluded from the pores,
while uncharged species have a relatively free move-
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ment. Clays are therefore capable of inducing coupled
transport such as osmosis, electro-osmosis, electrodial-
ysis, and thermodiffusion.

The major purpose of this work was to experimen-
tally determine the coefficients that characterize these
couplings in compact clays. More precisely, let us con-
sider a porous medium filled by an electrolyte solution
with a concentration n (defined as the number of mole-
cules per m3). When a pressure gradient ∇P , an electric
field E, a concentration gradient ∇n, and a temperature
y Elsevier Masson SAS. All rights reserved.
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gradient ∇T are simultaneously applied to the porous
medium, four fluxes are generated, namely a flow char-
acterized by the seepage velocity U (m s−1), a current
density I (A m−2), a solute flux Jd which is the number
of particles per unit surface and per unit time (m−2 s−1),
and an heat flux Jq (W m−2). Close to equilibrium,
when gradients are not too large, the problem is linear,
and fluxes are proportional to these gradients (see [4]).
Then, with respect to the solvent-fixed reference plane,
one can write:

I = γ11 · E + γ12 · (−∇P) + γ13 · (−∇n)

(1a)+ γ14 · (−∇T)

U = γ21 · E + γ22 · (−∇P) + γ23 · (−∇n)

(1b)+ γ24 · (−∇T)

Jd = γ31 · E + γ32 · (−∇P) + γ33 · (−∇n)

(1c)+ γ34 · (−∇T)

Jq = γ41 · E + γ42 · (−∇P) + γ43 · (−∇n)

(1d)+ γ44 · (−∇T)

A distinction is generally made between the diagonal
phenomenological coefficients γij with i = j , and the
non-diagonal ones with i �= j . Because of the Onsager
symmetry properties, the non-diagonal coefficients are
not all independent.

A literature search shows that measurements of these
coefficients for clays (and especially for compact clays)
were not frequently performed. Interesting contribu-
tions concerning electrokinetic coefficients are from El-
rick et al. [5], Gronevelt et al. [6] and Sherwood and
Craster [19]. To the best of our knowledge, only Thorn-
ton and Seyfried [20], and Lerman [10] have contributed
to thermodiffusion. A recent review of all of these coef-
ficients was made by Horseman et al. [7].

This paper is organized as follows. Section 2 is
devoted to the theoretical determination of the cou-
pling coefficients. The local transport equations corre-
sponding to the electrical potential, the ionic concentra-
tions, and the velocities are solutions of the Poisson–
Boltzmann, the convection diffusion and the Stokes
equations; these equations are numerically solved and
integrated to obtain the macroscopic fluxes. Numeri-
cal results for various porous media correspond to the
analytical solutions valid for circular Poiseuille flows
when the capillary radius is replaced by a suitable length
scale.

The material, the experimental procedure and the
data are described in Section 3. Two samples of argilite
extracted from a Callovo-Oxfordian formation were
characterized. Permeability, conductivity, electro-osmo-
tic coefficient, effective diffusion coefficient, osmotic
coefficient, coefficient related to “membrane potential”
and Soret coefficient measurements are described. Re-
sults are considered as functions of solute concentration,
porosity and temperature in non-isothermal conditions.
Data relative to the electrokinetic coefficients are com-
pared to numerical and analytical results derived by [2]
and [12].

2. General

The coefficients γij defined by Eq. (1) can be de-
rived by analysing the phenomena on the pore level.
Such an analysis was performed for instance by [12]
when there is no temperature gradient imposed on the
medium. Let us summarize it briefly. Under such cir-
cumstances, transport is governed by three types of cou-
pled equations. First, the concentration ni(R, t) of each
ith ion species is given by a convection–diffusion equa-
tion

∂ni

∂t
+ ∇ ·

(
−Di∇ni − ezi

Di

kT
ni∇ψ + niu

)
= 0

(2)i = 1,2, . . . ,N

where k is the Boltzmann constant (= 1.38 × 10−23 m2

kg s−2 K−1), t the time, Di the diffusion coefficient of
ion i, e the absolute value of the electron charge, zi the
valency, ψ the electric field, and u the fluid velocity.

Then, u and the pressure p(R, t) are governed by
modified Stokes equations, since the Reynolds number
is in most cases much less than unity:

(3)∇ · u = 0, μ∇2u = ∇p + ρ∇ψ

where μ is the fluid viscosity and ρ the charge density.
Finally, ψ(R, t) is solution of the Poisson equation

(4)∇2ψ = − ρ

εel
= − e

εel

N∑
i=1

nizi

where εel is the fluid permittivity.
To be solved, the set of Eqs. (2) to (4) is subject to

the following boundary conditions on the solid/fluid in-
terface S:

(5)ν · ji = 0, u = 0 and ψ = ζ

where ν is the outward normal to the solid surface, and ζ

the zeta potential.
These equations were linearized around equilibrium,

made dimensionless, and solved by [9] (and the ref-
erences therein) for homogeneous porous media that
could be represented as spatially periodic media. The
coefficients γij (i, j = 1, . . . ,3) can be derived by inte-
grating the local fields over the unit cell.
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.

The only cases which can be solved analytically, are
the ones of a plane channel or of a circular tube of ra-
dius Rc. Let us recall the coefficients obtained in the
latter case by Coelho et al. [8] and Marino et al. [9] (and
references therein):

γ ′
11 = γ11μe2

(εelkT κ)2

= 1

2
(D′

1 + D′
2) − ζ ′

κλ′I0(κRc)

(
(D′

1 − D′
2)I1(κRc)

)

(6a)+ 2ζ ′
[

λ′
3

κRcI0(κRc)
− I1(κRc)

]

(6b)γ ′
12 = γ ′

21 = γ21μ

εelζKκ2
= ζ ′

[
2I1(κλ′)

κλ′I0(κλ′)
− 1

]

γ ′
13 = γ13μe

εel(kT )2

(6c)= 1

2
(D′

1 − D′
2) − ζ ′(D′

1 + D′
2)

I1(κλ′)
κλ′I0(κλ′)

(6d)γ ′
23 = γ23μκ2

kT
= 0

γ ′
33 = γ33μe2

εel(kT )2

(6e)= 1

2
(D′

1 + D′
2) − ζ ′(D′

1 − D′
2)

I1(κλ′)
κλ′I0(κλ′)

where κ−1 is the Debye–Hückel length.
It is important to note that most numerical results ob-

tained for various types of porous media were shown to
be very close to the analytical results (6) when the radius
of the tube is replaced by the characteristic length Λ′ de-
fined by

(7)Λ′ =
(

12.5Kσ∞

σ

)1/2

where σ∞ is the fluid conductivity (measured before
any contact with argilite) and σ the macroscopic con-
ductivity of the medium filled by the electrolyte. The
definition of this length scale was inspired by the length
scale Λ introduced by [9].

3. Experimental

The phenomenological coefficients γij were mea-
sured in a series of one-dimensional experiments per-
formed on porous specimens of thickness l and cross
sectional diameter S separating two compartments each
of volume V filled by aqueous solutions at different
temperatures, pressures and electrical potentials with
different concentrations of the same electrolyte. The
concentration n expressed in m−3 is related to the molar
concentration C expressed in mol m−3 by

(8)C = n/Na

where Na is the Avogadro number (= 6.02×1023 mol−1)
The relationships between the coefficients γij and the

measurable clay parameters can be summarized by:
⎛
⎜⎝

γ11 γ12 γ13 γ14
γ21 γ22 γ23 γ24
γ31 γ32 γ33 γ34
γ41 γ42 γ43 γ44

⎞
⎟⎠

(9)=

⎛
⎜⎜⎜⎝

σ γ12 γ13 γ14

γ12
K
μ

ωK
μ

kT

n
kT

γ13
n

kT
γ23 D̄ nD̄ST

T γ14 T kT
kT 2

n2 γ33ST λ

⎞
⎟⎟⎟⎠

where σ is the electrical conductivity, K the perme-
ability, μ the viscosity, ω the coefficient of osmotic
efficiency, kT the thermo-osmotic coefficient, D̄ the
macroscopic diffusion coefficient, ST the Soret coeffi-
cient and λ the thermal conductivity.

3.1. Materials

The material, supplied to us by ANDRA, is a nat-
ural compact argilite extracted in eastern France from
a Callovo-Oxfordian formation. The wellbore referred
to as EST104 was sampled at two different levels. One
at 483.6 m (EST104/2364) and the other at 505.15 m
(EST104/2487). Both blocks were used to obtain solid
cylinders of thickness 3 mm and diameter 12 mm, or
powder. A SEM analysis of the argilite powder shows
an heterogeneous structure with many aggregates; be-
cause of the careful crushing process to obtain powder
from the original block, the average grain radius ranges
from 1 to 10 µm. The variability of the samples is dis-
cussed in this issue by [14].

The solute was sodium chloride supplied by SIGMA
(purity 99.5%). The solvent was pure water filtered by
an HPCL Maxima unit. The concentration C was rang-
ing between 10−4 and 10−2 mol l−1.

The samples were equilibrated with the solutions for
about a month and any additional and undesirable ion
that appears during this initial equilibration phase can be
eliminated. During the experiments, HPCL chromatog-
raphy was performed and the concentration of any extra
ions such as calcium was found negligible when com-
pared to sodium.

The zeta potential ζ was estimated by measuring the
electrophoretic mobility of clay particles in electrolyte
solutions. Since the ratio between κ−1 and the particle
dimension is small, the Smoluchowski formula [8] can



M. Paszkuta et al. / C. R. Geoscience 338 (2006) 908–916 911
Fig. 1. The zeta potential ζ as a function of NaCl concentration C.
Data are for: EST104/2364 (2) and EST104/2487 ("). The precision
is about 15%.

Fig. 1. Potentiel ζ en fonction de la concentration C en NaCl. Les don-
nées sont pour : EST104/2364 (2) et EST104/2487 ("). La précision
est d’environ 15%.

be used for all particle shapes with an estimated preci-
sion of 10%:

(10)ζ = μue

εel

where ue is the electrophoretic mobility.
Results for ζ in various NaCl solutions are displayed

in Fig. 1. |ζ | is an increasing function of the concentra-
tion; it changes by only 7 mV (−18 to −25 mV) over
a concentration range of 10−4 to 10−2 mol l−1 at a con-
stant pH value equal to 5.

3.2. Experimental determination of the coefficients K ,
σ and γ21 (= γ12) in isothermal conditions

3.2.1. Experimental procedure
The experimental cell is detailed in [11] and [13].

The experiments were carried out at atmospheric pres-
sure. The sample, whether it is the original compact
rock or the powders, can be compacted or not by
means of two porous disks. This compaction limits the
swelling that is likely to occur with the addition of
sodium chloride. Therefore, various porosities can be
obtained for the same sample.

The permeability K was measured by generating a
steady flow by means of a constant pressure difference
�P ≈ 2.4×104 Pa (0.24 bar). The mass of the outgoing
water was measured during a given time in order to cal-
culate the flow rate. Then, K was determined by using
Darcy’s law. Measurements were found reproducible.

The sample conductivity σ was measured by a clas-
sical method by imposing a constant dc voltage �V ∼
Fig. 2. The permeability K as a function of porosity ε. Data are for:
argilite powder (") and argilite original sample (P). The precision is
about 34% and 24% for small and large porosities, respectively.

Fig. 2. Perméabilité K en fonction de la porosité ε. Les données sont
pour : la poudre d’argilite (") et l’échantillon initial (P). La précision
est d’environ 34% et 24% pour les petites et grandes porosités.

1 V between two bronze plates at a vanishingly small
pressure difference (�P = 0). Then, Ohm’s law was
used.

The electric current was observed to decrease dur-
ing the measurement time when the electric potential
difference is set, probably due to the formation of polar-
ization layers on the electrodes. Simultaneously, a water
flow rate Qe was induced by �V and γ21 was obtained
by:

(11)γ21 = Qe

S

l

�V

Qe was determined from the slope of the straightline ob-
tained from the linear fit of the collected liquid mass as
a function of time during the first three minutes before
it starts decreasing due to polarization.

3.2.2. Results and discussion
Results for permeability are displayed in Fig. 2. Note

that the permeability obtained for the argilite original
sample is in good agreement with the powder perme-
ability.

In order to study the effects of the compaction pres-
sure and κ , σ was measured for several porosities ε at
fixed C, and for several C at fixed ε. It is more conve-
nient to represent the experimental results in terms of
the electric formation factor F , which is defined as:

(12)F = σfp

σ

where σfp is the fluid conductivity after permeation. σfp
was found equal to σ∞ for C larger than 10−3 mol l−1;
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Fig. 3. The electric formation factor F (Q) and the diffusive forma-
tion factor F̄ (2,1,",!) as a function of the porosity ε. Data are
for: EST104/2487 (",!) and EST104/2364 (2,1). Empty symbols
are for C � 10−3 mol l−1. Full symbols are for C > 10−3 mol l−1.
These data are compared to numerical results (×) obtained for vari-
ous types of random packings [15]. The solid line is an approximate
fit by Archie’s law ε−2.

Fig. 3. Facteur de formation électrique F (Q) et facteur de forma-
tion diffusif F̄ (2,1,",!) en fonction de la porosité ε. Les données
sont : EST104/2487 (",!) et EST104/2364 (2,1). Les symboles
vides sont pour C � 10−3 mol l−1. Les symboles pleins sont pour
C > 10−3 mol l−1. Ces données sont comparées aux résultats numé-
riques (×) obtenus pour les différents empilements aléatoires [15]. Le
trait plein est une approximation par la loi d’Archie ε−2.

however, for smaller concentrations, the two values
were different. Results are displayed in Fig. 3. F is a
decreasing function of ε and is independent of C.

In Fig. 3, these data are seen to be in very good
agreement with the solution of the Laplace equation
for various random packings [1]. They can be gath-
ered by an Archie’s law, F = ε−2 when 0.1 � ε � 0.75.
Therefore, σ is essentially dominated by geometrical ef-
fects.

γ21 was measured by the same procedure as σ . γ21 is
independent on C in the studied range; the mean value
was found to be equal to (3.3 ± 1.2)× 10−9 m2 V−1 s−1

for ε = 0.6. At a fixed C = 10−4 mol l−1, γ21 increases
with ε.

In Fig. 4, all results are gathered in the dimension-
less form γ ′

21 as functions of κΛ′, and compared to the
numerical data recalled in Section 2. It is remarkable to
note that the experimental data cluster around a single
curve with very little dispersion. Moreover, the compar-
ison with numerical results is very successful; therefore,
the experimental data are also well approximated by
Eq. (6b), which is a conclusion of high practical interest
(cf. [15] for a detailed discussion).
Fig. 4. The reduced coupling coefficient γ ′
21 as a function of κΛ′ . Data

are for: argillite powder ("), numerical results obtained for various
types of random packings (×). The dotted line is the least-square fit
of Eqs. (7) and (6d).

Fig. 4. Coefficient de couplage réduit γ ′
21 en fonction de κΛ′ . Les

données concernent : la poudre d’argillite ("), les résultats numé-
riques (×) obtenus pour les différents empilements aléatoires. Le trait
discontinu représente l’approximation aux moindres carrés – Éqs. (7)
et (6d).

3.3. Experimental determination of the coefficients
γ13, γ23, γ33 and γ34

3.3.1. Experimental procedure
The experimental cell was described extensively in

Refs. [13,16,17].
Two types of experiments have been performed; the

samples were either compacted under different pres-
sures by exerting a compaction pressure during the ex-
periment (EST104/2487) or they were precompacted
under a pressure equal to 46 bar before the experi-
ment started (EST104/2364). Thermal regulation with
a precision of ±0.5 ◦C was imposed by inserting coils
of silicone tubings connected to two thermostats. The
imposed temperature in each reservoir was measured
by heat resistances. The temperature difference �T is
ranging between 5 and 30 K.

The cell was initially assembled with either the less
concentrated solution or the more concentrated one and
the clay paste was brought to equilibrium with these
concentrations. The minimal imbibition time is about
200 h. As a result, the sample was equilibrated with the
solution and any additional and undesirable ion that ap-
pears during this initial equilibration phase can be elim-
inated.

Each experiment was divided into two periods. In the
first one, a concentration gradient was imposed at a con-
stant temperature of 25 ◦C. �C, �P and �Ψm were
measured as functions of the time t . The second period
starts after approximatively 200 h when a temperature
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Fig. 5. A typical example of the evolution with time of the measured parameters: (a) �C = C1 − C2. (b) �P . (c) �Ψ (= �Ψmeas − �ΨN) (!)
obtained by subtracting from the measured potential difference �Ψmeas (×), the electrode potential difference �ΨN (1). For period I, only ∇C is
imposed and T = 298 K. For period II, ∇T is superimposed over ∇C.

Fig. 5. Exemple typique d’évolution temporelle des paramètres mesurés : (a) �C = C1 − C2. (b) �P , (c) �Ψ (= �Ψmes − �ΨN) (!), obtenu en
soustrayant la différence de potentiel d’électrode �ΨN (1) à la différence de potentiel mesurée. Pour la période I, seul ∇C est imposé et T = 298 K.
Pour la période II, ∇T est superposé à ∇C.
difference was superposed over the concentration gra-
dient, either in the same direction as the concentration
gradient (∇T · ∇C > 0) or in the opposite direction
(∇T · ∇C < 0). Again, �C, �P and �Ψm were mea-
sured as functions of t . T was also recorded in order to
control its stability.

The total measured potential difference �Ψm in-
duced by a concentration gradient consists of the elec-
trode potential difference �ΨN, and of the so-called
membrane potential difference �Ψ . Since �ΨN is given
by the Nernst equation, in isothermal conditions, �Ψ

can be expressed as:

(13)�Ψ = �Ψm − RT

F
ln

C1

C2

Fig. 5 shows typical evolutions of �C, �Ψm and �P

with t . �C, �Ψm and �P vary linearly with t and de-
crease very slightly.

The weights md and mw of the dry and wet sample
are measured after the experiment in order to determine
the porosity of the clay sample. The sample was dried in
an oven at 100 ◦C during 24 h before the measurement
of md.

3.3.2. Determination of γ13, γ23 and γ33 in isothermal
conditions

During period I, in the absence of any thermal gra-
dient, �C, �P and �Ψ decrease with the same rate.
Therefore, the ratios �Ψ

�C
and �P

�C
are constant, in agree-

ment with the theory [6].
Since the seepage velocity is zero (U(t) = 0) in the

present setup, and since there is no externally applied
electrical field (I (t) = 0), the values of γ13 and γ23 can
be deduced from the experimental values �P

�C
and �Ψ

�C
by using Eqs. (1a) and (1b)

(14a)γ13 = γ12
�P

�C
+ γ11

�Ψ

�C

(14b)γ23 = −γ22
�P

�C
− γ21

�Ψ

�C

The global macroscopic diffusion coefficient D̄ can be
determined by considering the evolution of the con-
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Fig. 6. The coupling coefficient α′
33 as a function of the average con-

centration C̄. Data are for: EST104/2487 (") and EST104/2364 (2).

Fig. 6. Coefficient de couplage α′
33 en fonction de la concentration

moyenne. Les données sont : EST104/2364 (2) et EST104/2487 (").

centration profile (cf. [16]). D̄ is related to γ33. For
non-isothermal conditions, the Soret coefficient was de-
termined as described in [17].

3.3.3. Analysis of γ13, γ23 and γ33 in isothermal
conditions

D̄ can be analysed by defining a diffusion formation
factor:

(15)F̄ = Df

D̄

where Df is the diffusion coefficient in an infinite
medium. These data are plotted in Fig. 3. If there were
no influence of surface charges on the ions, one should
obtain the same results for F and F̄ . This is not quite
the case. D̄ is relatively independent of concentration,
but it depends on the sample; surface effects are indeed
more important for EST104/2364.

The surface effects on D̄ can be more precisely
analysed by introducing the coefficient α′

33:

α′
33

(
γ ′

33

D′
1 + D′

2
− γ ′

33(ζ
′ = 0)

D′
1 + D′

2

)
1

ζ ′

(16)= − (D′
1 − D′

2)

(D′
1 + D′

2)

I1(κRc)

κRcI0(κRc)

It was numerically shown to depend only on κΛ′
by [12]. However, such a representation was not suc-
cessful for the experimental data, which were found to
be of the same order of magnitude, but with important
differences, possibly due to experimental errors. The
most satisfactory display for this quantity is given in
Fig. 6 as a function of concentration.
Fig. 7. The coupling coefficient α′
13 as a function of the average con-

centration C̄. Data are for: EST104/2487 (") and EST104/2364 (2).

Fig. 7. Le coefficient de couplage α′
13 en fonction de la concentration

moyenne. Les données sont : EST104/2364 (2) et EST104/2487 (").

The coefficient γ13, related to the membrane poten-
tial, can be analyzed more precisely with the help of (6c)
in order to eliminate the bulk effects; it may be written
as:

α′
13

(
γ ′

13

D′
1 − D′

2
− γ ′

13(ζ
′ = 0)

D′
1 − D′

2

)
1

ζ ′

(17)= − (D′
1 + D′

2)

(D′
1 − D′

2)

I1(κRc)

κRcI0(κRc)

Hence, division of γ ′
13 by (D′

1 − D′
2) and F cancels the

influence of the molecular diffusion coefficients and of
the restricted geometry, respectively. However, the same
remarks as for α′

33 could be made and the representation
in terms of κΛ′ was not successful. In its stead, Fig. 7
displays α′

13 as a function of concentration.
The coefficient γ31, related to γ13 (see [12]), gives

the magnitude of the total solute flux induced by the
application of an electric field.

In Fig. 8, we have plotted γ ′
23 as a function of κΛ′. It

is obvious that γ ′
23 is very close to zero over the whole

range of κΛ′, indicating that osmosis is negligible.
The hyperfiltration (or inverse osmosis) coefficient

γ32, which is related to γ23 (see [12]), is a filtration
process by which, upon application of an hydraulic
gradient, solute concentration increases on the high-
pressure side of the porous medium and a dilution of
solute appears on the low-pressure side.

3.3.4. Analysis of the Soret coefficient
Fig. 9 displays the Soret coefficient ST as a function

of the applied temperature difference �T , the average
concentration C̄ and the average temperature T̄ . A lin-
ear temperature variation is likely to take place in the
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Fig. 8. The coupling coefficient γ ′
23 as a function of κΛ′ . Data are for:

EST104/2487 (") and EST104/2364 (2).

Fig. 8. Le coefficient de couplage γ ′
23 en fonction de κΛ′ . Les données

sont : EST104/2364 (1) et EST104/2487 (").

Fig. 9. The Soret coefficient ST in compact clays as a function of
temperature difference �T for various C̄ and T̄ : C̄ = 73 mol m−3

and T̄ = 25 ◦C (P); C̄ = 73 mol m−3 and T̄ = 33 ◦C (E);
C̄ = 1 mol m−3 and T̄ = 25 ◦C (P); C̄ = 1 mol m−3 and T̄ = 33 ◦C
(1); C̄ = 54 mol m−3 and T̄ = 25 ◦C ("); C̄ = 30 mol m−3 and
T̄ = 25 ◦C (!) and C̄ = 6 mol m−3 and T̄ = 25 ◦C (∗).

Fig. 9. Coefficient de Soret ST dans les argiles compactes en fonction
de la différence de température �T pour diverses valeurs de C̄ et T̄ .
Les symboles sont définis ci-dessus.

sample, since in (1d), γ43 which corresponds to the Du-
four effect, is very small. Moreover, thermal equilibrium
is very rapidly obtained compared to diffusion.

It is important to note that we have omitted the ab-
solute value in ST and �T , due to the fact that (ST �T )

is always positive, indicating that the solute concen-
trates in the warmer region. Values obtained for T̄ equal
to 25 and 33 ◦C are approximatively the same. However,
ST depends slightly on C̄. For C̄ ≈ 10−3 mol l−1, ST is
close to 5 × 10−3 K−1. For C̄ > 10−3 mol l−1, ST is
close to 1.3 × 10−2 K−1.
Let us now compare our results with values ob-
tained in a free medium for sodium chloride [3]. In
the free medium, ST is a slightly decreasing function
of C. Indeed, for C = 10−3 mol l−1, ST is equal to
2.3 × 10−3 K−1 and for C = 5 × 10−2 mol l−1, equal
to 1.6 × 10−3 K−1. Therefore, our results are 5 to 10
times larger. In [18], the macroscopic Soret coefficient
has been shown to be equal to the value in the free fluid
for mica and glass powders. This difference is likely to
be due to the finely divided nature of argilite with elec-
trical effects coupled with temperature effects on the
smallest pore scales.

4. Concluding remarks

The objective of this study was to analyze the be-
haviour of a compact clay, namely argillite, submit-
ted to concentration, pressure, potential and tempera-
ture gradients and to compare the data to theoretical
analysis, whenever possible. The coefficients were mea-
sured as functions of C and ε. Permeability ranges be-
tween 10−18 and 10−15 m2 for ε between 0.35 and 0.6.
The electrical formation factor is well represented by
an Archie law ε−2. Moreover, the macroscopic dif-
fusion coefficient D̄ ranges between 10−11 and 2 ×
10−10 m2 s−1.

The osmotic coefficient γ23 is close to zero for all
concentrations, indicating that osmosis has not a strong
effect on solute and fluid transport.

γ21 ranges between 10−10 m2 V−1 s−1 with a max-
imum value of 4 × 10−9 m2 V−1 s−1. The successful
comparison with the analytical solution (6b) indicates
that γ21 can be predicted in a simple way from K and F .

The coupling coefficient γ13 associated with mem-
brane potential depends on the clay samples. Indeed,
for EST104/2487, γ13 ranges between −5 × 10−31 and
−10−29 A m2. Negative values correspond to values in a
free medium. For argillite EST104/2364, γ13 ranges be-
tween −9 × 10−30 and −2 × 10−29 A m2 for κΛ′ < 5,
and between 10−29 and 5 × 10−29 A m2 for κΛ′ > 5.
Positive values indicate that the clay efficiency is about
25–30%.

Non isothermal experiments show that solute transfer
is enhanced by thermal diffusion. The Soret coefficients
range between 5 × 10−3 and 1.3 × 10−2 K−1. The posi-
tive sign indicates that solute concentrates in the warmer
region.
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